ON THE METHOD OF GENERALIZED STOCHASTIC
GRADIENTS AND QUASI-FEJER SEQUENCES

Yu. M. Ermoltev UDC 519.8

The concepts of the method of generalized stochastic gradients and a random quasi- Féjer
sequence were introduced in [1, 7, 8, 18]. In this paper we note a connection between these
concepts and give more exact and more general conditions for the convergence of the method
of stochastic gradients. As examples we consider the problems of adaptive minimization,
random search, and programmed control of an object subject to random influences.

FUNDAMENTAL DEFINITIONS
Let % be a closed set in R and C( %) its convex hull.
The random sequence {zk (W}, k=0,1,...,is said to be random quasi- Féjer with respect to the

get ¥, if M || 2° || = const < « and

My — 2 @@, 2o, D <y —7 @ P+, o

for arbitrary y€ 9, ,k=0,1, ... . The numbers gy are such that b3 g, <o

k=0

Obviously, if {zk} is a random quasi~Féjer sequence with resgpect to the set % , it is a random
quasi- Féjer sequence with respect to the set C( ).

A random quasi-Féjer sequence is said to be a random Féjer sequence if gy = 0, The following
lemma reflects the fundamental properties of random guasi-Féjer sequences which, with a small change,
are analogous to the properties of ordinary dominate Féjer sequences [12, 13].

LEMMA. If the sequence { zZK(w)} is a random quasi-Féjer sequence, then:
a) the set of limit points of {zk(w)} ig not empty for almost all w;
by if z'(w) and z" (w) are any limit points of P (W)} for some w not belonging to C(U), then C( A)

lies in the plane which is the geometrical locus of points equidistant from z'{w) and z* (w).

This lemma follows directly from the fact that for any y€ % the sequence p, =[y—z* |2+ g -

s==k

k=0,1,..., by {1}, is a semimartingale [14] and converges for almost all w and, hence, the sequence
{ll y=2¥ () %} converges for almost allw,

COROLLARY 1. If the set C (%) is of dimension n, then {zK(w)} has a unique limit point for each w.

COROLLARY 2. If the limit point z(w) of the sequence {zX(w)} for some w belongs to C (%), then
7 (w) is the unique limit point for that w.
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These properties of random quasi- Féjer sequences make it possible to standardize and simplify the
proofs of certain kmown stochastic methods of optimization and solutions of sets of inequalities.

Let F (x4, ..., Xn) be a convex, but not necegsarily differentiable function. The generalized gradient
vector at the point x = (xy, ..., Xy} is any vector F_(x) satisfying the inequality

Fpy—F 0> F, 0 y—2 2

for arbitrary y = (¥ ..., ) -

Thus, the vector ﬁx(x) is directed along the outward normal to one of the support hyperplanes of the
oF oF )

set {y: F(y) =F(x}; if F(®) is differentiable, then f‘x(x) coincideswith the gradient F (x) = (W' T
i n

The convergence of F(x) to the minimum point was investigated in [2-6] by the method of general-
ized gradient descent, defined by the equation:

Xs+l=xs—QsY§?;x(‘f)s s=0,1..., (3)

where x° is an arbitrary point, ¢ g is the step length, and v is a normalizing factor. A feature of this

method is that in general from one iteration to the next no monotonic diminishing of the values of F(x is
observed and rigid control of the step length ¢ g has to be stipulated for convergence. In {3, 4] it was pro-

posed to choose the step length so that ¢ g = 0,0 g =0, 3 g,=co . In [5] another control method was
s=0

was proposed which ensures that under very general assumptions (which are usual in such cases), the

method (3} converges like a geometrical progression.

The process (3) can be used when it is easy to calculate the value of the vector fx(xs) at each point
x5, A theoretical formalism has been developed for calculating this vector, which, in its generality, re-
calls the formalism of ordinary differentiation,

But in practice, in nonlinear problems the exact value of even the ordinary gradient is known only
in exceptional cases (for example, if F(x) is specified as a polynomial and if rounding-off errors are ne-
glected). Very frequently the value of the gradient can be calculated using certain difference analogs
which are very sensitive to various kinds of random error, for example, from the equation:

n

F Aey — F ;
o = Y PRS0 “

=]

where el is the unit vector along the j-th axis, There arises the not altogether obvious problem of the
stability to random noise of methods of mathematical programming. It will become clear from what fol-
lows that the condition guaranteeing the convergence of the method (3 in the absence of random noise is
no longer sufficient when noise is present.

For the systematic investigation of this problem we introduce the following definition. We shall say
that the generalized stochastic gradient vector, or briefly, the stochastic quasi~gradient vector of the func-
tion F(x} at the ooint x is any random vector ¢ (X) whose relative mathematical expectation (for each com-
ponent separately)is Fx(x) for fixed x, i.e.,

M(E (/) =F, (2). (5)

Here it is assumed that the distribution of £ (x) depends only on the point x, and that the average value of
the error is zero. This assumption is strong enough, since the approximate value of the gradient or the
generalized gradient can be calculated over some set of points and, as {4) shows, has a nonzero average
error.

Hence, we shall regard the vector £ (%) as of a more general form in which the mean value can be
determined by a whole set of points H(x) and the relative mathematical expectation has the form

M ()/H (1) = cF (1) + m, (6
where ¢ is a number and m is a vector depending in general on H(x).
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THE METHOD OF GENERALIZED STOCHASTIC GRADIENTS

Consider the problem of minimizing the downward-convex function

F(xl,..., xn) {7)

subject to the condition
{
x={x,..., x )P, 8

where ® is a convex closed set in R%, Let 7(x) denote the projection operator on D, i.e,, for some m(x)
1(®€9, ly-r@I*=ly-x|? for any y € D..

Consider the random sequence of points {xS} defined by
M =a (@ —oy,E) s=01,... 9

Here %' is an arbitrary point for which M || x* |2 < const < «, ¢, is the step length, V4 is a normalizing
factor, £5'=(¢5, ..., EISI) is a random vector whose relative mathematical expectation (for each com-
ponent) is

ME/R, 2., %) =c, ﬁx(xs) +ms=01.., (20

where cg is a nonnegative number, mS = (m1s, cees mﬁ) is a vector, fx(xs) is the generalized gradient
vector, i.e., the vector £S5 satisfies a relation of the form (6). When D ==R" and 7(%) = X, the method
(9)-(10) is called the method of generalized stochastic gradients, or, simply, the method of stochastic
quasi-gradients.

The values of cg and mS in (10) may depend on %9, ..., x5, but we assume that we know constants Ig
and rg, depending only on s, for which ¢g(x’, ..., x% = I, || mS(x%, ..., x8 | =rg.

Let ®* denote the set of solutions of the problem (7)~(8).
THEOREM 1. Suppose that we know the value of hs(xo, cens x5), such that
MIE, ..., )<< My<oo for X' fj<B<es, k=0,1...,5 iy

let the normalizing factor yg satisfy the condition

0<y< v, +h)<y <o, (12)
where Tg=1, if | mS || > 0, and 75 = 0, if | m® | =0, and let the quantities ¢ g, cg, g be such that
0,20, 620, Yor<w, ¥ gg<oo (13

s==0) s=0

Then the sequence of points {x5 ()}, defined by (9) and (10), is a random quasi-Féjer sequence with re-
spect to the set ©* . But if, in addition,

0,1, =<0, (14)

then for almost all w the sequence {xS (w)} converges to the solution of the problem {7-(8).

We can easily verify the conditions of the theorem when solving actual problems, as will be shown
below. Here we note only that

Mg [, s 1) = }Z_I D&, &, XY+ 2 B () P+ 2, F, &) m) + [ [ (15)
It follows from this, for example, that if the sum of the variances X_ D(g;/xo, %',..., ¥) of the components
=1
of the vector (£5 =5 ..., £5) are bounded in . , and Py (=51l is also bounded, then hg = const, i.e.,



condition (11) holds. Obviously in actual problems the validity of (11) is a corollary of the boundedness of
the domain ®© . It is also essential that F(x) be differentiability (see Note 3).

We begin by proving the first part of the theorem, Let x* denote an arbitrary solution of the prob-
lem (7)-(8). Then
i — T Plnt — 0 4oy, B = 2% — 2P + 2,7, € 2 — )+ @y EIR
We take the relative mathematical expectation of both sides of this inequality:

Mber — e, oL ) < e — 2P 4 20, v,0, FL(0), 2F — £ + 20, (', x* — %)+ @VM(E [ £, ..., %),

From this, taking note of (2), the Cauchy— Bunyakovskii inequality, and the fact that we can always assume
that yg = v* < «, we obtain

Mo — xR L ) < e — 2R 4 20 r, (v et | y) - Y (17

This inequality and (13) prove the first part of the theorem. We now show that if (14) holds, one of the
limit points of the sequence {x%(w)} for almost all w belongs to the set of solutions of the problem (7)~-(8).
From this, by Corollary 2, follows the proof of the second part of the theorem. From (16) we have

Mxf — £ P < Mg — o P
+2X oMy, (F(), x*—x% +2 (2 IV +DX o, + v L €.
k=0 k=0

]
1t follows from (17 that M|| x* —x%7 1{|? is uniformly bounded, and thus

<o

Z [ My, (,}\“x (xk)' xF— xk) > — oo,
=0

Since }:_ 0,1, = o , We have M7;<(fx(xk) , x* -xk) —+ 0 as k — «. Hence, there is a subsequence {st}, t=
fe=

0,1, ..., for which vg; (@) (Fx (x5t (w)), x* —x5Yw)) — 0 with probability 1 as t —~«. For almost all @ the
sequence {ll xS(w) I} is bounded and thus, noting (12), for almost all w the sequence v (w) is bounded below,
i.e., for almost all w (FX(XSt(w)), X - Xst(w))‘* 0. Hence as t — *«, the sequence {x5 (w)} converges fo a
solution of the problem (7)~(8), which is what we wished to prove.

Note 1. Obviously if the domain % is bounded, Theorem 1 remains valid when vg = const > 0.
Assume that rs/ls —0 as s —, and that there is a number Q such that for| x* —x || = Q,
0 2 —0 < —alx—x|, (18)

where @ > 0. Then Theorem 1 remains valid if we replace (12) by the condition 0 < v < vghg = Y < o,
Indeed, it follows from (16) that

, ~ r .
Mes — TP, o) < — I 20y L | (Bl 2t — ) S e 1
s d

+ 20,7, (1 =M L (F, (&), & —2) + 1,25 — 2 [} + V2 19)
for any A, But if we take
A {l, x*—x | 2 Q

. 0, ll#*—+<Q
we obtain

M(lxs — 2, L ) < [ 20y L ?»;[* allxt — ) 4

— 5|+ 20,3, (0 = A 1, (6, 2% — ) 47 25— £+ e
Since, beginning with some constant time s = S,

,
A, [—-a[]x*— £ +TS—HX*“XS“J<O’
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for s = §; we have

Mt — B ) < e = 2y, (L= A B (F, (), 2% — )

Tl — 2l v <t — £+ 200, , + v

Hence, beginning at s = S; the sequence { %8 (w)} is a quasi- Féjer sequence. We shall now prove the second
part of the theorem. From (16) we have

$ s s
Mlxs P < MY x* — 0| T2L el My, (F, ()  — ) 429 B g Ml —5" [+ ¥ X &
=0 k=0

k=0
By (17 the quantities M || x* —x¥ ||? are uniformly bounded and thus

=

) 0,1, My, (}/:\x "), xF =2 > — o

k=0

From this, as in the proof of the theorem, it follows that there is a subsequence { x5t (w)} which con-
verges to x* (w)€D*. with probability 1.

Note 2. The permissible domain 9 is usually specified by a set of inequalities, i.e., it can be rep-
m

resented as the intersection domains 9 = ﬂ D, of the number of domains. In this case we can use the

i=1

operator for sequential projection, first onto ®, and then onto ®,ND, ., etc., and thus eventually onto
{19, . It is usually easier to make such a projection than to make a direct projection at once onto the
f=l

whole domain D. .

Let us now consider briefly the problem of the local convergence of the method (9~(10), i.e., we
shall not assume that F(x) is convex downwards. First of all, analysis of the proof of Theorem 1 shows
that the theorem remains valid for any F(x) for which there is a set of minimum points ®** , such that
(Fx(®), x* —x) = 0 for 1€ED** and {(Fx(x), x*—x =0 for x€®** . Now assume that F (%) is continuously
differentiable that, {x: | Fx(® |l = 0} is bounded, and that | Fg (0 —Fx(y) Il =8 { x—y Il

We consider only the simplest case, when ©=R", so that the method (9-(10) degenerates into
the following:

A=y, s5=01,..., (20)
MER ., = F (&) +m'. (21)
Assume that cg(x0, ..., x5 = Ig, ImSx, ..., x8 | =rg
THEOREM 2. Let M(|| £5]/%/x", x!, ..., x® =hi=Mp < = for [[x* =B < =, k=0,1,...,s, and

let the normalizing factor vg satisfy the condition 0 =y = vghg =% < «, Moreover, let

r hd [e=] (=~}
>0, >0, £-0, ng[s=oo, Y or <o, ¥ @<
§ $=0 8=0 §==0

Then the sequence of points {x5 (w)} defined by (20) and {21) is such that for almost all w the sequence
{F (x5} converges; a subsequence {si} exists for which || Fy (x°% || =0 for almost all w. From this we
have, in particular, that if F(x) is convex downwards, F(x% tends to the minimum of F(®).

Indeed,

i
F(Xs+l) - F(Xs) = g Fq, (XS—_ @05 Y gs) da.
0

1 1
=0y, [ (F.()— F,(¢ — g v, ) ) du—o,y, [ (F, (), §) da< — o, (F,(¥), £) + B2y | |1
Q § s Ishi
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After taking the relative mathematical expectation of both sides of this inequality, we obtain

1L
+ yBe2

M(F (XS-H)/xO' xl, st xs) <F (xs) + Q Vs ZS X I: ” F::(xs)“2 + % ” Fx(xs) “

o

We infroduce the factor Ag such that

A=“HMﬂWQ
0, |F,(:H<Q

where @ > 1. Then from the preceding inequality, for some S; and s = S; (for simplicity assume that
Sy = 0), we obtain

MEF Y, 2L ) <F )+ (1 =2 ey, [= LI F O P+l E O +@yB< F () -+ Qo,r, v, + Vo2

This is equivalent to

MG /z2,...,2)<2

where z = F(¥) +5 (Qqr.v,+vPe) . We can always assume that F(x) = 0, vg = v* and thus the sequence

hess
{zg} forms a submartingale. Therefore, the sequence {F(x5) } converges with probability 1. As with
Note 1, it is easy to show also that there is a sequence {st},t =0, 1, ..., for which || Fx (xSt || = 0 with
probability 1.
Note 3. If the sum of the variances Y ®x (£/+", ¥, ..., ) is bounded, then the method (20)-(21} con-

=]

verges for Y4 = 1 and the first condition in Theorem 2 can be dropped.

MINIMIZATION IN A LARGE NUMBER OF DIMENSIONS

In solving extremal problems with a large number of unknowns, conventional methods based on cal-
culation of the gradient may become convenient because of time-consuming computations. In this case the
method of random search can frequently be applied. It appears that a general class of such methods can
be considered as a special case of the process (9)-(10).

Suppose that it is required to solve a problem of the form (7)—(8) in which F(x) has bounded second
derivatives. Then the vector £ can be defined as follows. We consider the vector 8 = ( 84y «.., On) with
independent components uniformly distributed in [—1, 1].

Put
bs s 33
S >
ES=ZF(X + A"y —F(x) ot (22)
A, ’
k=1
where QSk, k=0,1,..., Py is a series of independent observations of the vector # at the s~th iteration and

pPs = 1; Ag= 0. It is easy to show that
ME) =22 F ) 1 wra, (23

where the vector WS has bounded components, i.e., || WS || = const. Equation (22) is similar to (5). But
whereas the calculation of the vector £5 from (22) requires pg + 1 computations of the function F(x), where
pg = 1, the calculation of F% from (5) always requires n + 1 computations of F(») (and therefore the pro-
cess (9), with the vector £8 in the form (22), can be more suitable than the corresponding determinate
gradient method).
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ADAPTIVE MINIMIZATION PROCESSES

In analyzing and synthesizing a complex system there very frequently is no single analytic model
describing its behavior, but rather one or more scenarios of the way in which the activity of the system
develops. Each scenario may consist of a number of analytic models linked by definite logical and prob-
abilistic transitions in which the elements are computing machines, games, or even actual objects.

In such a situation it may be possible to observe only the separate random results of the scenarios
which are enacted and from this information we have to construct an adaptive search process for the un-
known optimal values of the system parameters.

Since the information on the basis of which we must organize a purposeful search for the unknown
parameters is random, the adaptive process itself is random. It is very natural to use the method (9)~(10)
for this purpose since in it we take as the direction of motion from an arbitrary intermediate point x5 any
vector £5 which is a statistical estimate of the gradient (and even the generalized gradient} of the function
to be minimized.

Methods of adaptive minimization, or more accurately of adaptive maximization, of the form (9)-(10)
were first considered in {10].

1. The Method of Stochastic Approximation. The following problem was considered in {10]. We have
a random quantity Y (x, w) whose distribution depends on the unknown vector x = (x4, ..., Xp). It is re-
quired to minimize the function*

F(x) = MY (x, ®) (24)
under the assumption that it is possible only to ohserve individual realizations of Y (%, w) for any w.,

To solve this problem the method of stochastic approximation was proposed in{10](see also [16]):

j = PR
X ¢, s=0,1,

5

i s XY AL 0V (@, 0
X =X — Qs H X (25)

=1

where el is the unit vector along the j-th axis; «SV, v =0, 1, ..., are independent trials in the s-th itera-
tion. It is assumed that the second derivatives of F(x) are bounded. It is easy to see then that

s

Y (¢ A, ¢, 0y =Y (¢, @ i . S
M< . A X &lx | =F () +WA, (26)
15

=1

where the norm of the vector | WS || = const, i.e., the method (25} is a process of the form (9-{1¢) for
m{®) =x, D=R" , and

\ Y (£ +A e, o) —Y (', 0™) ;
X — . 27

s

S

=1

In (25) vg = 1, since it was assumed in [10] {(see Note 3) that the sum of the variances

b=

D (gi./xo, ..., x) is bounded. The problem of minimizing the functions (22) can be interpreted as follows.

i

i

We have a situation, each enactment of which yields the quantity Y (x, w) defining the effectiveness of the
system for fixed parameters x = (x, ..., ¥p). It is required to find the x for which the mathematical ex~

pectation (24) is minimal.

* In order to avoid complicating the description of the set-theoretic assumptions about measurability and in
integrability, we do not intent to dwell on them in this paper and we shall not adhere to the appropriate
terminology.
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The unique adaptive process proceeds in accordance with (25) to search for the required minimum
of (21) omitting the complex and,for all practical purposes, unrealizable process of searching for the un-
known distributions. But for large n this method may be absolutely ineffective. To calculate £ from (27,
which is the stochastic analog of (5), requires, as indicated in the previous section, n + 1 observations of
Y (x, w). In actual problems, one observation (game) takes a considerable time, Even if it lasts 0.5 min,
with n = 80, one iteration of the method (25) takes 0.5 h.

In this case we can use instead of (25) a stochastic variant of the method considered in the previous
section, i.e., we can calculate £° from

Pg Y (xs S A esk, Q)Sk) _y (xs wso)
D =

A (28)
k=1
Moreover, it is necessary that ®==R" . I F(x) has bounded second derivatives in © , a relation
of the form (23 is also valid for (28).
2. On a Stochastic Game Problem. Let us suppose that we have a series of situations i=1,2,...,m,
in each of which Y;(x, w) defines the effectiveness of the plan x = (x4, ..., X,). By playing through the

scenario if is required to find the plan x which minimizes F(®) = Mmiax Y; (x, w) for xe®
TLet Y; (x w)(x, w) =max Yj(x, w); Yi(x,w) is twice differentiable; for any %, y in ©) , we have
’ i
F(y)— F (x) > (Mgrad Yi(x,m) {x,0), y — x). (29

where grad Y; (x, Co)(x, w) is calculated for x = (%, ..., %y in Yj(x, w), for i =i(x, w). Inthis case the
vector £5 of the process (9)-(10) is defined by

S Y (&' A, 0)—Y, (¥, &)
g = A e, (30)

} s

f=1
or
’s s sk s 5 s
s VY, (0 4,67 0)—Y, (¢, 0)
E= A 8%,

s

(31)

k=1
where the vectors el and gsk are as defined in Section 3, and ig = i(x5, w9, It is easy to see that, by (29,
the vectors (30) and (31) satisfy (10). We note that (29) holds,for example, if Y; (%, w) is convex downwards
for any w,

Consider briefly one iteration of the above adaptive process with the vector (31). Suppose that we
have already found the point x%, We observe a realization Yi (x5, w®) and find ig from Yj.(x%, w8 =
max Yi(x5, wS). We make pg = 1 independent observations of the vector 9, and find e g, Qg from (13 and
i
and (14); we compute Yig(x + ASQSk, w$), for which we must fix wS; we compute £5 from (31), x5
from (9), ete.

3. A Problem in Two-Stage Stochastic Programming. These very important problems in decision-
making for an indeterminate future were first consideredin{11]. The term "two-stage" should not be taken
to mean that there are only two variable planning stages. There are only two stages in the determination
of the solution: construction of the plan while the future is unknown, and correction of that plan as the
future becomes known, The plan is chosen so that the cost of realization and correction are minimal
"on the average,"

The formal formulation of the linear problem in two-stage stochastic programming is as follows.
Agsume that the plan x = (%, ..., Xy . adopted for some interval of time in the future, must satisfy

the condition
(32)
Aw)yx + By <<b(w).



The plan x is adopted until the values A(w), B(w), b{w) become known. Then when they become known,
(82) is corrected by the vector y. If (d(w), y) is the cost of correction, we can find a y (%, w) which
minimizes

(dw). ») (33

subject to (32), where the vector x, and also A{w), B(w), and b(w) are fixed. The problem consists in
finding the vector x which minimizes

Fx)=(c, x) + M{d(0), y(x, o) (34)

subjet to x€D |, where (¢, x) is the cost of the realization of the plan x. The case in which the matrices
A{w) and B (w) and the vector d(w) are determinate was considered in [t11]. Only the vector b(w) is random,
and it takes a finite number of values with given probabilities, and ©=R" . The method (9~-(10) makes

it possible to solve the problem of two-stage stochastic programming in more general form.

Suppose that in addition to y (x, w) we can obtain u(x, w) = (4 (x, W), ..., Uy {X, w)), which are dual
variables corresponding to y (x, w). Let xS denote the approximation obtained at the s~th iteration. We ob-
serve A (0%, B(w9, b(w9), d(»S and sclve the minimization problem (33 for x = x°, w = wS under the
conditions (32). We determine y (x5, 8, u(x%, w9, and calculate xS+ ! from (9) for

P=c— A @@yuxs o)
It is easy to show [8] that if F(x) is defined by (34), and £° by the above equation, then
ME/) = F_ ().

In [8] the adaptive process described here is extended to general nonlinear problems in two-stage
stochastic programming. We note that the problem of minimizing the nondifferentiable function (34) can
be considered as a stochastic problem in parametric programming and the above process as a unique
method for separable programming (if the matrix B is a block maftrix).

4, Programmed Control of a Random Process. Suppose that the behavior of an object on which ran-
dom perturbations act is described by a set of difference equations:

L+ =xk) + ko), O =xi=12....m k=01.. N=-1 {35)
where the control vector y(k) = (y,(K), ..., ym(K)at each moment of time k =0, 1, ..., N—1, belongs to
the domain 9., i.e.,

y(RED, k=01, . N—1. (36)
It is required to find a programmed control, i.e., a vector functiony(k), k=10, 1, ..., N—1 satisfying
(36), for which the function
Fy©), ..., y(N—1)) = MY (x(N), o) {37

has its least value for fixed N.

In this case the method (9-(10) corresponds to the following adaptive process. Suppose that after

the s~th iteration we have obtained the approximation y8(k),k=0,1, ..., N—1.
We ohserve wS and from (35) find the trajectory x5(k), k=0, 1, ..., N and also the solution A5 (k),
k=N, ..., 0 of the following system of paired equations for x(k) = SR, y® =y3(R, v =ws,

ARy = e+ D+ Y A (b + D v, ko ),

=1

A= —Yo (V) ), E=N—1...,0 j=L2. ...«
We put
ERy= Y M+ Df, 55k o)
=l
and consider the set of vectors £S5 = (£¢5(0), ..., £3 (N—D).
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The set £° is the stochastic gradient of (37) as a function of the variables y (0}, ..., y(N=1), i.e.,
MEY O, ..., ¥N—1)=gradF (g ©),..., ¥ ¥ — 1)

and thus a new approximation ys "1 can be obtained using (9. This method is valid when the function (37
is convex downwards, and ® is a convex set. If this is not the case, we can discuss its convergence to
a local minimum.

5. Application of the Stochastic Principle of the Maximum, Assume that the hehavior of the object
is described by the following system of difference equations:

e+ D=xk)+A4k o) xk) +8yk), & o), x(0)=x, k=01, o N1, (38)
where x(K) = (%K), ..., x5 (¥), g(y, k, ») =(g (7, k, w), ..., gn(u, k, w)).
It is required to find a programmed control y (k) minimizing the mathematical expectation
M(c (o), x (V) (39)
subject to the conditions
(40}

y(R)ED, k=0,1,..., N—1L

Using the theory of duality in mathematical programming as employed in [15], we can show that the
following decomposition principle (the stochastic principle of the maximum) is valid for the problem (38)-

{40): the required confrol y(k) at times k=0, 1, ..., N—1, must be chosen so that
MG (R +1), gly(R), ko) = rré'dmx M1, g & o), (41)
. ; (42
Miy=AE+1)+A (o)At +1), MNy=—c(@), E=N—1,...,0.

To solve the N problems (41) we can use the methods described at the beginning of this section.

6. Choice of Initial State for the Controlled Object. Usually the behavior of the controlled object can
be determined by the choice of the control and the initial state. In certain practical problems the initial
state is unknown and it is required to choose it optimally. We consider one of these problems. Let the
behavior of the object be described by the system of difference equations

x{k+1)=x(ky+Ak,0)x (k) + gk k o), x(0) =aqa, (43

yEBYEDE=01,..., N—1. (44)

The state  is not determined but it is known that €%, , where B is a convex, closed set. TFixing
the state a€% , the random event w and the control y(k), k=0, 1, ..., N—1, we obtain a certain value for
the goal function y (¢, x(I), wy.

Let @ (a, w) denote the least value of the function Y (e, x(N), w) for fixed ¢ and w,and let y(a, k, w)
denote the optimal control and x(a, k, w) the optimal trajectory.

It is required to choose an a€®B for which the mathematical expectation G(a) = M® (a, w) takes on
its least value.

Suppose that fo;g any x(N! and w the function Y (a, x(N), w) is convex downwards in the variables a =
{@y, ..., ay), where Y, is the generalized gradient vector. For any ¢ and w this function is linear in x(N),
Together with the system (43) we consider its associated system

MY =hk+1) +A (R )ME+1), AMM)=—Y (@ csWN) o) k=N—-1..,0 (45)

Then the following adaptive process can be proposed for the solution of the original problem. We fix some
a€®  and 0’ and find x(a% N, 0%, Substituting this in (45), we find A {a’, 0, @%. Suppose we know aS at
the s-th iteration. We observe w5, find x(¢S, N, w5, and from (45), find A (a3, 0, w5 . Then we determine
aS* from

at! =n{e’—gvE) s=0,1...,
where

=7, x@ N o), o) —1(@, 0, o)
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It can be shown that here

ME /@) = G, (@),

i.e., this method is a particular case of the method (9)-(10) and hence, for appropriate ¢ . Vg, 1t con-
verges with probability 1 to the minimum of the function G(a).

SOLUTION OF SYSTEMS OF INEQUALITIES

The solution of systems of inequalities can easily be reduced to the solution of an extremal problem
of the form (7)~(8). Suppose it is required to find the solution of the system of inequalities
Fiix,....x)<0, i=12.. ,m, (48)
subject to the conditions
(- - 5)ED. (47
Consider the function F(x) = max Fi(x) . Obviously, for the function F(x) chosen in this way the so-
i
lution of the problem (7)-(8) satisfies (46)~(47) if a solution of (46)~(47) exists. Hence we can apply
the method (9)-(10) to solve the inequalities (46)-(47). But a feature of solution of systems of inequalities
by the method of minimizing the function F(x) = max F'(x) is that it is sufficient to continue minimizing
i
until (46) is satisfied. Hence, whenever there is an effective method of verifying the conditions (46) there
is a unique method of solving (46)-(47) . A very wide class of methods of solving the nonlinear problem
(46)-(47) is based on [13] (this paper is based on an idea closely related to ideas in [12]).

We consider briefly a generalization of the methods of [13] to the case in which the gradient of the
nonlinear functions (46) can be calculated exactly [1].

Let & =1{x:f(x) = 0} be a convex closed set in R?, and ® also a convex closed set such that
FND . Consider the random sequence of points {xk, %"}, defined (for arbitrary x’ ¢ R" ) by

{48)
xs—H — ﬂ(}s),

- Qsst (xs) gsy f(xs) > O) (49)
) fx) <0.

_ S
="
]xs

Here ¢ ¢ is the step length, vg is a normalizing factor, and ¢S is a random vector whose relative
mathematical expectation is

M (E/x0, 20, ..., &) = cg* +m, (50)
where cg = 0, mS is a vactor, and g° is the vector for which the half-space corresponding to
@ y—x) +[(x) <0, {61)

contains the set  if x€F . Suppose that cy (x%, %, ..., x5 =g, Im®, (x* %% ..., x5 || =rg The
following assertion holds [1].

THEOREM 3. If we know an hg such that

MOENYE R ) < IS My < oo for [x* ]| + |28 | < B <o, £==0,..., s—1; [#']|< B,

where the normalizing factor v4 satisfies the condition

N R A o i

0\<~Qs<2ls_'8s’ 2 1% SRR A

s=0
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then the random sequence {x5, is}, defined {for arbitrary x° €R" by (48)-{49), is a quasi-Féjer sequence
with respect to the set FND . But if in addition

X
}: Q85 = O,
5=0

then it converges to some element of the set §NT  with probability 1.

Consider an example. Suppose it is required to find the solution of the system of inequalities

. 52
Pl ... x)<0, i=12...,m (52)
x:(xh-v.,xn)e@, (53)
We put f(x = max fi(x), § ={x: fx =0},
i
By ) " )
o NP ALY — )
g :2f (’\‘ + B e (
, . ' 54)
k=1
where the pg = 1, GSk, k=1, ..., pg are independent realizations of the random vector 6 = (6, ..., 6y

with independent components uniformly distributed in |1, 1}; ig is such that f18¢x8) = max xS,
i

The relative mathematical expectation of the vector (54) can be put in the form
M) = B2 £ () + WA,

where the vector W® has bounded components, i.e., || WS || = const if the functions fI(x have bounded sec-
ond derivatives in ® . But if these functions are also convex downwards, the vector g5 = f 1}% {x% satis-
fies (515 .

Thus, in this case the process (48)~-(49) corresponds to the random search method for solution of
the system {52)-(53).

CONCLUSION

The results described in this paper can be extended to the case of Hilbert spaces, with small changes
due mostly to the replacement of the word "vector" by the word "element." Of greater interest from the
practieal point of view is the generalization of the method (9-(10)} to extremal problems with conditions
of the form

Fllty, o x) <0, i=1,.. ,m,

for which projection for some reason cannot be made (for example, if the functions Fi(x) are not defined
analytically and only statistical estimates of their values can be obtained). A stochastic variant of the
Arrow—Hurwitz method was proposed in [7] for the solution of such problems.

It is of particular importance to find new means, different from (13)-(14), of controlling the step
length 2 4. Apart from the fact that the control (13)-(14) has a rigid, programmed nature, it is determin-
ate, i.e., it does not depend on the actual trajectory of the "descent." The process (9)-(10) is random and
defines a whole family of trajectories from the initial point to the minimum point. The control (13~(14) is
calculated once for the whole family, so sufficiently rapid convergence cannot be expected from it. For a
stochastic method of the form (9)-(10), stochastic means of control (see {17]) depending on the previous
history of the "descent" are more natural,
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