DIFFERENTIAL GAMES OF PRESCRIBED DURATION

B. N. Pshenichnyi and M. I. Sagaidak UDC 518.9

In this article differential games with prescribed times of ending are considered. These games con-
stitute a special class which can be investigated in greater detail.

A differential game of prescribed duration can be formulated as follows. Let a certain controllable
object be described by the system of differential equations

z=f(zuwv), (1)

where z = (z!, ..., zD) is a point of an n-dimensional space EB, u = (u!, ..., uT) is the control of player P,
and v = (v, ..., v® is the control of player E. At each instant t, the players choose their controls u and
v from certain sets U and V, respectively, proceeding only from the knowledge of the phase position of the
object z(t) at the given instant. '

Thus, we can take that the controls of the players are functions of the phase coordinates u = u(z),
v =v(z), with u(z) € U, v(z)€v.

If the controls u(z) and v(z) are chosen, the system (1) is seen to be closed, i.e., for each initial point
z, the trajectory z(t) = z(z;, u, v, t} corresponding to the controls u(z) and v{z) is uniquely determined to-
gether with the pay-off of the game. The pay-off is given by the functional

4
Ieyu,0) = { fo@u,v)dt + F & t), (@)
4]

where t is the instant at which the game ends, f;(z, u, v) is a function defined on E% x Ux V, F(z(t,)) is
a function of the final state.

The game consists of the opponent P endeavoring at' each instant of time to choose his control such
that the value of the pay-off would be as small as possible; the aim of player E is the opposite. It is obvious
that the question about the existence of admissible strategies does not arise for such games.

Differential games of prescribed durations were considered by Fleming [1-3]. He investigated the
problem of existence of optimal strategies and the value of a differential game as a limiting case of a multi-
step game, when the number of steps increases without bounds. Fleming showed that, for fairly general
agsumptions, there exists a limit for the value of a discrete game which approximates the original game.
However, in a general case it is not clear how this limit is connected with the differential game. Also, it
is not clear whether or not the discrete strategies in the limit can generate a certain strategy for the original
differential game.

We shall consider a differential game ending at the instant t = t; whose pay-off is given by the func-
tional

Foo, if 2{)EM, (3)

Iz, u,0) = pEE), if z(@E)EM,

where M is a certain given set, M C ER, and p(z) is a function defined on all M, z(t,) = z(z,, u, v, t;). The
question here is about the existence of an admissible control u which is such that z(t;) € M exists for any
admissible control of player E.
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Certain sufficient conditions of ending such a game with a value c for a linear object were obtained in
[4]. The solution of the problem is reduced to the question: when can a given set be reached exactly at
given instant of time?

In the present work, we investigate further properties of games of prescribed duration and a pay-off
given by the function (3). For this strategies of a special form are used. These are strategies introduced
by B. N. Phsenichnyi {5, 6].

In the first section we present a full description and methods of constructing a region from which the
game can be finished with a value c.

For certain linear games, in view of the specific features of the problem, this approach allowed the
structure of the game to be investigated fairly fully.

1. The Structure of Differential Games of Fixed Duration

Let a game be described by the system of differential equations

z=f(z, u, ), (1.1)
ZEE", u€U, v€V;the set U and V are compact.
We assume about the right sides of the system (1.1) that the following conditions are fulfilled:

a) f(z, u, v) is continuous with respect to z, u and v for z€E", u€U, v€V, and it is continuously dif-
ferentiable with respect to z;

B (@ fz u, N|<COA+|z[) for all z€E", u€U, vEV,
c) the set f(z, U, v), covered by the vector f(z, u, v) when u covers U, is convex for all zEE", vEV.-

The pay-off of the game is specified in the form

J-oo, i zZ()EM, (1.2)

1 y U, =
Co =10, z2(H)EM,

where M is a closed set, M C E, p(z) is continuous function defined on the entire M, and z(t,) = z(zy, u, t;)
is the point where the trajectory z(t) = z(z,, u, v, t) of the system (1.1), starting from the point z(0) = z,
and corresponding to the controls u and v chosen, is located at the instant t = t; of the finish of the game,

In the usual formulation of the problem the players P and E must at each instant t choose their con-
trols, proceeding only from knowledge of the phase coordinates, i.e., as functions of the state u = u(z),
v = v(z), u(z) € U, v(z) € V. Of the functions u(z) and v(z), we can say that they must be fairly smooth, so that
a solution fo system (1.1) would exist. Their class must be fairly broad, so that optimal controls would exist.

We now introduce a new form of strategies. These are € strategies which presuppose a certain discri-
mination of player E. It is clear that this does not enable us to pose the question about the existence of a
saddle point, but in return it allows us to avoid the difficulties connected with a correct choice of a clags of
admissible controls. We shall investigate the question: what can player P be sure of in this cage?

Let the game be started at the point z(0) = z, and at the instant t = 0 player E chooses a certain num-
ber g; > 0 and his control v(7), 0 = 7< &4, v(7) € @, and reports it to the opponent P. On this interval, P
chooses his control u(7), 0 = 7= g4, u(y) € Qy, starting already from the knowledge of not only z(+), but
also v(z). Here Qy and Qy are the sets of all possible measurable functions with values in U and V respec-
tively. At the instant t = ¢; E chooses €5 > 0 and v(7), 81 < 7= g + &5 and reports them to player P. The
latter chooses u(7), €1 < 7 < &; + €,, from z(7) and the control v(7), and so forth until the instant at which
the game is ended.

Strategies introduced in this way are called & strategies. Although the control is chosen by player P
not only on the basis of the local information, but also from the knowledge of the future behavior of the
opponent E, this knowledge can be arbitrarily small, in the sense that the length of the time interval on
which E reports his future control can be made arbitrarily small.
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We shall say that the game which starts at the point z, can be finished with a value c, if for any e-
strategy v(7) chosen by E, player P finds an e-strategy u(r) which is such that

. Izpum o)<,
ie.,
2(t)=2@,u(@,v@), HEM and pl@)<ec.
We want to find out what pay-off can be secured by Player P if the game commences at the instant t =0 at
the point z,.
We now set up definitions and lemmas which will be used to prove a fundamental theorem which gives

an answer to this question.

Definition 1. The operator T, € = 0, matches each set X c EN by the set of T¢ {X) C En of points
z € E™ which are such that for any control v(7) € Qy, 0 < 7 < &, there exists u(7) € Qy, 0 = 7= g, and
such that for these controls the trajectory of the system (1.1) with the start at the point z(0) = z, falls into
the set X exactly at the instant t = € (it is assumed that the control v(7), 0 = 7 =< £ is known io player P).
X =@, then T X) = 0.

LEMMA 1. The operator T¢ has the properties:
1) To(X)=X;
2) Te(X)=T(X), if XX
3) TeTe,(X) = Teppe, (X);
4) Te(X)is closed, if X is a closed set, and if 2,€T.(X) for any & > g, then 2z, €T, (X);
5) for a collection of sets Xo, a€4, Te(Xd) DT (n X.,);
P «

6) if {Xl} is a sequence of closed sets enclosed by one another, X; m — X,, then

Aro-n(7%).
i=l ==l
Proof. Properties 1 and 2 follow directly from the definition of the operator Te. Property 5 is a con-
sequence of property 2. We shall prove 3. TLet 2, € TeTe, (X) and let v(7), 0 = 7 =< g4 + &, be an arbitrary
control of player E. According to the definition of T¢, , for any vil), 0 = 7= g1 (we take v{(7) = v(7),
0= 7 = ¢gy) there exists u;(7), 0 = 7 =< g which is such that

2(81) =2z (20, Uy (T)s Uy (1:)’ 61) eTEz (X)

This means that for any v, (v), & < T< & + &, (we take v,(r) =v(1), &< T< & + &) there exists uy(7)
such that the trajectory of the system (1.1), beginning at the instant t = ¢; at the point z(e;) and correspond-
ing to the controls u, (1), v, (%), &, < T < & -+ &,, falls into X exactly at the instant t = &4 + e,

Thus, if z,€T.T., (X), then for an arbitrary control v(1), 0< 1< ¢, +&,, there exists a control u(r) of
player P which can be chosen in the form

u = [l 0 T< e | (1.3
W, (1), 8, < T 8+ 8y,

so that z(t) =z(zg, u( 7),v(7), t) falls into X exactly at the instant t =¢; + £,. This however, means that

2,€ Te,1e, (X). Property 3 has thus been proved. We omit the proof of properties 4 and 6. We only note they
are based on the use of the properties already proved and Theorem 1 [7].

Definition 2. The rational partition w = { 71} of the interval [0, t] is the term given to its arbitrary
partition by points Ti such that 7, =0< < L< .. . < 1 <! (rm-1 can be equal to t if and only if t is
rational), m is arbitrary, and all 7; are rational; |w]| =t, where t is the length of the interval to be partitioned.
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Each rational partition w can be matched with the operator

To(X)= Ts,Tez cen Tem (X),

where e, =1, —71,_ |, e, =t—71, .

Definition 3. We shall say that the partition o = {v;} of the interval [0, t], is finer than w = {7i} (we

denote it by o’ < o), if all points 7{ are amongst TJ!, ie., 7= T;}(i)‘

LEMMA 2. If o'=< o, then To (X) =T, (X).
Proof. Let o = {7}, o' = {r}} and o’ < o. This means that for each 7 there exists TJ! such that 7 =
i
7-]!. We denote by j(i) the smallest number j such that Ty = 7—]!. Then e, =L =Ty Ty = Y &
Femfli—1)H1
In view of property 3 of Lemma 1

Tee X) D TeyiippiTejuypa - -« Tegg (X)
Then obviously
To(X) =TeTs, ...Ts (X)

STeiorsr +++ TesyTesurr -« Tezy - - Tejmpps - - - Tejerty - Tejmiypn -+ - Tojimy (X) =T (X).

The lemma has been proved.
Definition 4. T, (X) = [] To(X).

loj=t .
LEMMA 3. |
) T,X) = X;
2) T/X) =T (X), if XX,
3) ifX is a closed set, then T{(X) is also closed;

4) if X is closed and z € "I‘t(X) for all t > t,, then z € %to(X). The proof of the lemma follows directly
from the definitions introduced above and from the properties of the operator Te.

LEMMA 4, ¥ X is a closed set, then

%9.+9= X) = ?91?92 X)
for 61, 6,=0, 04 + 05 =< ty, i.e., the operators form a semi-group.

Proof. We assume that 6 is a rational number. Each partition w of the interval [0, 61+ 85] is matched
with the partition w' obtained from w by adding another partition point + = §:

.

o ={t=01,...,%, _,t=0,1.. 2 1)

=17

It is obvious that o' - o.

It is easy to verify that
ToX)= - [] To (X). (1.4)

loj=0,-+02 lo’|=6§,4+8,

Indeed, since the set of partitions w' is harrower than the set of all possible partitions w, we have

(1 Te= [ ToX). (1.5)

loi=0,4-6- lo’j=8,18.
Let 2€ [] Tar(X).

&’ [=0;+0:

This means that z, € T,/(X) for any «', and since o' < o, we have z; € T,(X). From the fact that for
each w there exists a corresponding w', it follows that

ZDE n Tm (X)

[ol=8,+6.
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In view of arbitrariness of zg,

1 TaX)> [] Tor X (1.6)

[ol=0;-+8, - lo’[=0:+6.

A comparison of (1.5) and (1.6) gives Eq. (1.4). Using (1.4) and property 6 of the operator T, we obtain
7\:91')'92 (X) n T (X) = n T(D' (X)

= 91+9: lo’|=0,-8.

= n n TmlTo)g(X)D n Tm: ﬂ To, (X) = To,Toz(X) a0

Jol=8, log=0, {ou=80, fooal=9
where w; is a rational partition of the interval {0, 6], and w;y is a partition of the interval [6;, 63 + 6].
We shall prove a converse insertion. Since each partition
o,={f=0, «,.... %}

is given by a finite collection of rational numbers, the set of such partitions is countable. They can be re-
numbered:

O @ @, @y [0 =0,
We shall construct the partition w1§. In the role of partition points we take all partition points @, j< k. Itis
obvious that @< ©}, j=1.2...., k, |ot| =6, and, in addition, o}*'~< o; We shall show that
v To, &= 1 Tmz(X) ﬂT k(X)‘ (1.8)
102]=9,

Indeed, if zl,ET,,z (X), then z,€ ﬂT k(X), since the set of partitions wlrf, is only a part of the set of all possible

partitions. Let now ZOET(,)k (X) for each wl§, and let o, = m‘ be an arbitrary partition obtained by enumeration

of the numbers i. Then m’ - col2 = a,

Con sequently, for each w,,
D} ng X Tmé X< Tmz X).

With this Eq. (1.8) has been proved.
Using property 5 of the operator Tg and (1.8), we obtain

ToTo X = (] Tor [1 Tar®

logt=8, |@al=2a.
= Tm(ﬂ ka(X)) N nT‘.,lek(X) 1 TolX) =Ty e (X (1.9)
[@]=8 . Vk=i 2 Jogl=0, k=1 lo"l=0:+0.

A comparison of the relationships (1.7) and (1.9) completes the proof of Lemma 4 for a rational 6. If 6, is
an irrational number, then it can be represented as a limit of a sequence of rational numbers {6} -9,
8¢ > 6,, 6 > @i+, for which, in view of what has been already proved,

9‘+0 (X) TGLTOz (X)
Then by property 4 of the operator Tz, we have
Torre, () =TTy, (X).
Lemma 4 has been proved.

We consider the set N () = {z:2€M, p(?) < ¢]. Let c* be the smallest value of ¢ for which N(c) = @. It
is obvious that N(c) is closed and for ¢;=c,> c*,we have N(c;) C N(c;), i.e., as c increases, the set N(c) does

not contract. We denote
c(z)= inf ¢ (1.10)
2€T 1 (NN
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i.e., 2 minimum c which is such that 2067}‘ (N (). If z,,éf,1 (N (c)) for any c = c*, then

c(2)) = -+ co.

We shall show that the infimum is attained on the right side. We consider the sequence {c;} — ¢ {z}..¢,, <¢;
By the definition of c(zg),

2,€ nTtl(N(C)) =[] nT (GACHN
o=, i=1

i.e., z€ ﬂl T, (N () for any w. By property 6 of the operator Tg,

NT.NEH=T, ( nw¥ (c[)‘) —T, (N ().
i=l1

i=l1

Thus, z,£Te (N (¢ (2,))) for any w,
2€T4, (V (¢ @)-

We now return to the game under consideration. The following theorem gives an answer to the ques-
tion: what can player P secure, if the game begins at a point z,.

Fundamental Theorem. 1. If the point z; is such that c(zyg) < + » and ¢(zy) = ¢ < + «, then whatever
¢ strategy is chosen by player E, the game commencing at the instant t = 0 at the point zy can be finished
with the price c. If, however, c* = ¢ < ¢ (%), then player E has an & strategy which is such that for any
action of the opponent P the game is not completed with the price c.

2. If c(zg) = + =, then for any action of player P, player E has an ¢ strategy v(7), 0 = 7 <t; which
is such that E prevents player P leading the object onto the set M and completing the game with a finite
price.

Proof. 1. Let c(zg) = ¢ and suppose that player E arbitrarily chose £; > 0 and v (1), 7 € [0, &4] and
reported to P. Since in this case

2€T 1, (N (€) S TeT1s, (N ),
by the definition of the operator T, on the interval [0, &;], for any v(7), there exists u(7) such that
2(81) = 2 (2, (), 0(1), 8)€T e, NV (©))- | (1.11)

Let E choose €5 > 0 and v(7), €4 = 7 =< &4 + &y and report themtoplayer P. From Eq.(1.11) it follows that
z(8))ETe,Tt,—e,—e, (V (6)). This, however, means that there exists u(r), &, <7< & 48, and z(g, + &) = z(g,, 4 (1),
v (1), & +g,) 67,’_(5l ey (¥ (), and so forth. We obtain z(#,) = 2 (2, u(7), v (1), ;) EN (¢),. and then =z(t;) € M and
p(z(ty) = c.

Let nowc* < ¢ < (zo). We shall show that in this case player E can choose an & strategy v(7) such that

the game will not be finished with the value c. From the definition of c(z,)

€T N @) = (] To(V ().

of=t

Consequently, there exists a partition w such that 2,€Te (V (¢)=Tc, Tr;—to o Tty (N (©)=T5, T,. ..
T, (N(c)). This means that on the interval [0, €] there exists a control of player E such that

2(81) =2z (2o, u(v), 0(x), £)€Te,...Te, (N (c)), (1.12)

regardless whatever control u(s) was applied by player P. From relation (1.12), it follows that on the inter-
val [e4, €, + &y there exists v(7) such that for any u(r)

z2(ey + &) = 2(2, u(¥), V(1), &+ &) €Te,... T, (N (c))

and so forth, with z(t) € N(c). Thus, if ¢* < ¢ < (z;), player E has an ¢ strategy such that z(ty) € N(c), re-
gardless how the opponent P acted.

2. Since z,els, (N (¢)) for any c, then obviously for any u(r) we have z(t;) € M and the game is not '
finished with a finite value, i.e., I(z;, u, v) = +x. The theorem has been proved.
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We note that in the proof of the thoerem the choice of an ¢ strategy is pointed out for player E which
prevents P completing the game with a value ¢ < ¢(z;). At the same time, on each step E chooses its con-
trol, proceeding from the phase position of the object at the instant when the control is being chosen, and
reports it to the opponent P. Player P knows the control v (1) not on the entire interval [0, t], but only in
the nearest future, i.e., on a certain time interval of length &.

COROLLARY. A set of points from which the game can be finished with the value ¢ coincides with
the set Ty (N (¢)). The proof follows directly from the theorem.

2. Linear Games of Fixed Duration

Let a game be described by the system of linear differential equations
z=Az+u-+tv, 2.1)

where z = (z!, ..., z) is the vector of phase coordinates, u =(u!,..., ud) is the control of player P, v =

(v!, ..., v is the control of player E; u€ U, v€ V. The sets U and V are compact, and U is convex.

It is obvious that all conditions formulated in Sec. 1, which must be satisfied by the right sides of the
system, are satisfied.

We assume that the set M is closed and convex, while p(z) is a convex continuous function specified
on the whole M. In this case the set N(c) = {z: z € M, p(z) =< c] will be convex and closed, and for ¢; = ¢ =
c* N(cy ¢ Ncy).

The instant t; of ending the game is fixed.

In the previous section we reduced the study of the game to the construction of operators Tt which
map a set of the space ET into other sets of the same space. In the general case of a game with prescrlbed
duration, it is very difficult to construct these operators efficiently. The problem is simplified, if Tt coin~
cides with T, This is the case when the operator Ty itself has the property

ToT0.(X) = Topo,(X), 05, 0,20, 8,48, < ¢,
Indeed, then for an arbitrary rational partition w of the interval [0, t]
To(X) = TeToy. « - Top (=Tt 4en (X) =T:(X)

and

T ()= ] Te)=T:(X.

fol=t
Next we shall show that for certain linear games the operators Tt form a semigroup.
We know that if the controls u(7), v(7), 0 = 7 < t, and the initial point z(0) = z, are given, then the
corresponding trajectory of the system (2.1) is
.t .
2 =2z u(),v(), ) =Dz, + S D —1) @(t)+ v dr, (2.2)
[

where &(t) is the solution of the equation & = A, ®(0) =I; I is a unit matrix. From this, z, can be found in
the form

4
zy =D (—Nz () — SCD(——T)(u(t)—{—v('c))dt. (2.3)

We shall determine the operator T for our game. It matches any set X ¢ E" with the set of initial condi-
tions Te{X) which is such that for any zy € Tg(X), and for any v(7), 0 = 7 =< &, there exists a control u(7)
of player P such that

z(e) = 2(2,, u(1), U (%), B€EX
(with the condition that v(r), 0 <7 < & is known to the opponent P}. Moreover, if X = @, then T (X) = .

It is obvious that the operator Tg possesses all the properties formulated in Lemma 1 of Sec. 1.
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We use the following notation:
Nx(e,0(W) = (22 =D (—e)z— [ O(—7) @@ +o@)dn
.0

2€X, u(v)€Q,),
i.e., this is the set of starting points from which the set X can be reached exactly at the instant t = € for a
given control v(r), 0 < 7 < &.
LEMMA 1. X is a convex closed set, then Nx (e, v (7)) is also closed and convex.

We omit the proof, noting only that Theorem 1 [7] is used for the proof of closedness, while convexity
follows at once from convexity of the set X, U.

LEMMA 2.

T.X)= mQ y Ny &, v (7). 2.4)

Proof. Let z; € Tg(X). Then, for any v(7) € @y, 0 = 7 =< ¢, there exists a control u(7), 0 = 7 <&, of
player P such that z(e) = z(z,, u(7), v(7), €)€ X.

Consequently, z, is representable in the form
%=0(—0ze)— [O(—D @M +o@d
[
for any v(7) € Qv, where z{e) € X, u(s) € Qy, i.e.,
N, (e, v(1)).
ZOEvaszv x(&v()
We obtain

T,(X)> MQ% Ny (e,v(7). (2.5)

We shall prove a converse insertion. Let z, € N N, (e,v(w)). This signifies that for any v(7), 0 < 7 < &,

. . A0ER,
z, is representable in the form

% =0(—8z2(— f(D(-—T) @@+ v{)dr,
P .
where z(e) € X, u(7) € Qy, i.e., for any v(7) € Qv there exists u(r) € Qy such that
z2(e)=D (&) z, + §(D(s—t)(u(r)+v(r))dt€X.
1]
By the definition of the operator Tg, T, z,€T, (X), ie.,

T.X)< M Nyt o). (2.6)

u(1)EQ,

Comparing (2.5) and (2.6}, we obtain (2.4),
COROLLARY. If the set X is convex, then T¢(X) is also convex.
Indeed, T (X) is an intersection of convex sets.

We shall now use convexity of the sets T¢(X) for their analytical description. We note that if the set
X is convex and closed, then it is uniquely determined by its support function W, () = sup (3,2). In fact, the
2€X

set X is then specified by a system of linear inequalities (i, z) < Wx (y) for all y € ER. If X = ¢, we put
Wx () = —o.

Since the sets N(c), U, V are specified, we can consider their support functions W iy 0. W, (w),IWV W)
as known.
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Let X be an arbitrary convex closed set. We calculate the support function for Nx (e, v, (7)):

Wasenny W= _sup (§,2) = sup [(CD*(—G)IP, 2)+S(— D" (—1),
0

2€EN x(g,0(T))
u(1)EQ,

(%) + v (1)) er =W (@ (—e)p) + fWU (=@ (=P dr+ [ (— O (—D)p,v(D)dr.
0 0

Since the set 7, (X)= ] N (ev(V)..it is obvious that z € T¢(X), if for all y € EP the system of inequalities
UATER,

%.9< v(i“f Wi (@(—e)p) + S Wy (— O* (— 1) ) — (@* (— 1) 0 ())d}
0

T)EQ,

=Wx(@*(—&) +) + oley)
is satisfied. Here ¢(e, ¢) = \ W, (— @ (—1) ) dv — (WV((D‘(—- 1)y) dt is bounded for any ¥ € ED in view of com-
0 0
pactness of the sets U and V.

Thus, we have proved that the set T¢(X) is convex and is described by the set of linear inequalities
< Wy (@ (—e)9) + 9 ), 2.7
which must be satisfied for all .

Unfortunately, a nonconvex function stands on the right side of (2.7), and therefore in the general
case it is not the support function of the set T¢(X). We now note that [8] if we are given a system of linear
inequalities

W< W), vv

where W(zp) is a positively homogeneous function in 3, then the support function of a convex set of points z
defined by this system is given by the expression

W)= inf ZW @), (2.8)
Zp;=Y
where the lower bound is taken over all finite expansions of the vector y into a sum of the vectors 3. Ac~
cordingly, the support function of the set T¢(X) can be written
W) =Wy (9 = inf TV, (@ (— 09D+ 9o 0))

THEOREM 1. IfX is an arbitrary convex closed set, then one of the following conditions holds.
1. A=0,i.e., a game with a simple motion is considered and T¢,Ts, (X) + &-
2. The function
ole )+ W, (@ (—oy
is convex with respect to y for any &; then

TslTsz (Xy=T (X).

&y-+E,
To prove the theorem, it is sufficient to show that the support functions of the sets TalTBQ(X) and T31+82(X)
are equal.

We shall first consider the case where condition 2 is satisfied. In this case, the expression
Wi (@ (—a ) +ole P
is a convex function, and therefore it follows from (2.8) that it is in fact a support function for Tg(X).

We have

Wy W =W, @)=V, (@ (—& —e)V) + @+ &P

Te e,
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Fur ther9
W3 W =Wr, 7, 0@ =Wz 1 ®)

= Wrz (X‘) (D" (— &) §) + @ (5, W) = Wy (@ (=) D" (—2)) P} (8, D" (—e)P) + @ (glz'lp)
’ 2,4-£; . & .
=W, @ —e =)W+ | W, (— @ (—)D—W, (@ (—9Plde+ (W, (—
0

&

(— T) 1~p) - WV ((D’ (_ T) ‘P)] dv = WX ((D' (_ BI - 82) ‘P) + P (81 '+' 321 ‘l’).

A comparison of the expression obtained shows that W5+ (y) = W (y), This proves the required result.

Let now A = 0. Then &(e) =1 (a unit matrix). We take into account this fact in the calculations which
will be carried out in a general form. Since ¢ (e, ) + W, (®"(— ¢)y) is no longer necessarily a convex func-
tion, then

Wit = inf Iy @ (—e—e)P) +0 -+ o Pl
W o) = 2ﬂ§p=fmb z [WTg,(X) (@ (— 31)“’5):;‘@(5) ""L)] (2.9)

Since according to the properties of the operator T (X} T T, (X) =T, ., (X), we have W™ (y) > W™ ().

However, this can easily be verified from Fqs. (2.8) and the expression
q) (5‘2’ CD* (_ 81) 'llJ) —I' (p (811 \p) = (p (81 + 821 ’lp)s (2' 10)
which is also easily checked.

We shall now show that Wi () < W™ (). For this we make a few preliminary observations. If Wy ()
is a support function of the set X, then we denote
It is easy to see that Kx is convex cone. From the expressions for W5 (y) it is not difficult to see now that
K= &) Ky
Exactly in the same way as (2.9)
Krron =P Ky, 0= (e + ) Ky =K;,

2ote(X)°

Thus, the functions W3 (y) and W5**(y) assume infinite values for the same sets of vectors y. There-
fore, in all the subsequent discussions all vectors 3 and their expansions can be taken from the sets d*(g, +
e9Kx, since outside these sets W™ (y) and Wj;“’ (§) are simultaneously equal to infinity.

Further, the following properties are valid.
1 W, )< Wy () -+ o).
This follows from the expression for W5 ().
2. For any 6 > 0, we can find an expansion Zy, = v, such that

0 ZW, (@ (—e) ) + ol v) — W) < 8
and

o (s, ) 2> Zo (s, 9). -

The first statement follows from the definition of a lower bound. The second follows from the fact
that from the first property we can always find an expansion such that

V@ (=0v)+ 9@l < W, @ (—¥) + (9,

and Wx(y) is convex.
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Proceeding from (2.9), we now choose for a given 6 an expansion of the vector y such that
Wi-hgg ) = 2 [WTE’(X) (@ (—e)P) +o (e »w‘)l—ﬁ

Let k be the number of nonzero vectors in the expansion Zy, =+. We choose for each y;j an expan-
sion Z¢,; =1, such that

WTEZ(X) ((D‘ (— 81) wz) > }: IWX (‘D‘ (— 87) o (—81) 117;]') + P (52! ®’ (— 51) ‘lp[j)] - *2‘
i

and
9 (e D (—2)P,) > Y ¢ (e, D" (— &) ;). (2.11)
i

Then

)

W;"B‘ (\P) > 2 {2 [WX ((D‘ (_ & — 32) ‘l’ij) Ny (82’ @ (_ 81) "pij)] + 9 (El ) ‘li)L)} —28

= ; ’Z Wy @ (=& —e)h) + 0 (e @ (—8) )+ 0 (e )+ B0 0) — X0 0 9] — 26,

Taking into account the first expression in (2.9) and (2.10) and the fact that ¥} 3 ¥, =}, =¥, we obtain
i 7 i

Wj("az ('llJ) > W;?-i-ﬂz (’lIJ) + 2 [(P (el, \p,’) —_ 2 ¢ (Sl, ‘lP”)] -—_ 26. (2. 12)
i # ’

Since we are dealing with a simple motion and hence &{t) =I, we obtain

Qe P) = g W, (— ) — W, (W) dt ==e[W,(—H—W, W)

0
1t now follows from (2.11) that
& [WU (— ‘l’i) - WV (‘l’i)] > €y 2 [WU (— ‘pij) - WV W’ij)]'
i

Multiplying this inequality by €4 /&;, we obtain
QYY) 2 Y e vy
It now follows from (2.12) that ’
Wit @) > W ) — 28
Since 6 is arbitrary, we have Wi® (y) > W +* (y), which was to be proved.

Thus, W5 () = W3t ), i.e., T,T (X)=T (X). This completes the proof of the theorem.

&+¢€;
We can now formulate certain sufficient conditions for a possibility of finishing the game.

THEOREM 2. Let a convex closed set be given and one of the conditions of Theorem 1 be fulfilled.
Then, for player P to be able to lead the trajectory of the object (2.1) from a starting point z, into N(c) for
any e-strategy of player E, it is necessary and sufficient to satisfy the inequality

W, 2) < W, (@ (— 1) 9) + 0 (¢, D)
for all 3.

The proof follows from the fuxldamental theorem of Sec. 1, Theorem 1 of this section and the fact that,
under the conditions of Theorem 2, T; (N (&) = T+ (N (&)).

COROLLARY. I U=U, - oV, where U, is a convex compact set, @ = 1, then the second condition of
Theorem 1 is satisfied.

Indeed, in this case,

W, ) =W, @)+ oW, (—¥)
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and therefore .
oo, )= [ W, (=" (=9 — W, (@ (—D)Pldr
-0

= (W, (— 0" (=9 + (@ — D W, (@ (— D) Pdr,

from which it follows that ¢(e, y) is a function that is convex with respect to 3.

We also note that condition 2 of Theorem 1 is satisfied for games such as "isotropic rockets" [11]
and "boy and crocodile." For such games these conditions lead fo the already known sufficient conditions
in t.1> case of a prescribed completion time, showing at the same time that they are also necessary conditions.
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