
ON THE METHOD OF GENERALIZED STOCHASTIC 

GRADIENTS AND QUASI-FEJER SEQUENCES 
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The concepts  of the method of genera l ized  s tochast ic  gradients  and a r andom quasi-  F~jer  
sequence were  introduced in [1, 7, 8, 18]. In this paper  we note a connection between these 
concepts  and give more  exact  and more  general  conditions for  the convergence of the method 
of s tochast ic  gradients .  As examples  we consider  the p rob l ems  of adaptive minimizat ion,  
r andom search ,  and p r o g r a m m e d  control  of an object subject  to r andom influences.  

set  

F U N D A M E N T A L  D E F I N I T I O N S  

Let  ~i be a c losed set in R n and C( ~ ) its convex hull. 

The random sequence {zk(c0)}, k = 0, 1 . . . . .  is said to be r andom quas i -F6 je r  with r e s p e c t  to the 
~, if M I I z  ~ [l-<const < ~ a n d  

M (ll y - z ~+~ (o~)II ~ (zO, z ~ . . . . .  z ~) ~ II ~ - z ~ (o~)[[~+ g~ 
<z) 

for  a r b i t r a r y  yE 92, , k = 0, 1, . . . .  
a ~  

The numbers gk are such that ~ g~ < 
k~0 

Obviously,  if {z k} is a r andom quas i -F6 j e r  sequence with r e s p e c t  to the set  ~ , it is a r andom 
qu~s i -F6 je r  sequence with r e s p e c t  to the set  C ( ~ ). 

A random quas i -F6 j e r  sequence is said to be a r andom F6jer  sequence if gk = 0. The following 
l e m m a  r e f l ec t s  the fundamental  p rope r t i e s  of r andom quas i -F6 j e r  sequences  which, with a sma l l  change, 
a r e  analogous to the p r o p e r t i e s  of ord inary  dominate F6jer  sequences  [12, 13]. 

LEMMA. If the sequence { zk(w)} is a r andom quas i -F~ je r  sequence,  then: 

a) the se t  of l imi t  points of {zk(w)} is not empty  for a lmos t  all  w; 

b) if z '  (r and z" (~) a re  any l imi t  points of { z k (~)} for  some co not belonging to C ( ~I ), then C ( ~)~( ) 
l ies  in the plane which is the geomet r i ca l  locus of points equidistant  f r o m  z'  (w) and z" (~). 

This  l e m m a  follows di rec t ly  f r o m  the fact  that  for  any yE ~[ the sequence Pk = Hg - z ~  It 2 + ~ g~: , 
S ~ k  

k = 0, 1 . . . . .  by (1), is a s emimar t inga le  [14] and converges  for  a lmos t  all  co and, hence,  the sequence 
{1[ Y - z  k (w) 1l 2} converges  for  a lmos t  allw. 

COROLLARY 1. If the set  C (~ )  is of dimension n, then {zk(w)} has  a unique l imi t  point for  each ~. 

COROLLARY 2. If the l imi t  point z (co) of the sequence { z k (co) } for  some w belongs to C ( ~ ), then 
z (w) is the unique l imi t  point for  that w. 
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These properties of random quasi-F6jersequences make it possible to standardize and simplify the 
proofs of certain known stochastic methods of optimization and solutions of sets of in.equalities. 

Let F (xl, .... xn) be a convex, but net necessarily differentiable function. The generalized gradient 

vector at the point x = (x I ..... Xn) is any vector Fx(X) satisfying the inequality 

F (g) - -  F (x) ~ (Fx (x), 9 - -  x) (2) 

for arbitrary y = (Yl . . . . .  Yn)- 

Thus, the vector Fx (x) is directed along the outward normal to one of the support hyperplanes of the 

= { OF , OF ) set  ~y: F(y)-<F(x}}; if F(x) is differentiable, then Fx(x) eoincideswiththe gradient Fx(x ) \ Ox, . . . .  - ~  
/ 

The convergence of F ( ~  to the minimum point was investigated in [2-6] by the method of genera l -  
ized gradient descent,  defined by the equation: 

x ~+' =x~--g~?sFx(xS), s --0, i . . . . .  (3) 

where x ~ is an a rb i t r a ry  point, Q s is the step length, and Ys is a normal iz ing factor .  A feature of this 
method is that in general  f rom one i teration to the next no monotonic diminishing of the values of F(x) is 
observed and r igid control  of the step length Q s has to be stipulated for  convergence.  In [3, 4] it was pro-  

r 

posed to choose the step length so that ~ s -> 0, e s ~ 0, ~ Q~ = r . In [5] another control method was 
S~0 

was proposed which ensures  that under very  general  assumptions (which are usual in such cases) ,  the 
method (3) converges  like a geometr ica l  p rogress ion .  

The p roces s  (3) can be used when it is easy to calculate the value of the vector  Fx(x s) at each point 
x s. A theoret ical  fo rma l i sm has  been developed for  calculating this vector ,  which, in its generali ty,  r e -  
calls  the fo rma l i sm of ordinary  differentiation. 

But in pract ice ,  in nonlinear problems the exact  value of even the ord inary  gradient  is known only 
in exceptional cases  (for example, ff F (x) is specified as a polynomial and if rounding-off e r r o r s  are ne- 
glected). Very frequently the value of the gradient  can be calculated using cer ta in  difference analogs 
which are  very  sensit ive to var ious  kinds of random e r r o r ,  for example, f rom the equation: 

F~ (x) = ~ F (x + Aei)A - -  F (x) e; , 

l = l  

(4) 

where eJ is the unit vector along the j-th axis. There arises the not altogether obvious problem of the 
stability to random noise of methods of mathematical programming. It will become clear from what fol- 
lows that the condition guaranteeing the convergence of the method (3) in the absence of random noise is 
no longer sufficient when noise is present. 

For the systematic investigation of this problem we introduce the following definition. We shall say 

that the generalized stochastic gradient vector, or briefly, the stochastic quasi-gradient vector of the func- 
tion F (x) at the ooint x is any random vector ~ (x) whose relative mathematical expectation (for each corn- 
ponent separately) is F x (x) for fixed x, i.e., 

M (~ (x)/x) = ~ (x). (5) 

Here it is assumed that the distribution of ~ (:~) depends only on the point x, and that the average value of 
the error is zero. This assumption is strong enough, since the approximate value of the gradient or the 
generalized gradient can be calculated over some set of points and, as (4) shows, has a nonzero average 
error. 

Hence, we shall regard the vector ~ (x) as of a more general form in which the mean value can be 
determined by a whole set of points H (x) and the relative mathematical expectation has the form 

M (~ (x)/H (x)) = oF% (x) + m, (6) 
where e is a number and m is a vector depending" in general on H (x). 
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THE METHOD OF GENERALIZED STOCHASTIC 

Consider the problem of minimizing the downward-convex function 

F (x~ . . . . .  x )  

s u b j e c t  to the  cond i t ion  

w h e r e  ~ i s  a convex  c l o s e d  se t  in R n.  

G R A D I E N T S  

x = (x, . . . . .  x~)E~, (8) 

Le t  ~(x) denote  the  p r o j e c t i o n  o p e r a t o r  on ~ i . e . ,  f o r  s o m e  ~(x) 
~(x)e  ~,, II y-~(x)112 -< I l y - x  [I 2, for any y E ~).. 

C o n s i d e r  the  r a n d o m  sequence  of po in t s  {x s } de f ined  by  

F +' = n (x ~ - -  s y~ ~), s = 0,1 . . . .  (9) 

H e r e  x ~ i s  an a r b i t r a r y  poin t  fo r  which  M I[ x ~ ]12 -< e o n s t  < ~ ,  e~ i s  the s t ep  length ,  ~/s i s  a n o r m a l i z i n g  
f a c t o r ,  } s =  (~ is . . . . .  }n s) i s  a r a n d o m  v e c t o r  whose  r e l a t i v e  m a t h e m a t i c a l  e x p e c t a t i o n  ( for  each  c o m -  

ponent) i s  

M (~/x ~ x t . . . . .  x ') = cs F x ( x  ') + m' ,  s = 0,  1 . . . . .  ( 1 0 )  

w h e r e  c s i s  a nonnega t ive  n u m b e r ,  m s = (m s . . . . .  runS) i s  a v e c t o r ,  Fx(xS) is  the  g e n e r a l i z e d  g r a d i e n t  
v e c t o r ,  i . e . ,  the  v e c t o r  ~s s a t i s f i e s  a r e l a t i o n  of the  f o r m  (6). When ~ ~-R ~ and 7r(x) = x, the  me thod  
(9)-(10) is  c a l l e d  the m e t h o d  of g e n e r a l i z e d  s t o c h a s t i c  g r a d i e n t s ,  o r ,  s i m p l y ,  the  m e t h o d  of s t o c h a s t i c  
q u a s i - g r a d i e n t s .  

The  v a l u e s  of c s and m s in (10) m a y  depend  on x ~ . . . . .  x s,  but  we a s s u m e  tha t  we  know c o n s t a n t s  l s 
and  r s ,  depend ing  only on s, fo r  which  c s (x ~ . . . . .  x s) -> Is ,  II m s (x ~ . . . . .  x s) I[ -< r s .  

Le t  ~)* denote  the  se t  of so lu t ions  of the p r o b l e m  (7)-(8) .  

THEOREM 1. Suppose  tha t  we know the va lue  of h s ( x  ~ . , xS), such tha t  

M(ll~'ll=/x~ . . . . .  x ' ) ~ < h ~ < M B < o o  for ] l x ~ i i < . B < o ~  ', , ~=0 ,  ] . . . . .  s; (11) 

l e t  the  n o r m a l i z i n g  f a c t o r  Ys s a t i s f y  the  cond i t ion  

O < y <. y , (~ [IxSll + h) < y  < c o ,  (12) 

w h e r e  T s = l ,  i f l l  m s [I > 0, and *s = 0 , j i l l  m s] l  = 0 ,  and l e t  the  q u a n t i t i e s  e s, Cs, r s  be  such tha t  

~ > 0 .  c , > 0 ,  e,r,<~, ~ ~<o~. (13) 
s=O S=O 

Then the s equence  of p o i n t s  {x s (co)}, de f ined  by  (9) and (10), i s  a r a n d o m  q u a s i - F 6 j e r  s equence  with  r e -  

s p e c t  to the  s e t  5~* . But if ,  in add i t ion ,  

-.~~ s ls = o o ,  ( 1 4 )  
S=0  

then  fo r  a l m o s t  a l l  co the  s equence  {x s (co)} c o n v e r g e s  to the  so lu t ion  of the  p r o b l e m  (7)-(8) .  

We can  e a s i l y  v e r i f y  the  cond i t i ons  of the  t h e o r e m  when so lv ing  a c t u a l  p r o b l e m s ,  a s  w i l l  be shown 

be low.  H e r e  we note  only  tha t  

. . . .  = _ _  �9 ~x). m~l i [[m'lj 2. (15) 
i = I  

It fo l lows  f r o m  th i s ,  f o r  e x a m p l e ,  tha t  if the s u m  of the  v a r i a n c e s  ~ D(~}/x ~, x ~ . . . . .  x ~) of the  c o m p o n e n t s  

of the  v e c t o r  (~s = ~s, . . . .  ~s) a r e  bounded  in '~. , and l lFx(X~it  i s  a l s o  bounded,  t h e n h  s = eons t ,  i . e . ,  
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condi t ion (11) holds .  Obviously  in ac tual  p r o b l e m s  the va l id i ty  of (11) is a c o r o l l a r y  of the boundedmess of 
the domain ~ It is also essential that F(x) be differentiability (see Note 3). 

We begin by proving the first part of the theorem. Let x* denote an arbitrary solution of the prob- 
lern (7)-(8).  Then 

ti x*  - -  x ~+' 11~4 l!x* - -  x" + e~ 7~ ~ l? = i} x* - -  x ~ It ~ + 2~, ~ (~Z x* - -  x ~) + ~ ~ 1I ~ II ~. 

We take the r e l a t i ve  m a t h e m a t i c a l  expec ta t ion  of both s ides  of this  inequal i ty :  

M (11 x* - x ~+' IlVx ~ x' . . . . .  xb < II x* - x ~ Ii' 4- 2e, v, c~ ( ~  (x~). x* - x ~) + % v. (rat x* - x') + e~ v~ m (11 ~ iP/x  ~ x '  . . . . .  x'). 

F r o m  this ,  taking note of (2), the C a u c h y - B u n y a k o v s k i i  inequal i ty ,  and the fac t  that  we can a lways  a s s u m e  
that  7s  -< 7" < r we obtain  

~a (I x* - x + '  IlVx ~ x'  . . . . .  x") < II x* - x" II = + 2~ q (~* ii x* li + ~-) + ~Q3 (17) 

This  inequal i ty  and (13) p rove  the f i r s t  pa r t  of the t h e o r e m .  We now show that  if (14) holds ,  one of the 
l imi t  points  of the sequence  {x s (co)} fo r  a l m o s t  al l  co be longs  to the se t  of solut ions  of the p r o b l e m  (7)-(8). 
F r o m  this ,  by C o r o l l a r y  2, fol lows the p roof  of the second  p a r t  of the t h e o r e m .  F r o m  (16) we have 

M i[ x* - x ~+' 112 < M I[ x* - x'~ 11 ~ 

s 

+ 2 ~ Qk lk My~ ( ~  (x~), x* - -  x ~) + 2 (11 x* I! v* + ~) Y~ ek r~ + ~ 2 el .  
k ~ o  k = O  k=O 

It fo l lows f ron t  (17) tha t  M][ x* - -x  s * 1[[2 is u n i f o r m l y  bounded,  and thus 

r 

E 
k = 0  

A k 
ek la/~Iyk (G (x), x* - -  x ~) > - -  co. 

Qk 1, co we have MTk (Fx  (xk), x *  - x  k) -* 0 a s  k - -  ~o Hence,  t he re  is a subsequenee  { st} t 

0, 1 . . . . .  fo r  which Yst (co)(Fx( xs t  (co)), x* --xSt(co)) ~ 0  wifll p robabi l i ty  1 as  t ~ ~ For  a l m o s t  all co the 
sequence  {!I xS(co) il} is  bounded and thus ,  not ing (12), fo r  a l m o s t  all  w the sequence 7s(W ) is bounded below, 
i .e . ,  fo r  a l m o s t  all  co (Fx(xSt(co)), x -- xSt(w)) ~ 0. Hence as  t ~ % the sequence  {xSt(co)} c o n v e r g e s  to a 
solut ion of the p r o b I e m  (7)-(8), which is what  we wished  to p rove .  

Note 1. Obviously  if the domain  ~ is bounded,  T h e o r e m  1 r e m a i n s  va l id  when Ys - eonst  > 0. 

A s s u m e  that  r s / / s  ~ 0 as  s ~ ~ ,  and that  t he re  is a n u m b e r  Q such that  fo r  I] x* - x 11 >- Q, 

(fix(X), x* - -  x) ~< - -  a II x* - -  x I], (18) 

where a > 0. Then Theorem i remains valid if we replace (12) by the condition 0 < Y <- Yshs -< Y-< oo. 
Indeed, it follows from (16) that 

m ( l[ x*  - -  x ~T' ll~/x ~ x '  . . . . .  x ~) 4 Il x*  - -  x '  ll 2 q- 2Q, Ys/~)~ ~ ( [Vx (x~), x* - -  x~) q - ~ llx*--x'll]j 

+ 2 G y~ (1 - -  X) I I  (f,~ (x~), x* - -  x') -F r s [I x* - x' ill + v e, (19) 

for  any X s. But if we take 

~ =  1, IIx - - x l l > q ,  

0, [ I x * - x ~ l l < Q ,  
we obtain  

"' I rs M (l[ x*  - -  x s+'  [i~/x ~ x l, . ,  x ~) ~< [] x *  - -  x ~ [I 2 "q- 20~ y~ l ~ - -  a l] x*  - -  x ~ 11 + 7 -  ]! x* 
~s 

- - x ~ [ [  + 2 q ~ y ~ ( 1 - - ~ ) [ t  ( x ( X ) ,  x *  x."') +rI[x*--x~[[J+y~@ 
Since, beginning with some constant time s -> S0, 

i ' ) ~, -~Llx*-x~Ii+~,x*-x~If <o, 

211 



for  s ->- S O we have 

~,202 + r ~ l l x * - - x ' l l l  + ) ~ e ~  4 l [ x * - x ~ [ [  2 + 2 Q ? r ~  + y ~. 

Hence ,  beginning at s -> S O the sequence  { x s (w)} is a q u a s i - F 6 j e r  sequence .  We shal l  now prove  the second 
p a r t  of the t h e o r e m .  F r o m  (16) we have 

s $ s 
z, k 

M II x* - x *+t i[ ~ ~< M II x* - -  x o II = + 2 ~] e, z, my, ( F  (x) ,  x* - -  x e) + 2??* 2 0k r, M II x* - -  x" I] @ 7= Z e~. 
k = O  k = O  k=O 

By (17) the quant i t ies  M I[ x* - x  k tl 2 a re  un i fo rmly  bounded and thus 

~V Q~ I k alVk ( ~  (xk), x* - -  x ~) > - -  ~ .  
k=O 

F r o m  this ,  as  in the p roof  of the t h e o r e m ,  it fo l lows that  t he re  is a subsequence  { xSt(w)} which con-  
v e r g e s  to x* (O)E~* with p robab i l i ty  1. 

Note 2. The p e r m i s s i b l e  domain  9 is usua l ly  spec i f ied  by a se t  of inequal i t ies ,  i .e . ,  it  can  be r e p -  
rn 

r e s e n t e d  as  the i n t e r s ec t i on  domains  9 = ~-] 9~ of the number  of domains .  In this  ca se  we can  use  the 
i=1  

o p e r a t o r  fo r  sequent ia l  p ro jec t ion ,  f i r s t  onto ~)~ and then onto 9~q92  , e tc . ,  and thus eventual ly  onto 
rn 

(-1 9,. It is usua l ly  e a s i e r  to make such a p ro jec t ion  than to make  a d i r ec t  p ro jec t ion  at once onto the 
[=1 

whole domain  9 . 

Le t  us  now cons ide r  b r i e f ly  the p r o b l e m  of the loca l  conve rgence  of the method  (9)-(10), i .e. ,  we 
shal l  not  a s s u m e  that  F (x) is convex  downwards .  F i r s t  of all ,  ana lys i s  of the p roof  of T h e o r e m  1 shows 
that  the t h e o r e m  r e m a i n s  val id  for  any F (x) fo r  which t he re  is a se t  of m i n i m u m  points  9** , such that  
(Fx(X), x* - x )  -< 0 fo r  xEg** and (Fx(x) ,  x* - x )  = 0 fo r  x69"* . Now a s s u m e  that  F(x) is cont inuous ly  
d i f fe ren t iab le  that,  { x :  11 Fx(X) 11 = 0} is  bounded,  and that  11 Fx(x) -- Fx(Y) 11 -< fl tl x - - y  II. 

We c o n s i d e r  only the s i m p l e s t  c a se ,  when 9 - = R  ~ , so that  the method (9)-(10) degene ra t e s  into 
the fol lowing:  

x s+l = xs--  0s~?,~ s, s = 0 ,  1 . . . . .  (20) 

M (~S/x ~ x'  . . . . .  x ~) = c F (x') + m s. (21) 

A s s u m e  t h a t  Cs (X  ~ . . . . .  x s) -> l s ,  I I m  s (x  ~ . . . . .  x s) II -< r s .  

THEOREM 2. Let  M(tl ~s 112/x ~ x I . . . . .  x s) -< h2s -< MB < ~ for  Ilx k II -< B < :r k = 0, 1 . . . . .  s, and 
let  the n o r m a l i z i n g  f ac to r  Ys sa t i s fy  the condi t ion 0 ---~ -< 7 s h s  -<~" < ~ .  M o r e o v e r ,  let  

eo 

~ 0  s=O s=f) 

Then the sequence  of points  {x s (w)} defined by (20) and (21) is such that  fo r  a l m o s t  all  co the sequence  
{ F (x s)} conve rges ;  a sub sequenee { s t} ex i s t s  fo r  which II Fx (x st) II ~ 0  fo r  a l m o s t  all r F r o m  this  we 
have,  in pa r t i cu l a r ,  that  if F(x) is convex downwards ,  F{x s) tends  to the m i n i m u m  of F(x) .  

Indeed,  
[ 

F (x S+') - -  F (x ~) = ~ F a (x s - -  a~  3~s ~') dc* 
0 

1 1 

= ~ v~ .f (F  (x') - -  F (x' - -  ~Q, V~ ~), ~') d~ - -  ~ ~ j" (F x (x% ~') d~ ~ - -  e, V, (F~ (x~), ~') + ~,~'V, l, ~ II ~. 
0 0 
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After taking the relative mathematical expectation of both sides of this inequality, we obtain 

rs ] 
M(F(xS+l ) / x~  x '  . . . . .  x s) < F ( i f )  + Q s Y s l s  X []Fx(XS)[[ ~ +-~-IIF~(~311J + ~  

We i n t r o d u c e  the  f a c t o r  k s such t ha t  

o, ~ JII <Q,  

w h e r e  Q > 1. Then  f r o m  the p r e c e d i n g  i n e q u a l i t y ,  fo r  s o m e  S O and s >- S O (for  s i m p l i c i t y  a s s u m e  tha t  
S O = 0), we Obtain 

�9 - -  F ' ~ 2 

This is equivalent to 

lVl (z + / zo ,  z l . . . . .  z ~) ~< z ,, s = O, 1 . . . . .  

w h e r e  z~ = F ( x  ~) + ~ (QQ r,~/~ + ~ @  . We can  a l w a y s  a s s u m e  tha t  F(x)  >- 0, Ys <- ~/* and thus  the sequence  
k ~ s  

{z s } f o r m s  a s u b m a r t i n g a l e .  T h e r e f o r e ,  the  s e q u e n c e  { F (x s) } c o n v e r g e s  wi th  p r o b a b i l i t y  1. A s  wi th  
Note I ,  i t  i s  e a s y  to  show a l s o  tha t  t h e r e  i s  a s e q u e n c e  { s t } ,  t = 0, 1 . . . . .  fo r  which  1[ F x ( x  st) ]t ~ 0  wi th  
p r o b a b i l i t y  1. 

0 . . . .  x )  IS bounded ,  then  the me thod  (20)-(21) con-  Note 3. If the  s u m  of the  v a r i a n c e s  ~ ~ • ( ~ d x ,  x ~, ~ " 
i = 1  

v e r g e s  fo r  ~/s = 1 and the  f i r s t  cond i t i on  in T h e o r e m  2 can  be d r o p p e d .  

MINIMIZATION IN A LARGE NUMBER OF DIMENSIONS 

In solving extremal problems with a large number of unknowns, conventional methods based on cal- 
culation of the gradient may become convenient because of time-consuming computations. In this case the 
method of random search can frequently be applied. It appears that a general class of such methods can 
be considered as a special case of the process (9)-(10). 

Suppose that it is required to solve a problem of the form (7)-(8) in which F (x) has bounded second 
derivatives. Then the vector ~s can be defined as follows. We consider the vector 0 = ( 01 ..... 0 n) with 
independent components uniformly- distributed in [-i, i]. 

Put 

Ps 

~ = ~ F (x ~ + A O ~k) - -  F (x') 
A 

(}% (22) 

where 0sk k = 0, 1 . . . . .  PsiS a series of independent observations of the vector 0 at the s-th iteration and 
Ps -> I; A s>- 0. It is easy to show that 

P s  - s i ~ 7 s  M ( ~ / x  ~) = Y r (x )  ~_ A t, (23) 

where the vector W s has bounded components, i.e., N W s II -< coast. Equation (22) is similar to (5). But 
whereas the calculation of the vector ~s from (22) requires Ps + 1 computations of the function F (x), where 
Ps -> I, the calculation of F A from (5) always requires n + i computations of F(x) (and therefore the pro- 

X 
cess (9), with the vector ~ s in the form (22), can be more suitable than the corresponding determinate 
gradient method). 
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ADAPTIVE MINIMIZATION PROCESSES 

In analyzing and synthesizing a complex system there very frequently is no single analytic model 
describing its behavior, but rather one or more scenarios of the way in which the activity of the system 

develops. Each scenario may consist of a nnmber of analytic models linked by definite logical and prob- 

abilistic transitions in which the elements are computing machines, games, or even actual objects. 

In such a situation it may be possible to observe only the separate random results of the scenarios 

which are enacted and from this information we have to construct an adaptive search process for the un- 

known optimal values of the system parameters. 

Since the information on the basis of which we must organize a purposeful search for the unknown 

parameters is random, the adaptive process itself is random. It is very natural to use the method (9)-(10) 

for this purpose since in it we take as the direction of motion from an arbitrary intermediate point x s any 

v e c t o r  $ s which  i s  a s t a t i s t i c a l  e s t i m a t e  of the  g r a d i e n t  (and even  the g e n e r a l i z e d  g rad ien t )  of the  func t ion  
to be  m i n i m i z e d .  

Methods  of adap t ive  m i n i m i z a t i o n ,  o r  m o r e  a c c u r a t e l y  of a d a p t i v e  m a x i m i z a t i o n ,  of the  f o r m  (9)-(10) 
w e r e  f i r s t  c o n s i d e r e d  in [10]. 

1. The Method of S tochas t i c  A p p r o x i m a t i o n .  The fo l lowing  p r o b l e m  w a s  c o n s i d e r e d  in [10]. We have  
a r a n d o m  quan t i ty  Y (x, w) whose  d i s t r i b u t i o n  de pe nds  on the  unknown v e c t o r  x = (x 1 . . . . .  xn).  It i s  r e -  
q u i r e d  to m i n i m i z e  the  funct ion* 

F (x) = MY(x, co) (24) 

u n d e r  the  a s s u m p t i o n  tha t  it  i s  p o s s i b l e  only to o b s e r v e  ind iv idua l  r e a l i z a t i o n s  of Y (x, w) fo r  any o~. 

To so lve  t h i s  p r o b l e m  the m e t h o d  of s t o c h a s t i c  a p p r o x i m a t i o n  w a s  p r o p o s e d  in [10] ( s ee  a l so  [16]) : 

-~y (x~ • A s e j, ~o si) _ Y (x ~, co ~~ 
xS§ = XS- -  ~s 

i = 1  

Xe J, s = O , l  . . . . .  
(25) 

w h e r e  eJ i s  the  uni t  v e c t o r  a long  the  j - t h  ax i s ;  wsv, v = 0, 1 . . . . .  a r e  independen t  t r i a l s  in the  s - t h  i t e r a -  
t ion .  It is  a s s u m e d  tha t  the  s econd  d e r i v a t i v e s  of F (x) a r e  bounded .  I t  i s  e a s y  to see  Chen tha t  

( ~i~=l~ Y (F +A~ei '  ~ Y (F' ~176 ~) F 
IVI -A~ • e~ / x = ~ ( x ) + W~ A~, (26) 

w h e r e  the  n o r m  of the  v e c t o r  [[ W s [I -< e o n s t ,  i . e . ,  the  m e t h o d  (25) i s  a p r o c e s s  of the  f o r m  (9)-(10) fo r  

~ ( ~ - x ,  ~ _ ~ R  ~ , a n d  

~ Y (x ~ q- Aoe !, (o s1) - -Y (x ~, ~o ~~ f 
~ ~ ~ ' e . A 

I = I  

(27) 

In (25) Ys = 1, s i n c e  i t  w a s  a s s u m e d  in [10] ( s ee  Note 3) tha t  the  s u m  of the  v a r i a n c e s  

n 

f~ (~}/x ~ . . . . .  x s) i s  bounded .  The p r o b l e m  of m i n i m i z i n g  the  func t ions  (22) can  be  i n t e r p r e t e d  a s  fo l l ows .  
] = l  

We have  a s i t ua t ion ,  each  e n a c t m e n t  of which  y i e l d s  the  quant i ty  Y (x, w) def in ing  the  e f f e c t i v e n e s s  of the  
s y s t e m  for  f ixed  p a r a m e t e r s  x = (x~ . . . . .  Xn). It i s  r e q u i r e d  to f ind the  x fo r  which  the  m a t h e m a t i c a l  e x -  

p e c t a t i o n  (24) i s  m i n i m a l .  

* In order to avoid complicating the description of the set-theoretic assumptions about measurability and in 
integrability, we do not intent to dwell on them in this paper and we shall not adhere to the appropriate 

terminology. 
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The unique adaptive process proceeds in accordance with (25) to search for the required minimum 
of (21) omitting the complex and,for all practical purposes, unrealizable process of searching for the un- 
known distributions. But for large n this method may be absolutely ineffective. To calculate $ s from (27), 

which is the stochastic analog of (5), requires, as indicated in the previous section, n + 1 observations of 
Y (x, co). In actual problems, one observation (game) takes a considerable time. Even if it lasts 0.5 rain, 
with n = 60, one iteration of the method (25) takes 0.5 h. 

In this case we can use instead of (25) a stochastic variant of the method considered in the previous 
section, i.e., we can calculate ss from 

P~ Y 0% co ~k) ~o) 

k = l  

(28) 

Moreover, it is necessary that ~D------R ~ . If F(x) has bounded second derivatives in ~ , a relation 
of the form (23) is also valid for (28). 

2. On a Stochastic Game Problem. Let us suppose that we have a series of situations i= I, 2 ..... m, 
in each of which Yi(x, co) defines the effectiveness of the plan x = (x I ..... Xn). By playing through the 
scenario it is required to find the plan x which minimizes F(x) = Mmax Yi (x, co) for xE~D 

l 

Let Yi(x, co)(x, co) = max Yi(x, co); Yi(x, co) is twice differentiable; for any x, y in ~) we have 
i 

F (g) - -  F (x) >/(M grad Y~(~,~o) (.~, ~o), g - -  x) (29) 

w h e r e  g r a d  Yi  (x, co) (x, co) is c a l c u l a t e d  f o r  x = (x i . . . . .  Xn) in Yi (x, co), f o r  i = i (x, co). In t h i s  e a s e  the 
v e c t o r  ~s of  the  p r o c e s s  (9)-(10) is  de f ined  by  

~ = ~ YL, ( x~ "[- A~ d, o?) --  Y~ (x ~, ~) e t, 
A~ (30) 

o r  

Ps 

~ = E Yi~ (F + A 0% cd) - -  Y~, (F, ~ )  O~ ~ 
A s ' 

(31) 

where the vectors eJ and 0 sk are as defined in Section 3, and i s = i(x s, cos). It is easy to see that, by (29), 

tlhe vectors (30) and (31) satisfy (i0). We note that (29) holds, for example, if Yi(x, ~) is convex downwards 
for any co. 

Consider briefly one iteration of the above adaptive process with the vector (31). Suppose that we 
have already found the point x s. We observe a realization Yi(x s, cos) and find i s from Yi~,(x s, cos = 
max Yi(xS, cos}. We make Ps m 1 independent observations of the vector 0, and find Q s,As from (13) and 
i 
and (14); we compute Yis(X +As0Sk , cos), for which we must fix cos; we compute ~s from (31), x s+ 1 
from (9), etc. 

3. A Problem in Two-Stage Stochastic Programming. These very important problems in decision- 
making for an indeterminate future were first considered in [II]. The term "two- stage" should not be taken 
to mean that there are only two variable planning stages. There are only two stages in the determination 
of the solution: construction of the plan while the future is unlmown, and correction of that plan as the 
future becomes known. The plan is chosen so that the cost of realization and correction are minimal 
"on the average." 

The formal formulation of the linear problem in two-stage stochastic programming is as follows. 
Assume that the plan x = (x i ..... Xn), adopted for some interval of time in the fnlure, must satisfy 
the condition 

A (o~) x + B (o~) y ~< b (co). (32) 
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The p lan  x i s  adop ted  unt i l  the  v a l u e s  A (w), B (w), b (a)) b e c o m e  known. Then when they  b e c o m e  known, 
(32) i s  c o r r e c t e d  by the v e c t o r  y .  If (d(w) ,  y) i s  the c o s t  of c o r r e c t i o n ,  we can  f ind a y ( x ,  c0) which  
m i n i m i z e s  

(d (~), V) (33) 

s u b j e c t  to (325, w h e r e  the  v e c t o r  x, and a l so  A (co), B (w), and b (co) a r e  f ixed .  The p r o b l e m  c o n s i s t s  in 
f ind ing  the  v e c t o r  x which m i n i m i z e s  

F (x) = (c. x) + M (d (co), V (x, 0~)) (34) 

s u b j e t  to xC~ , w h e r e  (c, x) i s  the  c o s t  of the r e a l i z a t i o n  of the pIan x.  The c a s e  in which  the m a t r i c e s  
A(c0) and B (co) and  the v e c t o r  d(c~) a r e  d e t e r m i n a t e  w a s  c o n s i d e r e d  in [11]. Only the  v e c t o r  b(w) i s  r a n d o m ,  
and i t  t a k e s  a f in i te  n u m b e r  of v a l u e s  wi th  g iven  p r o b a b i l i t i e s ,  and  ~ -~ R" The me thod  (9)-(10) m a k e s  
i t  p o s s i b l e  to so lve  the  p r o b l e m  of t w o - s t a g e  s t o c h a s t i c  p r o g r a m m i n g  in m o r e  g e n e r a l  f o r m .  

Suppose  tha t  in add i t i on  to y ( x ,  c0) we can  ob ta in  u ( x ,  co) = (u 1 (x, co) . . . . .  u m (x, w)), which  a r e  dual  
v a r i a b l e s  c o r r e s p o n d i n g  to  y (x, w). Le t  x s denote  the  a p p r o x i m a t i o n  o b t a i n e d  a t  the  s - t h  i t e r a t i o n .  We oh-  
s e r v e  A(o~s), B(cos), b(o)s) ,  d(c0 s) and so lve  the  m i n i m i z a t i o n  p r o b l e m  (33) fo r  x = x s,  co = ws u n d e r  the  
cond i t i ons  (32). We d e t e r m i n e  y ( x  s,  ws), u ( x  s,  cos), and c a l c u l a t e  x s +  ~ f r o m  (9) fo r  

F = c - -  A ~ (~)  u (x s, o)~). 

It i s  e a s y  to show [81 tha t  if F(x)  i s  def ined  by (345, and ~s by  the above  equa t ion ,  then  

M (~/x ~) = ?'~ (x~) 

In [8] the  adap t ive  p r o c e s s  d e s c r i b e d  h e r e  i s  e x t e n d e d  to g e n e r a l  n o n l i n e a r  p r o b l e m s  in t w o - s t a g e  
s t o c h a s t i c  p r o g r a m m i n g .  We note  tha t  the  p r o b l e m  of  m i n i m i z i n g  the n o n d i f f e r e n t i a b l e  func t ion  (34) can  
be  c o n s i d e r e d  as  a s t o c h a s t i c  p r o b l e m  in p a r a m e t r i c  p r o g r a m m i n g  and the  above  p r o c e s s  a s  a un ique  
m e t h o d  for  s e p a r a b l e  p r o g r a m m i n g  (if  the  m a t r i x  B i s  a b l o c k  m a t r i x ) .  

4. P r o g r a m m e d  Con t ro l  of a R a n d o m  P r o c e s s .  Suppose  tha t  the b e h a v i o r  of an o b j e c t  on wh ich  r a n -  
dom p e r t u r b a t i o n s  ac t  i s  d e s c r i b e d  by a s e t  of d i f f e r e n c e  e q u a t i o n s :  

x ~ ( k + l ) = x  t ( k ) + f . ( x , y , k , r  x f ( 0 ) = x ~ , i = l , 2  . . . . .  n; k = 0 , 1  . . . . .  N - - l .  (35) 

w h e r e  the  c o n t r o l  v e c t o r  y(k)  = (y~(k5 . . . . .  ym(k ) ) a t  e ach  m o m e n t  of t i m e  k = 0, 1 . . . . .  N - l ,  b e l o n g s  to  
the  d o m a i n  ~: , i . e . ,  

g (k )~) ,  k----0, 1 . . . . .  N - - 1 .  (36) 

It i s  r e q u i r e d  to f ind a p r o g r a m m e d  c o n t r o l ,  i . e . ,  a v e c t o r  func t ion  y ( k ) ,  k = 0, 1 . . . . .  N - 1  s a t i s f y i n g  
(36), fo r  which  the func t ion  

f (g (0) . . . . .  y (N - -  1)) = MY (x (N), o) (37) 

h a s  i t s  l e a s t  va lue  fo r  f i xed  N. 

In t h i s  c a s e  the  me thod  (9)-(10) c o r r e s p o n d s  to the  fo l lowing  a d a p t i v e  p r o c e s s .  Suppose tha t  a f t e r  
the  s - t h  i t e r a t i o n  we  have  ob t a ined  the a p p r o x i m a t i o n  yS (k), k = 0, 1 . . . . .  N - 1 .  

We o b s e r v e  co s and  f r o m  (355 f ind the t r a j e c t o r y  xS(k5, k = 0, 1 . . . . .  N and a l so  the so lu t ion  X s (k), 
k = N . . . . .  0 of the  fo l lowing  s y s t e m  of p a i r e d  equa t ions  f o r  x (k) = xS(k),  y (k) = yS(k),  w = co s 

n 

~=1 

~ i ( N ) = - - Y x  i(x(N), ~05, k = N - - 1  . . . . .  0; 1---- 1,2 . . . . .  n. 

We put  

n 

1 s s ~'(k) = ~ x~(k + ) f~(x ,  y, k, ~ )  
i = l  

and c o n s i d e r  the  se t  of v e c t o r s  ~s = (~s(0) . . . . .  ~s ( N - I ) ) .  
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The set ~s is the stochastic gradient of (37) as a function of the variables y(0) ..... y(N-l), i.e., 

M(g~/g~ (0) . . . . .  j ( N - -  1)) = gradF (V~ . . . . .  f ( N  - -  1)), 

and thus  a new a p p r o x i m a t i o n  y S +  ~ can  be  o b t a i n e d  u s i n g  (9). Th is  m e t h o d  i s  v a l i d  when the  func t ion  (37) 
i s  convex  d o w n w a r d s ,  and ~ i s  a c o n v e x  se t .  If t h i s  i s  not  the  c a s e ,  we c a n  d i s c u s s  i t s  c o n v e r g e n c e  to 
a l o c a l  m i n i m u m .  

5. A p p I i c a t i o n  of t he  S tochas t i c  P r i n c i p l e  of the  M a x i m u m .  A s s u m e  tha t  the  b e h a v i o r  of the  o b j e c t  
i s  d e s c r i b e d  b y  the  fo l lowing  s y s t e m  of d i f f e r e n c e  e q u a t i o n s :  

(3S) x ( k +  l ) = x ( k ) + A ( k ,  co) x ( k ) + g ( y ( k ) ,  k,o) ,  x(O) = x  ~ ~ = 0 , 1  . . . . .  N - - I ,  

w h e r e  x(k)  = (xl(k) . . . . .  x n (k)), g ( y ,  k,  co) =(g~(y ,  k,  co) . . . . .  gn(U, k,  co)). 

It is  r e q u i r e d  to f ind  a p r o g r a m m e d  c o n t r o l  y (k) m i n i m i z i n g  the  m a t h e m a t i c a l  e x p e c t a t i o n  

M (c (to), x (N)) (39) 
s u b j e c t  to  the  c o n d i t i o n s  

y(/e) r  & = O, 1 . . . . .  N - -  1. (40) 

Us ing  the t h e o r y  of dua l i t y  in m a t h e m a t i c M  p r o g r a m m i n g  a s  e m p l o y e d  in [15], we can  show tha t  the  
fo l lowing  d e c o m p o s i t i o n  p r i n c i p l e  (the s t o c h a s t i c  p r i n c i p l e  of the m a x i m u m )  i s  v a l i d  fo r  the p r o b l e m  (38)-  
(40) : the  r e q u i r e d  c o n t r o l  y (k) a t  t i m e s  k = 0, 1 . . . . .  N - l ,  m u s t  be  c h o s e n  so tha t  

M (X (k + 1), g (V (k), k, to)) = max M (~ ( k m  1), g (V, k, to)), (41) 
v6N 

L ( k ) = X ( k + I ) + A  z (k, to) )~ (k + l), X ( N ) = - - c ( t o ) ,  k = N - - 1  . . . . .  0. (42) 

To so lve  the  N p r o b l e m s  (41) we can  use  the  m e t h o d s  d e s c r i b e d  a t  the  beg inn ing  of t h i s  s e c t i o n .  

6. Cho ice  of In i t i a l  State  fo r  the C o n t r o l l e d  Ob jec t .  U s u a l l y  the  b e h a v i o r  of the  c o n t r o l l e d  o b j e c t  can  
be  d e t e r m i n e d  by  the  cho i ce  of the  c o n t r o l  and  the i n i t i a l  s t a t e .  In c e r t a i n  p r a c t i c a l  p r o b l e m s  the i n i t i a l  
s t a t e  i s  unknow-n and i t  i s  r e q u i r e d  to choose  i t  o p t i m a l l y .  We c o n s i d e r  one of t h e s e  p r o b l e m s .  L e t  the 
b e h a v i o r  of the o b j e c t  be  d e s c r i b e d  by  the  s y s t e m  of d i f f e r e n c e  equa t i ons  

x (/r + 1) = x (k) + A (k, to) x (k) ~- g (V (k), k, to), x (0) = a, (43) 

g (k) ~ ~ ,  k = 0, 1 . . . . .  N - -  1. (44) 

The  s t a t e  a i s  not  d e t e r m i n e d  bu t  i t  i s  known tha t  aE~. , w h e r e  ~3 i s  a convex,  c l o s e d  se t .  F i x i n g  
the  s t a t e  aE~ , the r a n d o m  even t  co and the c o n t r o l  y (k) ,  k = 0, 1 . . . . .  N - l ,  we ob ta in  a c e r t a i n  v a l u e  fo r  
the  goa l  func t ion  y ( a ,  x (N) ,  co). 

Le t  �9 (a, co) deno te  the  l e a s t  va lue  of the  func t ion  Y ( a ,  x(N),  co) fo r  f i xed  a and co, and  l e t  y ( a ,  k, co) 
deno te  the  o p t i m a l  c o n t r o l  and  x ( a ,  k,  co) the  o p t i m a l  t r a j e c t o r y .  

It i s  r e q u i r e d  to choose  an aE~ fo r  which  the m a t h e m a t i c a l  e x p e c t a t i o n  G(a )  = M~ (a, co) t a k e s  on 
i t s  l e a s t  v a l u e .  

Suppose  tha t  fo r  any x(N) and co the  func t ion  Y ( a ,  x(N), w) i s  convex  downwards  in the v a r i a b l e s  a = 
(a 1 . . . . .  an) ,  w h e r e  Ya i s  the  g e n e r a l i z e d  g r a d i e n t  v e c t o r .  F o r  any a and co t h i s  func t ion  i s  l i n e a r  in x(N).  
Together with the system (43) we consider its associated system 

;,, (/~) = N (k + 1) + A ~ (k, ,o) )~ (k + 1), ~ (N) = - -  Y ( a ,  x (Iv'), to), k = N - -  1 . . . . .  0. (45) 

Then the fo l lowing  a d a p t i v e  p r o c e s s  can  be  p r o p o s e d  for  the  so lu t ion  of the  o r i g i n a l  p r o b l e m .  We f ix  s o m e  
aOE~ a n d  coo and f ind  x ( a  ~ N, coo). S u b s t i t u t i n g  t h i s  in (45) ,  we f ind  X (a ~ O, coo). Suppose  we know a s a t  
the s-th iteration. 
aS + I from 

w h e r e  

We o b s e r v e  cos, f ind  x(a s ,  N, cos), and f r o m  (45), f ind  X (a s ,  0, co s).  Then we d e t e r m i n e  

d +t =~(a~- -Os~s~ ' ) ,  s = 0 . 1  . . . . .  

~' = 1)~ (d,  x (&  N, to'), to') - -  ~ (a ~, 0, to') 

217 



It can be shown that  h e r e  
,x 

M (~S/a') = c~ (a'), 

i .e . ,  th is  method  is a p a r t i c u l a r  case  of the method (9)-(10) and hence ,  fo r  app rop r i a t e  
v e r g e s  with probabi l i ty  i to the m i n i m u m  of the funct ion G ( a ) .  

e s' Ts, it con-  

S O L U T I O N  O F  S Y S T E M S  O F  I N E Q U A L I T I E S  

The solut ion of s y s t e m s  of inequal i t ies  can eas i ly  be r e d u c e d  to the solut ion of an e x t r e m a l  p r o b l e m  
of the f o r m  (7)-(8). Suppose it is r e q u i r e d  to find the solut ion of the s y s t e m  of inequal i t ies  

F ' ( x ,  . . . . .  x~) ..< o, ~ = 1 , 2  . . . . .  ~, (463 
subjec t  to the condi t ions  

(x l . . . . .  X n ) 6 ~ .  (47) 

Cons ide r  the funct ion F (x) = max  F i ix). Obviously,  fo r  the function F (x) chosen  in th i s  way  the so -  
i 

lut ion of the p rob l e m  (7)-(8) sa t i s f i e s  (46)-(47) if a solut ion of (46)-(47) ex is t s .  Hence we can apply 
the method  (9)-(10) to sotve the inequal i t ies  (46)-(47).  But a f ea tu re  of solut ion of s y s t e m s  of inequal i t ies  
by the method of min imiz ing  the funct ion F (x) = m a x  F i (x) is that  it is suff ic ient  to continue min imiz ing  

i 
unti l  (46) is sa t i s f ied .  Hence,  wheneve r  the re  is an effect ive  method  of ve r i fy ing  the condi t ions  (46) the re  
is a unique method of solving (46)-(47). A v e r y  wide c l a s s  of methods  of solving the nonl inear  p rob lem 
(46)-(47) is ba sed  on [13] ( this paper  is  ba sed  on an idea c lo se ly  r e l a t e d  to ideas  in [12}). 

We cons ide r  b r i e f ly  a gene ra l i za t i on  of the methods  of [13] to the case  in which the g rad ien t  of the 
non l inea r  funct ions  (46) can be ca lcu la ted  exac t ly  [1]. 

Let  ~ = { x : f ix) -< 0} be a convex c losed  se t  in R~, and ~) a l so  a convex c losed  set  such that  
~N~) . Cons ide r  the r a n d o m  sequence  of points  {x k, ~ }, defined (for a r b i t r a r y  x ~ 6 R" ) by 

(48) 
x,+, = .  (P), 

x ~ = Ix ~ -  Q,y~f (x 0 ~, f (x ') > 9, (49) 
Ix,, f (xO < O. 

s is the s tep length,  7s  is a n o r m a l i z i n g  f ac to r ,  and f s is  a r a n d o m  v e c t o r  whose  r e l a t i v e  H e r e  
m a t h e m a t i c a l  expec ta t ion  is 

M(~s/xO, ~o . . . . .  x ~) = csq ~ + m' ,  (50} 

w h e r e  Cs >-- 0, m s is a v a c t o r ,  and qS is  the v e c t o r  fo r  which the h a l f - s p a c e  c o r r e s p o n d i n g  to 

(q',  y - -  x s) -r- f (x s) ~ O, ( 51) 

conta ins  the se t  ~, if x ~  Suppose t h a t c  x ( x  ~176 . . . . .  x ~) ->l  s, Jim s , ( x  ~176 . . . . .  x s) i[ < - r s~  The 
fol lowing a s s e r t i o n  ho lds  [1]. 

THEOREM 3. If we know an h s such that  

whe re  the n o r m a l i z i n g  f ac to r  7s  sa t i s f ies  the condi t ion 

o < v,(v, l lx~flp(z) + h ~ ) <  1, T~=i 1' Jim'lifO' 
[ O, I1 m~ LI--~O, 

0 -~< Qs ~-< 2ls - -  es, ~ osrs < ~ ,  
s - - O  
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then the random sequence {x s, ~s}, defined (for a rb i t r a ry  x ~ 
with r e spec t  to the set ~N~) . But if in addition 

,d- 
s~O 

ER ~ by (48)-(49), is a quas i -F6 je r  sequence 

then it converges  to some element of the set ~(7~ 

Consider an example.  

We put f(x) = max fi(x),  
i 

with probabili ty 1. 

Suppose it is requi red  to find the solution of the sys tem of inequalities 

(52) 
fi  (x 1 . . . . .  xt, ) < O, i ~- 1 2 . . . . .  m, 

x = (x~ . . . . .  x J 6 ~ .  (53) 

= { x  : f ( x ) - < 0 } ,  

ps 
~s --_ ~ .  fi~ (x ~ + a~O ~) - -  ["~ ( x )  

A~ 0~k' (54) 
k = l  

where the Ps >- 1, 0 sk, k = 1 . . . . .  Ps are independent real izat ions  of the random vector  0 = (01 . . . . .  On) 
with independent components uniformly distr ibuted in [1, 1]; i s is such that fiS(xS} = max f i (xS) .  

i 

The relat ive mathemat ica l  expectation of the vector  (54) can be put in the form 

M (~%3 = ~ 5 ~ (~) + wA~. 

where the vec tor  W s has  bounded components,  i.e., I[ W s I] -< const if the functions f i(x) have bounded sec-  
ond derivatives in qb o But if these functions are also convex downwards, the vector qS = fis (x% satis- 
fies (51). 

Thus, in this case the process (48)-(49) corresponds to the random search method for solution of 
the system (52)-(53). 

CONCLUSION 

'lqqe results described in this paper can be extended to the case of Hilbert spaces, with small changes 
due mostly to the replacement of the word "vector" by the word "element." Of greater interest from the 
praetic.al point of view is the generalization of the method (9)-(i0) to extremal problems with conditions 
of the form 

F i(xt ..... x,,)~0, i = l  ..... m, 

for which project ion for  some reason  cannot be made (for example, if the functions Fi(x) are  not defined 
anMytically and only stat is t ical  es t imates  of their  values can be obtained). A stochastic var iant  of the 
A r r o w - H u r w i t z  method was proposed in [7] for the solution of such problems.  

tt is of par t icular  importance to find new means,  different f rom (13)-(14), of controlling the step 
length Q s. Apart  f rom the faet that the control  (13)-(14) has a rigid, p rogrammed nature,  it is determin-  
ate, i.e.,  it does not depend on the actual t r a j ee to ry  of the "descent." The p rocess  (9)-(10) is random and 
defines a whole family of t r a jec to r ies  f rom the initial point to the minimum point. The control  (13)-(14) is 
calculated onee for  the whole family,  so sufficiently rapid convergence cannot be expected f rom it. For  a 
stochastic method of the fo rm (9)-(10), s tochastic means of eontrol (see [17]) depending on the previous 
h is tory  of the "descent" are  more  natural .  
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