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A GENERALIZED URN PROBLEM AND ITS APPLICATIONS 

B. Artur, Yu. M. Ermol'ev, 
and Yu. M. Kaniovskii 

UDC 519.245:519.87:519.862.7 

We investigate growth processes describing the distribution of newly adopted resources 
in accordance with a well-defined rule based on random samples. 

I. THE MEANINGFUL FORMULATION OF THE PROBLEM 

We consider an infinitely large number of managers adopting some new technology which 
occurs intwo types, A and B. We assume that each manager is guided by the following con- 
siderations: he analyzes which technology has been adopted by r randomly selected managers 
and if not less than m of them use A, then he also selects A, otherwise he selects B. Such 
a decision making rule may seem to be irrational, however, it may be logical in the following 
situations: if the manager has little information on the comparative gains resulting from 
the application of the technologies A and B; if he fears risks; if he can gather information 
only by means of questioning randomly selected managers already using the specific technology 
and they communicate to him only the type of the technology. It is interesting to find out 
how the fraction of the managers using only one of the technologies varies, whether one of 
them covers the weight of the market or whether the proportion of those adoptin~ A (B) tends 
to a certain limit, and how thenumber of managers selecting the technology A (B) is growing. 

It is natural to describe processes of this kind by means of a generalized urn scheme 
[I]. We imagine an urn of infinite capacity, containing white and black balls. If at each 
step a certain number of balls are removed from the urn and then, on the basis of a well- 
defined decision making rule R, one adds to the sample a white or a black ball and together 
with this additional ball the sample is returned to the urn, then we shall say that there is 
given a generalized urn scheme with decision making rule R. It is necessary to investigate 
the behavior of the fraction of the balls of each color. 

We consider three examples of decision making rules. 

RI. One removes a random sample of r balls from the urn, where r is some odd integer. 
If more than half of the balls turn out to be white, then one adds a white ball, 
otherwise one adds a black ball. The sample and the additional ball are returned 
to the urn. 

R2. In a random manner one selects a sequence of balls from the urn. If m white balls 
appear before m black balls, then the sample, together with a white ball is re- 
turned to the urn; otherwise the sample is returned together with a black ball. 
Here m is a given number. 

R 3. One selects in a random manner r balls from the urn, where r is some odd integer. 
If more than half of the balls turn out to be white, then one adds a black ball, 
otherwise one adds a white ball. The sample and the additional ball are returned 
to the urn. 

We note that the rule R~ is the reciprocal of the rule RI. In the spatial case when 
r = I in R I or m = I in R2, these processes reduce to the known Eggenberger--Polya urn scheme 
[1]. 
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2. TRANSITION PROBABILITIES RELATED TO THE GENERALIZED URN SCHEME 

We consider a generalized urn scheme with the rule R. By the urn function we mean the 
probability of the event that a white ball will be added to the urn. This probability de- 
pends on the rule R, the total number n of balls in the urn and the number n I of white balls 
in the urn. We denote it by p(n, nl). Let xE[0, ii; we consider pn(x) = p(n, [nx]), where 
[nx] is the integer part of the number nx. It presents interest to investigate what happens 
when the number of balls in the urn grows indefinitely. It may turn out that for n § ~ we 
have pn(x) § p(x) VxE[0, I] in the sense of the usual pointwise convergence. In this case 
we call p(.) the transition probability corresponding to the generalized urn scheme with the 
decision making rule R. We note that the function p(-) obtained in this manner will be a 
Borel function. We introduce concepts that will be needed in the sequel. 

Let p(-) be a Borel function p(.): [0, I] § [0, I], being the transition probability 
in some generalized urn scheme. Then p(') possesses the s-property if there exists a non- 
empty set Q ~ [0,I] such that p(x) = xvxEQ, Q consists of a finite number of connected com- 

ponents and there exists a point 0 E Q N (0, I), for which 

p ( x ) ~ x ~ r  xC(O,~), p (x )>x  ~r xE(O, 1). (1) 

S i m i l a r l y ,  we say t h a t  a t r a n s i t i o n  p r o b a b i l i t y  p o s s e s s e s  the  i n v e r s e  p r o p e r t y  s i f  t h e r e  
e x i s t s  a nonempty s e t  Q ~ [ O ,  1] such t h a t p ( ~ = x v x E Q ,  Q c o n s i s t s  of  a f i n i t e  number o f  
c o n n e c t e d  components  and t h e r e  e x i s t s  a p o i n t  O E Q N (0, 1), f o r  which 

p(~>jx  for xE(0,0), p ( x ) ~ x  ~r xE(0, 1). (2) 

I f  in  the  r e l a t i o n s  ( 1 ) ,  (2) the  n o n s t r i c t  i n e q u a l i t i e s  a re  r e p l a c e d  by s t r i c t  ones ,  i . e . ,  
one r e q u i r e s  t h a t  Q N ~ ,1 )  c o n s i s t s  of  a un ique  p o i n t  0, then  we o b t a i n  the  d e f i n i t i o n  of  
t r a n s i t i o n  p r o b a b i l i t i e s  p o s s e s s i n g  the  s t r o n g  s - p r 0 p e r t y  and the  s t r o n g  i n v e r s e  p r o p e r t y  s .  
A t r a n s i t i o n  p r o b a b i l i t y  w i l l  be s a i d  to be l i n e a r  i f  P & ) ~ - x  V x E[0,1]. 

I n  o r d e r  to  e l u c i d a t e  the  meaning of  the  g iven  d e f i n i t i o n s ,  we c o n s i d e r  F i g .  1, where 
cu rve  1 c o r r e s p o n d s  to  a t r a n s i t i o n  p r o b a b i l i t y  p o s s e s s i n g  the  s t r o n g  s - p r o p e r t y ,  cu rve  2 t o  
a s t r o n g  i n v e r s e  p r o p e r t y  s and cu rve  3 to  the  l i n e a r  c a s e .  

We n o t e  t h a t  in the  d e f i n i t i o n s  i t  i s  no t  men t ioned  t h a t  the  f u n c t i o n  p ( ' )  i s  a t r a n s i -  
t i o n  p r o b a b i l i t y  f o r  a g e n e r a l i z e d  u rn  scheme w i t h  some r u l e  of  d e c i s i o n  making.  However,  
in  the  c a s e s  when p ( - )  i s  a t r a n s i t i o n  p r o b a b i l i t y  f o r  a g e n e r a l i z e d  urn  scheme wi th  the  r u l e  
R, we s h a l l  say t h a t  R p o s s e s s e s  the  s - p r o p e r t y ,  the  i n v e r s e  p r o p e r t y  s ,  o r  t h a t  i t  i s  l i n e a r ,  
i f  the  c o r r e s p o n d i n g  t r a n s i t i o n  p r o b a b i l i t y  p o s s e s s e s  t h a t  p r o p e r t y .  

We f i n d  the  t r a n s i t i o n  p r o b a b i l i t i e s  f o r  the  r u l e s  R1-R 3. For  R1, the  p r o b a b i l i t y  
t h a t  in  a random sample of  s i z e  r t h e r e  shou ld  o c c u r  i w h i t e  b a l l s  can be computed by the  
fo rmula  

C~,CnE~, , l <<.i<~ r<~ n, ni <<.n, 
Pi--  C~ 

n! 
where C~ = k[ (n-- k)[ From here 

p (n, n~) = 
~ C~ C :-~ fL 1 n - - n  l 

P i ~  "2T 
c~ 

2 2 

From this relation, making use of Stirling's formula ([2], p. 371) we find that for all x E 
[0, I] we have 

p(~= ~ Cx'(l--xf-q (3) 

It is easy to see that for r > I the rule RI possesses the strong s-property with e = I/2 
and for r = I it is linear. It can be easily seen that the rule R2 is equivalent to R l with 
r = 2m -- I. Similarly, for R3 we have 

r--I 

p ( ~ = ~ x ~ ( 1 - - ~ ' - ~ ,  xE[0, 11, (4) 
i = 0  
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i.e., the rule RI possesses the strong inverse property s with 0 = I/2. 

3. THE SIMULATION OF RANDOM PROCESSES DESCRIBED BY A GENERALIZED URN SCHEME 

In the given formulations of the problems, the situation when the number of balls in 
the urn increases indefinitely presents interest. Consequently, if there exists p(-), then 

Pn(') is close to it. Replacing Pn(') by p(.), we obtain a convenient device for the simula- 
tion of the processes which can be described by the generalized urn scheme. It consists in 
the following. 

There is given a Borel function p(.), mapping the segment [0, I] into itself. At the 
initial moment t = I, there are in the urn m(1) ~ I white balls and n(1) ~ I black balls. 
Let y(t) be the fraction of white balls at time t ~ I. At time t ~ I one adds to the urn a 
white ball with probability p(y(t)) or a black one with probability I -- p(y(t)). One has to 
investigate the behavior of y(t) as t § ~. 

More formally, this can be presented in the following manner. There is given a prob- 
ability space (~, F, P) and on it there is given a family of random variables ~(t, x), inde- 
pendent with respect to t, being Borel functions with respect to x and such that 

~ ( / , x ) = / l ,  wim probability p ( ~ ,  
(5) 

{0 with probabili~ 1 - - p ( x ) ,  

w h e r e  l ~ > 1 ,  x 6 [ 0 ,  1 ] .  The t o t a l  number  o f  b a l l s  i n  t h e  u r n  a t  t i m e  t i s  m(1) + n ( 1 )  --  1 + t = 

c + t .  I f  m ( t )  i s  t h e  number  o f  w h i t e  b a l l s  i n  t h e  u r n  a t  t i m e  t ,  t h e n  m ( t  + 1) = m ( t )  + 
~(t, y(t)), t ~ I. From here, since y(t) = m(t)(c + t) -I, we find 

y(t + 1) =Y(O - -  (a + 0 -2 [ y ~  - -~( t ,  Y (0)], 

t > l ,  y(])----b, 

where a = c + I, b = m(1)[m(1) + n(1)] -I. The relations (5), (6) constitute the point of 
departure for the simulation of the processes described by the generalized urn scheme. If 
p(.) is the transition probability corresponding to the generalized urn scheme with the 
decision making rule R, then the Markov random process (6) is called a process simulating 
the generalized urn scheme with rule R. 

(6) 

4. THE GENERALIZED URN SCHEME WITH BALLS OF N + I COLORS 

Let R N be the space of N-dimensional column vectors x with coordinates [x]i, i = I, 
2,...,N. We consider in R N the simplex X={x6RN:[x]~O,i-----I,2,...,N;[X]I+[X]2+...+[X]N~I}. 
We assume that on X there is given a Borel vector-function p(.) such that [p(x)] i ,d_ [p(x)] 2 + ... 
-~-[p(x)]m-~ I vx6X; [p(.)]i:X-+[0, I]. We imagine an urn with infinite capacity with balls of N + I 
colors. At time t = I there are M 1 balls in the urn, and [ml] i is the number of balls of the 
i-th color, i = I, 2,...,N. Then there are M 1 -- [ml] 1 -- [ml] 2 -- ... -- [ml] N balls of the 
(N + 1)-st color. At time t i> I one adds to the urn one ball, whose color depends on chance 
and on the color composition of the balls in the urn. Let M(t) be the total number of balls 
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in the urn at time t, i.e., M(t) = M 1 + t -- I and let m(t) be a vector whose i-th Coordinate 
is equal to the number of balls of the i-th color in the urn at this moment, and let y(t) = 
M(t)-im(t) be the vector whose i-th coordinate is the fraction of the balls of the i-th color 
in the urn at time t, i = I, 2,...,N. Then, at time t there are in the urn M(t) -- [m(t)]1 -- 
[m(t)]2 --...-- [m(t)]N balls of the (N + 1)-st color and their fraction is I -- [y(t)] I -- 
[y(t)]2 --...-- [y(t)] N. A ball of the i-th color i = I, 2,...,N, is added with probability 
[p(y(t))] i at time t, while a ball of the (N § 1)-st color is added with probability I - 
[p(y(t))] I - [p(y(t))] 2 -...- [p(y(t))] N. In analogy with Sec. 3, this process can be 
considered as simulating the generalized urn scheme with balls of N + I colors [I]. 

Assume that on the probability space (~, F, P) there is given a sequence ~(s, x) of ran- 
dom vectors in R N, independent with respect to s, being Borel functions with respect to x and 
such that ~(t, x) has with probability I only one nonzero coordinate, while 

where x6 X, i----1,2 . . . . .  N , s >  l . Then 

with probability [p (x)]~, 

with probability 1 - -  [p (x)h, 

whence 

[m (t + 1)h = [m (t)h + [~ (t, y (t))h, t f> 1, 

[m (1)] i = [re, h, 

[y ff + 1)h = [y (Oh - -  [M, + tl - I  {[y (t)l, - -  [~ g, g ~ )h} ,  t >t 1, [y (1)h = M F  1 [m, li, (7 )  

where  i = 1, 2 , . . . , N .  The r e l a t i o n s  (7)  d e s c r i b e  t h e  e v o l u t i o n  o f  t h e  f r a c t i o n s  o f  t h e  b a l l s  
o f  a l l  c o l o r s  i n  t h e  u r n ,  s i n c e  t h e  f r a c t i o n  o f  t h e  b a l l s  o f  t h e  (N + | ) - t h  c o l o r  i s  1 -- 
[y(t)]l -- [y(t)]2 --..--- [y(t)] N. Writing them in vector form, we obtain the analogue of 
the equalities (6) for an urn with balls of N + I colors: 

y (t + l) = y (t) - -  (M, + t) -~ [y (0 - -~  (t, y (0)], t > I, (8 )  

y(l) = MF2m. 
We n o t e  t h a t  f o r  s > l ,  x 6 X  we h a v e  M~(s ,  x)  = p ( x ) .  S e t t i n g  z ( s ,  x) = ~ ( s ,  x) -- p ( x ) ,  

we w r i t e  t h e  r e l a t i o n s  (8)  i n  t h e  f o r m  

y (t -[- 1) = y (t) - -  (l*v] 1 .Jr. t)-i  [.y (t) - -  p (y (~))1 --~ (m I -]- t)-lz (t, .~/(t)), 
(9) 

t>/1, y(1)----MFlm~. 

From the definition of the vectors z(s, x) there follows that for s~], xEX, we have 

I I z ~ , ~ [ r ~ V N +  1, (10) 

M z ~ ,  ~------0. ( 1 1 )  

M z ( s , ~ z ~ , ~ ' = D ( ~ ,  (12)  

where the prime denotes transposition and D(x) is the matrix with entries [D(x)]ij , i, j = 
I, 2,...,N, such that 

[D(x)]~j=--[p(~l i[p(~b for i=/=], (13)  

[D (x)lu -~- [P (Qli { 1 - -  [p (~]i}. (14)  

I n  a n a l o g y  w i t h  S e c .  2,  we s h a l l  c a l l  p ( - )  t h e  v e c t o r - f u n c t i o n  o f  t r a n s i t i o n  p r o b a b i l i -  
t i e s .  

In order to introduce the concept of vector-function of transition probabilities pos- 
sessing th e s-property and the inverse property s, we note that the relations (I), (2) can 
be written in the following equivalent form: 

[p (x) - -  x] (x - -  O) > 0 for x 6 [0, t ] "\ Q, 

[p (x) - -  x] ( x - -  O) < O for x6[O,  1 ] ~ Q ,  

(1')  
(2 ')  
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Starting from this, we say that the vector-function of transition probabilities p(.) pos- 
sesses the s-property if there exists a nonempty set Q such thatp(x)= x Vx6 Q, Q consists 
of a finite number of connected components and there exists a point 0 6 Q N Int X and a sym- 
metric positive-definite matrix C such that for x6X~Q we have 

(C[p(x) - -x l ,  x - - O )  > 0 .  (15)  

Here  < . ,  -> i s  t h e  s t a n d a r d  i n n e r  p r o d u c t  i n  R N. S i m i l a r l y ,  t h e  v e c t o r - f u n c t i o n  o f  t r a n -  
s i t i o n  p r o b a b i l i t i e s  p ( . )  p o s s e s s e s  t h e  i n v e r s e  p r o p e r t y  s i f  t h e r e  e x i s t s  a n o n e m p t y  s e t  Q 
s u c h  t h a t  p ( x ) =  x VX6 Q, Q c o n s i s t s  o f  a f i n i t e  number  o f  c o n n e c t e d  c o m p o n e n t s  and t h e r e  
e x i s t s  a p o i n t  QE Q O I n t X  and a s y m m e t r i c  p o s i t i v e  d e f i n i t e  m a t r i x  C s u c h  t h a t  f o r  x E X ~ Q  
we have 

(C[p(x)--  x], x - -O)  < 0 .  (16) 

The vector-function of transition probabilities will be said to be linear if p(x) - x for xCX. 

5. CONVERGENCE WITH PROBABILITY I 

Let P(x) be the distance from the point x to the set Q, i.e., 

p (x)  ---- i n f  II y - -  x l l .  
u~q 

LEMMA 1. Wi th  p r o b a b i l i t y  I f o r  t + ~ we h a v e  

t �9 

sz = ~ (:vJ~ + i)-lz (i, y (i)) -+s ,  P{!i s II < oo} = 1, 
T'--I'~ 

where  S i s  some random v e c t o r .  

P r o o f .  T a k i n g  i n t o  a c c o u n t  t h e  r e l a t i o n s  ( 1 0 ) ,  (11) and t h e  i n d e p e n d e n c e  w i t h  r e s p e c t  
to t of the random vectors z(t, x), the lemma is a special case of the statement proved in 
[ 3 ] .  

LEMMA 2. We have the relations: 

P[+_ ~ (M, + 0 - '  ~c [y (0 - 01, y (0 - - p  (y (i))> < oo = 1, ( ~ 7) 

P{lim p (y ( / ) ) = 0 }  =I. (18) 
l--~oo 

In (17), the sign "--" corresponds to vector-functions of transition probabilities pos- 
sessing the s-property, while the sign "+" corresponds to vector-functions of transition 
probabilities possessing the inverse property s. 

Proof. The validity of this statement for vector-functions of transition probabilities 
with the inverse property s follows from theorem on the convergence of algorithms of stochas- 
tic optimization and estimation [3, 4]. In the case of vector-functions of transition prob- 
abilities possessing the s-property, the arguments are somewhat different and, therefore, 
we give here their fundamental aspects. 

From the relations (7) there follows that 

<C [y (i + 1) - -  0], y (i + I) - -  O) = (C [y (0 - -  0], y (i) --- O) - -  2 (M~ + i ) - '  { (C [tj (0 

- -  ; (y (i))], y ( i ) - - 0 )  + (CIy(i)--O], z(i, y (i)))} + b'vl, + O-2[<C[N( i ) - -P(y( i ) ) ] ,  y (i) - -  p (y (i)) > @ 

+ <Cz(i, y (t)), z(i, y (i)))], i >  1, <C[y(1)--0], y(1)--O) ----const. 

Taking here the conditional mathematical expectation, by virtue of (11) we obtain: 

M{<C[F(i+ 1) - -0 ] ,  y ( i +  I)--0)/y(i)}.-~-(C[y(i)--0], y ( i ) - -O)  --2(M, q-i) -t (C[y (i) 

--  P (Y (i))], Y (0 - -  0) + (M, + i)-2 { <C [y (i) - -  p (tj (i))], y (0 - -  P (Y (i))) + S '~p~D (y (i)) C}, t > I, 

(C [y (1) -- 0], y (1) -- 0) ---- const. 
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Taking the mathematical expectation in these relations and integrating them for I ~< i ~< t, 
we find 

f 

M ( r  1)- -0] ,  y(t+ 1 ) - - 0 )  ----(C[y(1)--O], y (1 ) - -O)  - - 2 ~ ( M ~ - } -  i ) - 'M (C[y(i) - -  
i = !  

t 

---p (y (i))1, y(i)--O} + ~(M,+ i)-2 {M (C[y(i) --p(y(i))], y(i)--p(y(i))> +SpCD(y(i))C}, t> /1 .  (19) 
/ = !  

For xEX we have (C(x--O), x--O}~z<oo, and, therefore, discarding in (19) the nonnega- 
tive terms and taking into account the inequality (15) and the fact that for t >/ I we have 

y(t) ~X , we obtain 

t 

o ~< - -  ~ (M, + i)-~M (c [y (0 2_ p (y (O)l, 
i = i  

ft., 
y (f)-- 0} ~ ~. (20) 

From the relations (15), (20) and from the Markov inequality there follows equality (17) and 
from that, by means of standard arguments from the theory of stochastic optimization and es- 
timation [3, 4], we obtain the equality (18). 

The lemma is proved. 

THEOREM I. If the vector-function of transition probabilities is linear, possesses the 
s-property or the inverse property s, then there exists a random variable y, P{yEX}=:I 
such that with probability I we have y(t) § y for t § oo. Moreover, if the vector-function 
possesses the s-property or the inverse property s, then P{yEQ)=I , where Q is the closure 
of Q. 

Proof. The proof is based on Lemmas I, 2. In case of linear vector-functions of tran- 
sition probabilities, the statement follows immediately from Lemma I. For vector-functions 
possessing the s-property or the inverse property s, for the proof of the convergence it is 
necessary to apply the arguments used in the theory of the methods of stochastic optimiza- 
tion and estimation [3, 4], Since P{y(t) CX}= I for all t /- I, we also havep{yEX} = I. 

COROLLARY I.I. If in the urn scheme with balls of two colors the transition probability 
possesses the inverse property s, then 

I) for p(0)>0 p{y(t)--~0}-----0; 

2) for ~(li<l P{y(t)-~1}=0; 

3) for p(O) > 0 and p(0)>0 n p(1)<l P{{y(t)--~0} U {'y(/)-+l}}--0. 

The validity of the corollary follows from Theorem I since the inequalities p(O) > 0 
and p(1) < I are equivalent to 0 ~Q and 1 ~Q. 

COROLLARY 1.2. If in the urn scheme with balls of two colors the transition probability 
possesses the strong inverse property s, then 

1) f o r  p ( 0 ) > 0  P{ {y ( t ) - -~0}  U {y(t)--~- l}}  =1 ;  
2) f o r  p ( 1 ) < l  P{iy(t)--~-O_} U {y( t ) - -~0}}=l ;  

3) f o r  p(O) > 0 a n d p ( l ) < l  P { y ( t ) - + 0 }  1. 

The v a l i d i t y  of  the  c o r o l l a r y  f o l l o w s  f rom C o r o l l a r y  1.1 and f rom the  f a c t  t h a t  in  t he  
c a s e  of  a t r a n s i t i o n  p r o b a b i i i t y  w i t h  the  s t r o n g  i n v e r s e  p r o p e r t y  s we have  Q = {0, O, 1}. 

THEOREM 2. I f  t he  v e c t o r - f u n c t i o n  of  t he  t r a n s i t i o n  p r o b a b i l i t i e s  p ( . )  s a t i s f i e s  t he  s -  
p r o p e r t y  and the  H 8 l d e r  c o n d i t i o n  w i t h  the  exponen t  ~E (0, 1] in  some N - d i m e n s i o n a l  b a l l  U(~, 
e) w i t h  c e n t e r  a t  t he  p c i n t  0 and of  r a d i u s  e > O, t h e n  P{ij ( t)-~ 0} = 0. 

Proof. By virtue of the relations (13), (14), we have 
N 

[ D ( x ) l u -  ~i[D(x)lul = [ P  (x)h { 1 - - [P  (x)]i - - [ p  (x)]~ ... [p (x)lJv}, i - -  1, 2 . . . . .  N. 
]=1 

Since OCQ N I n t X ,  we have p(0) = 0 and [p(O)It+[P(O)]2+...+[P(O)]N<I. From these two facts 
we have 
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Thus, for i ~ j, 

N 
[D(0)]u - -  X I [ D ( 0 ) ] u / > 0 '  ~ = 1, 2, . . . ,  N. 

i=l 

i, j = I, 2,...,N, we have 

IN ,o,0,, Eo 0,1  >i  Eo I 
kr162 k#] 

The l a s t  inequality and (10) a l l o w  us to conc lude ,  by v i r t u e  of  the  r e s u l t  in  [5,  p. 195], 
that the matrix D(O) is positive definite. Now the required result follows from Theorem 4.1 
of [3]. 

The theorem is proved. 

COROLLARY 2.1. If in the urn scheme with balls of two colors the transition probabili- 
ty possesses the strong s-property and satisfies the H~Ider condition in a neighborhood of 
the point 0, then 

P{{y( t ) -+0} U {y(t)-+ 1}} = 1. 

Physically, the result of Theorem 2 is elucidated by the fact that for a vector-function 
of transition probabilities possessing the s-property, the points which satisfy the inequality 
(15) will be unstable [3] for the system of ordinary differential equations 

dx (t) = [p (x (t)) -- x (t)] ~ .  

We find a lower bound for the probability that the fraction of balls of the i-th color, 
i = I, 2,...,N + I, tends to I. We note that the event B that the fraction of the balls of 

N 

the (N + 1)-st color tends to I coincides with A{lim[y(t)h=0}. Let Ai={[m(O]i=[mlh + 
i=l 

t -- I}, let r(i, t) be vectors in R N with coordinates [r(i, t)]j = [mz] j for j ~ i, [r(i, 

t)] i = [ml] i + t -- I, i = I, 2,...,N, AN+ 1 = {[m(t)] i = [ml]i, i = I, 2,...,N}. Then 

P {lim[g(t)h--= 1} .>P{A~},  i = l ,  2, . . . ,  N, 

tQ{ lim [y (Oh = O} > P {AN+~}, 

but 

f i  oo P{A~} -= [p(M(t ) - ' r ( i , t ) ) ] , - - - - I - ]{1- -{ ! - - [p(M(t ) - ' r ( i , t ) ) l t }} ,  i--= 1, 2 . . . . .  N, 
t= l  t= l  

P { AN+t } ---- 1 - -  ~ [p (M (t)-~//h)]i , 
i=1 

and, therefore 

oo 

P { l im [y (t)]i =-  1 } > I- |  { 1 - -  { 1 - -  [p ( M  ( t ) - ' r  (i, t))]i } }, i = 1, 2 . . . .  , N,  
t--~eo 

P {lim[9(t)h----0} >/ ' 1 - -  [p (M (i)-ImO]~ . 
t--~oo 

Known results on the convergence of infinite products [2, p. 335] and the estimates 
(22) show that the following statement holds. 

for 
THEOREM 3. If ~ { 1 - - [ p ( M ( t ) - * r ( i , t ) ) h } < o o  , t hen  P { l i m [ y ( t ) h = l } > 0 ,  

t--~eo 
t~ l  

~_~X[p(M(t)- lmo]~<cx~ P {lim[y(t)h=O},~ = P { B } > O .  
t= l  i = l  

( 2 1 ) ,  

i=1,2 .... ,N, while 

(21)  

(22) 
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6. LIMIT THEOREMS AND RATE OF CONVERGENCE 

Let DN[0, T] be the space of N-dimensional vector-functions (defined on [0, T], 0 < T < 
~, and having no discontinuities of the second kind), endowed with A. V. Skorokhod's metric 
[6, p. 497]. For n ~ I we construct in DN[0, T] the random processes 

Xn (~ ----- VYIg (s) - -  O] mr n --~ s ~ ne  t < s @  1 ~<.ne r. 

THEOREM 4. Assume that the vector-function of transition probabilities p(') possesses 
the inverse property s and 

I) there exists a unique point 06Q n IntX such that P{]imy(t)=O}----l; 

2) for some ~ > 0 the vector-function p(.) is differentiable on U(0, E) and the matrix 
p(8) -- E/2 is stable [3], where P(0) is the matrix with the entries [P(0)]~j, [P(O)]~j 

O[p(x)]~ , i, j = i, 2,..., N and E is the identity matrix in R N. 
----~- ~=0 

Then the random processes Xn(.) converge weakly in DN[0, T] as n § the stationary 
Gaussian Markov process x(.), satisfying Ito's stochastic differential equation 

f I] dx  (t) = P (0) - -  -~- E x (t) dt + D (O)I/2dw (t), 

where D(0) 1/2 i s  t he  " n o n n e g a t i v e  d e f i n i t e  s q u a r e  r o o t "  of  D ( e ) ,  which i s  a s y m m e t r i c  m a t r i x ,  
and w ( ' )  i s  t he  s t a n d a r d  N - d i m e n s i o n a l  Wiener  p r o c e s s .  

P r o o f .  Tak ing  i n t o  a c c o u n t  the  r e l a t i o n s  ( 9 ) - ( 1 4 ) ,  t h e  v a l i d i t y  of  t he  a s s e r t i o n  of  the  
t heo rem f o l l o w s  f rom Theorem 4 .5  of  [7, p. 8 3 ] * .  

COROLLARY 4 . 1 .  I f  t he  a s s u m p t i o n s  of  Theorem 4 h o l d ,  t hen  in  d i s t r i b u t i o n  f o r  n § = we 
have 

where N(O, 5) is the normal distribution in R N with mean vector 0 and variance matrix 5. 

Remark 4.1. The results of Theorem 4 can be used for the approximate computation of 
the probabilities connected with the collections of random vectors y(t), n < t ~ ne T , where 
n ~ I, 0 < T < ~ [7, p. 95],* while those of Corollary 4.1 for the approximate computation 
of the probabilities referring to the random vector y(n) for large n. 

Remark 4.2. Theorem 4 and Corollary 4.1 characterize the rate of convergence of y(t) 
to 0 in those cases when it is known that y(t) § 8 with probability I. 

7. THE REFINEMENT OF THE CONVERGENCE THEOREMS FOR URNS WITH BALLS OF TWO COLORS 

The fraction of white balls at moment t cannot be greater than L(t) = [m(1) -- I + t](c + 
t) -I and smaller than l(t) = m(])(c + t) -I. LetQ~ =Q~{{0} U {i}} and 

For arbitrary ~E(0,0_) and BE(O, I) 

for t >i t(r we have 

while for t I> t(6) we have 

0 = r a i n  0 > 0 ,  - 0 =  m a x O <  1. 
- OEQ~ OEQ~ 

we s e t  t ( s ) = r n i n t :  / ( / ) < s ,  / ( 8 ) - - m i n t :  L ( t ) > 6 .  

v (t) = ini [p (x) - -  x l ,  
l(t)~x~8 

u(t ) - - - -  inf [ x - - p ( x ) l .  
6~x.~Llt) 

Assume that 

THEOREM 5. If the transition probability possesses the inverse property s and if for 
some ~ > 0 we have Q \\{{0} 0 {I}} ~[T, I--T], then 

*Reference [7] does not appear in Russian original -- Publisher. 
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I ) f o r  2 (a -Jr- l) -iv (t) = oo P {lira y(t)=O}=O; 
l=l(s)  t--~oo 

2) for ~ (a+t)-:u(t)=oo P{lim//(t)=l}='~,; 

3) f o r  "~ (a-l-l)-l[v(t)-.~u(t)]=eo P { { l i m / / ( t ) = O }  U { l i m y ( t ) = l } } - - O .  z . ,  

/=max [ t (~ ) , t ( 6 ) ]  t ~ o o  t - -*~ 

Proof. We consider only condition I since in the other cases the arguments are similar. 

From the inequality (2') and the equality (17) there follows the existence of a se- 
quence ti, i >/ I, such that with probability I we have 

'~ (a + t) -~ [y (t) - -  o] [y (t) - -  p (y (t))l -+  O, i - +  oo. 
t = l  i 

(23) 

If we denote by ~i the event consisting in the fact that relation (23) holds, then 
P{~l} = I. Let ~I and assume that on ~ we have y(t) § 0 as t § ~. If this relation 
holds, then there exists to = t0(m) such that for t ~ to we have l(t) ~ y(t) < E and 

This contradicts 

quently, P{Iimy(0 

The theorem 

Remark 5.1. 

Remark 5.2. 

~ ( a  + [y (t) - -  O] [y (t) - -  p (y (t))] > (0 - -  ~) ~ (a + 0 v (i) = o~. 
o o  

0-1 
i---t i = l  

r e l a t i o n  ( 2 3 ) .  Thus ,  f o r  each  o~Ef~l one c a n n o t  have  y ( t )  + 0 and,  c o n s e -  
=0} =0. 

is proved. 

Theorem 5 generalizes Corollary 1.1 .  

If for x § 0 we have p(x) -- x ) k (inx-l) -l, then condition I of Theorem 5 
holds and if for x § I we have x -- p(x) ) k [In (I -- x)-1] -I, then condition 2 holds. Here 
and in the sequel, k is a nonnegative constant, not necessarily always the same. 

Remark 5.3. In Theorem 5 we have not used directly the fact that the transition prob- 
ability possesses the inverse property s. It is essential that p(x) -- x should preserve its 
sign, should converge sufficiently slowly to 0 for x § 0 or x § I. However, if the transi- 
tion probability possesses the s-property, then p(x) ~ x as x + 0 and p(x) ~ I -- x as x § I 
and, consequently, the series which occur in the formulation of Theorem 5 converge, i.e., this 
theorem does not allow us to obtain any meaningful results. 

In the case of an urn with balls of two colors, Theorem 3 takes the following form. 

THEOREM 3'. If the transition probability possesses the s-property, then for ~p(m(1) x 
t=[ 

(c@t)-1)<oo we have P{]imy(t)~-0}>0, while for ~{]--p([m(])--] jd-f](c@t)-i)}< oo we have 

{l imy~)  = 1} > 0  �9 t=l 
t ~  

Remark 3'.Io The inequalities (21), (22) hold also then when the transition probability 
possesses the inverse property s. However, in this case their right-hand sides are equal to 
zero and the inequalities are trivial. 

Remark 3'.2. If for x § 0 we havep(x)~kx I+~ , ~ > 0, or i - p(l--x)~k(l--x) l+~, • 
then the first or the second series, respectively, in the formulation of Theorem 3' con- 

verges, 

Remark 3'.3. With the aid of the inequalities (21), (22) one can compute a lower bound 
P{y(t) + 0} and P{y(t) § I}. This is especially convenient if p(x) ~ 0 for 0 ~ x ~ 61 or 
p(x) ~ 1 for 62 ~ x ~ I. In particular, if p(x) ~ 0 for 0 ~ x ~ m(1)[m(1) + n(1) + I] -I and 
p(x) ~ I for [m(1) + I][m(I) + n(1) + I] -l ~ x ~ I, then, with nonzero probability, y(t) can 
converge only to the points 0 and I and, moreover, 

P {y (t)-+O} ~---1 --p(m(1)[m(1)+n(1)l- ' ) ,  e {y (0 -~  I} =p(m(1)[m(1)-t-n(b]-~). 
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Observing that at the points of the set Q we have p(e) = @, Theorem 4 can take the fol' 
lowing form. 

THEOREM 4'. Assume that the transition probability possesses the inverse property s 
and that 

I) there exists 0EQn(0,1) such that P{y(t) § O} = I; 2) p(.) is differentiable at the 
point 0 and p'(O) < I/2. 

Then : 

a) for n § oo the random processes Xn(') converge weakly in DI[0, T] to a stationary 
Gaussian Markov process of the form dx(t) = [p'(8) -- I/2]x(t)dt + r --0)dw(t), 
where w(.) is the standard one-dimensional Wiener process [6, p. 196]; 

b) with probability I we have 

- - ' t ) ~12 [ (  1 -- 2p' (0) ]'/~ 
lim - 0(1 - - 0 )  [y ( t ) - -Ol  = 1; t-.o~ ~ 2 In  In t 

�9 , t ~I/~ r j l /2  [Y (t) - -  O] = - -  1 .  
0(1 - - 0 )  

Proof. Assertion a) is a special case of Theorem 4, while assertion b), taking into 
account (9)-(14), is a special case of Theorem I [8].* 

By virtue of the importance in practice of the generalized urn schemes with transition 
probabilities possessing the strong s-property and the strong inverse property s, we for- 
mulate separately the statements proved for them. 

Conclusions. If the transition probability p(.) possesses the strong s-property, then, 
with nonzero probability, the fraction y(t) of the white balls can tend only to the points 
0, 0, I. Moreover, if in the neighborhood of the point 0, p(0) satisfies the H~Ider condi- 
tion, then the probability of the fact that y(t) converges to 0 is equal to 0. If p(x) ap- 
proaches 0 sufficiently fast as x + 0, for example, as x 1+v, V > 0, then y(t) converges to 0 
with positive probability, while if 1 -- p(x) approaches 0 sufficiently fast as x + 1, for 
example as (l--xi j+~, x>0 , then y(t) converges to I with the same probability. 

If the transition probability p(.) possesses the strong inverse property s, then, with 
nonzero probability, the fraction y(t) of white balls can converge only to the points 0, 0, 
I. Moreover, if p(x) -- x approaches 0 in a sufficiently slow manner as x § 0, for example 
p(x) -- x ) sl > 0 or as (Inx-Z) -I, then y(t) converges to 0 with nonzero probability, while 
if x - p(x) approaches 0 in a sufficiently slow manner as x § 1, for example x -- p(x) ~ ~2 > 
0 or as [in (1 -- x)-i] -l, then y(t) converges to ] with the same probability. 

8. THE APPLICATION OF THE PROVED THEOREMS TO THE STUDY OF SIMULATING PROCESSES 

FOR THE DECISION MAKING RULES RI -- R3 

As shown in Sec. 2, for r > I and m > I the rules Rl and R3 possesses the strong s- 
property with @ = I/2. From Eq. (3) it follows that p(-) is differentiable, limp(x) • 

r + l  r-~l x~O 

(Cr 2 x 2 )-~=I and (r + I)/2 > 2. Therefore, from the given conclusions it follows that 

i .  1 /  
P ,I hm y (t) = ~- t---,~ t---,~, It-.oo i = O ,  i . e . ,  P{{lim!t(t)=O}O{limy(t)=!}}=l,  

and P {limy(t)=O} >O. 
f--*oo 

The rule R with r ~ I, as shown in Sec. 2, possesses the strong s-property with @ = I/2. 
From formula (4) it is clear that p(0) > 0 and p(1) < I and, therefore, by virtue of the for- 
mulated conclusions, we have 

-r( =L 

*Reference [8] does not appear in Russian original -- Publisher. 
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We note that also in this case p(.) is differentiable and 

r--1 

4=0 

i.e., Theorem4' holdswith 8 (I -- 0) = I/4. 

Returning to the problem of the adoption of the technologies, considered in Sec. I, we 
can draw the following conclusions. We identify a unit of technology A with a white ball. 
The application by the manager of the rule RI with r > I or R2 with m > I leads to the fact 
that with nonzero probability only A or only B will be applied. Moreover, the probability 
with which B will fill out the market is different from zero, while the probability for the 
technology A can be zero. The use of the rule R1 with r ~> I leads to the fact that with 
probability | the market will be filled out by both technologies in equal proportion. 
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DISTANCES AND CONSENSUS RANKINGS 

B. G. Litvak UDC 5]9.584 

Expert judgments are used in many forecasting, planning, and management problems in na- 
tional economy. Successful application of expert judgments is largely determined by the 
sophistication of the mathematical apparatus available for the analysis and processing of 
such information. 

One of the main tasks in expert judgment framework is to rank a given set of objects. 
In this article we give an axiomatic definition of distances (nearness measures) between 
rankings and suggest how consensus rankings can be constructed. Section I considers a Ham- 
ming distance and its generalization to metrized rankings; Sec. 3 introduces a Spearman dis- 
tance, and Sec. 5 a Euclidean distance on metrized rankings. The axiomatic systems are con- 
sistent and complete, and all the distances are uniquely defined. Sections 2, 4, and 6 focus 
on the construction of the consensus rankings. Section 2 proposes an algorithm to construct 
a metrized ranking by the branch-and-bound technique. The consensus ranking based on the 
Spearman distance (Sec. 4) is constructed by solving an assignment problem, while for the 
additive metrized ranking corresponding to the Euclidean distance an explicit formula is 
derived. 

The consensus ranking methods proposed in this article may be used to process and ana- 
lyze expert judgments. 

1. HAMMING DISTANCES ON RANKINGS AND ARBITRARY RELATIONS 

Consider m experts attempting to rank a set of objects by preference. The most common 
methods of elucidating the expert judgments in such a case involve a direct ranking of the 
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