
SINGLE-STEP BAYESIAN SEARCH METHOD FOR AN 
EXTREMUM OF FUNCTIONS OF A SINGLE VARIABLE 

A. G. Zhilinskas UDC 62-50 :519 .83  

Search methods for an extremum with the least average error are called Bayesian if the averaging is carried 
out by using an a priori  probabil i ty distribution within the class of  optimized functions [ 1 ]. As it was noted 
in [ 1 ],  it  is very difficult to implement Bayesian methods in the form of  digital-computer programs; therefore 
related methods such as Bayesian search methods with finite memory [ 1-3] or single-step Bayesian methods 
[1, 4, 5] are of  interest. 

In the present article it  is proposed that realizations of  the Wiener process be minimized. An optimal 
search method in the sense of  mean improvement per single step is described, that is, a single-step Bayesian 
method (SSBM). It is shown that irrespective of  the adopted SSBM for searching for the parameter of  a 
Wiener process the SSBM converges for any continuous function. Using digital-computer simulation the 
convergence characteristics of  an SSBM are determined in the case o f  minimizing a Wiener process realization. 
An example is given o f  optimizing a multiextremal (piecewise-quadratic) function as welt as an easy exposition 
of  the search strategy. 

DESCRIPTION OF THE SEARCH METHOD 

Let us suppose that  a real function f(x) (0 ~< x ~< 1) is to be minimized. To construct a search method 
it is necessary to determine the following: 

a) the point of  the k-th test xh ( 0 4  xk ~ l) as a function Of Z~_~ = ((f (xO, xa) . . . . .  (f ( x ~ - d , x ~ - ~ ) )  

k =  1, 2, ..., Zo = O; 

b) Xok as a function of Zk where Xok denotes the position of the minimum after the k-th step, that 

is, the k-th approximation of  the extremum points. 

The search method is now constructed based on the concept of  single-step Bayesian optimali ty [1, 4, 5]. 
Let ] Ix)  be a portion of  a realization of  the Wiener process with the parameter o and f(0) = 0 [6] .  

At the (k + 1)-th step of the procedure the coordinates of the preceding tests and the associated values are 
already known. They are ordered according to the coordinate x i and are denoted by xik(i = 1, k): 

x~ = 0 ~<x7 ~< . . .  ~< x~ ~< 1, {x~, i = 1,---'~1 = {x,, i = 1, k---}, (1) 

the vector (x~ . . . . .  x~) being regarded as constant. One adopts as the solution Xok the minimum point  of  the 

conditional mathematical expectation of  f(x)  relative to Zk = ((f k k (x O, x,) . . . . .  q (x~), x~)): 

x0k = arg minM {r (x)I~}.  (2) 

Since M {/~ (x) t~}  is a piecewise-linear function of  x [5, 7] therefore x0~ = arg min f(x~). The coordinate 
k x./ 

Xk+ 1 of  the (k + 1)-th test is selected in such a way that the  mean improvement on the (k + 1)-th step 

~0k+ l (X) is maximized: 

x~+ l = arg max %+t (x) = arg max (f (x0k) - - M { f  (x0k+l)[~2h}) = arg max (f (x0k) - -  M {min (] (x0~), I (x)) [~}). 
0~-x~<l 0(-x~! 0~<x~l 

It is easily shown that  
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t~xOh!-m6 0 
oh(x) 

%+~ (x) = o~ (x) j II (z) dz, k = 0, 1', . . . . . .  (3) 

where m h (x) = M {f (x) I Zh}, o~ (x) = D {f (x) I Z~}, k =  1,2 . . . . .  that  is, the condi t ional  mathematical  expectat ion and 

the condi t ional  variance of  f (x)  are given, respectively, by  

m 0 (x) = 0, o~ (x) = ~ - x ,  : (x00) = 0, (4 )  

It  follows from (2)-(4) that  x a = 1; by  using (1) it  is therefore found that  x k = 1, k = 1, 2 . . . . .  Then 

[5, 7] for x h~_~ < x < ~ ,  i = 1, k] one has 

: (x~) (x - xL, )  + : (xL,) (x~ - x) 
m k {x) = - -  

X k. -- X h 
I~ i - - 1  

V / ( X  k '~ - -  x~_ 0 (x~ - x) .  
o h ( x )  = o ~ - -  , 

X i - -  X ~ I  

m h (x 9 = :  (x 9,  o h (x 9 = 0. (5)  

To determine the coordinate  of  the (k + 1)-th test it  is necessary to find the max imum of  ~0k+l(x) in the 
k interval [0, 1], that  is, to find the maxima of  ~0k+~(X) in the subintervals [x~_j,x~], i----- I ,k,  and then compare 

them. Since the Wiener process (5) is Markovian in the case of  f ( x 0 h ) = f ( x 0 h - 3 ,  therefore it  is sufficient to 

find the maxima of  ~Ok+l(X) in the intervals [x~_vx~], h h [xvxz+~], at the (k + 1)-th step where 

l = arg max (max % (x)), x~ = x h, 
,.~..<~-1 ~:I.<~.<~-~ 

since 

max t p h +  l (x) = max tp. (x), i -.< i ..< l -- 1, 

max ffk+~ (x) -=-- max % ( x ) , l + l - . < i < k ~ l .  

THEOREM.. For  x~_th ~< x-.< x~ the funct ion r k = 1, 2, ..., is un imodal  and convex upwards in a 

ne ighborhood of  the maximum.  

Proof. The following no ta t ion  is in t roduced:  if  l (x~_~) < f (x~), then 

X k. ~ X  �9 t 
tht ~ h__ t, ' 

X t X~__ 1 

ZI~_I = [ k (X~__ 0 -- : (X~k), Zk~ = : (X 9 --: (Xok), 

X - -  X ~ [ - - I  
otherwise thz = x' k _ xh , 

t i--I zhi_ ~ = : (x~) - f (xm), zh~ = : ~ -- (x~_O : (xo~). 

Then for x~_ I h  .<..~ x ~< x~, 0 ~< th~ ..< 1 one has 

zk~._itM "+zk~r l-- tkl  ) 

where c~ = o V ' x  I - -  x~_ t. 

The first derivative of  the f u n c t i o n  ~P~+l (tkl) shows that  %+1 (tk~) increases for t~  = 0 and decreases for 

t~  = 1. Consequent ly ,  the max imum point  is an inter ior  po in t  of  the interval (0, 1). The second derivative 

of  %+1 (tk~) shows that  ~k+l (tk~) is convex upwards for ah~ -.< tkz 4 bh~ and convex downwards for 0 -.< the< ah~, 

bh~ < th~ ~< 1,  where 
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1 ~,  - -  z2.~_ t - -  Vc2~ %- 4c~.,z~iz~z_ , 
a~ = - ~  + 

I 
b~ = ~-  + 

2 (z~_~ %- z~) ~ + %2 

Consequently, %+~ (/k) (0 -.< t~ ..< 1) is unimodal and the maximum point t~ satisfies the inequality 

a~ -<. t~ -.< b~. (6) 

COROLLARY. It follows from the expression for the function ~'k+~ (tk~) that the point tk* lies between the 

maxima of  the function tk(l  --tki) and zk~_~ + z ~ ( 1 - - t ~ )  By using (6) one obtains 
V ~  ( ~  - t~ ) 

m a x ( ~ ,  %~)..<t '~, . .<min( ~ b~,). �9 \Zk~-i-ffZ~i ' 

Since the point X0k is determined in an elementary way the implementation of  the algorithm reduces to 

the determination of  the point x k. In accordance with the theorem, the point t~i , and hence also Xk, can be 

calculated by the Fibonacci method with a high degree of  accuracy or  [since the derivative of  the function 
~+~ (t~) is knownl by the method of  interval-halving. 

In [5] a simple algorithm was described which is close to the SSBM. 

PROOF OF CONVERGENCE 

The SSBM was constructed as procedure optimal in some sense for a Wiener process characterized by 
the parameter a. However, it can also be analyzed as not related to a Wiener process, namely, as a search 
method dependent on the parameter o. The convergence of  the method in a class of  continuous functions is, 
therefore, of  interest. In the investigation of  this problem the properties of  the maximum of the function 

"~k+t(tki) play an essential part. 

LEMMA 1. ~+1 (t~z) is a not increasing function o f  zki_ 1 , zki and a not decreasing function of  Cki. 

Proof. It is obvious that ~k+~ (t**) is a decreasing function of  Zki_l, Zki and an increasing function of  Cki 

with tk~ kept constant. Consequently, ~k+~ (tk~) is a not increasing function of Zki- 1, Zki and a not decreasing function of Ck~. 

LEMMA 2. t~i is an increasing function of  Zki and a decreasing function of  Zki_ ~ , Cki. 

Proof. t~ in the form of  an implicit function of Zki_ 1 , Zki, Cki is given by the equation 

a~k+l (tkl) 

It is not difficult to show that 

a 

%~~ '~,=':~ Otk,azkz~-, ' " k[=t k (7) 

In accordance with the rules for differentiating an implicit function the inequalities (7) imply the validity 
of the lemma. 

THEOREM. For any continuous function f(x) such that f(0) = 0 and for any constant o < 0 one has 

lim [ (x0k) ----- min J (x). 
~-r 0-.<x~<l 

h Proof. It wilt be shown that tim(max(x, k -  x~_~))= 0 since then the assertion of the theorem follows directly. 
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Let us assume the opposite;  let us assume that there exists a A > 0 such that 

for all k = l ,  2, .... 
The function f(x)  attains its maximum and its minimum on the interval [0, 1]; the notat ion is introduced 

M = max f (x), .m = rain f (x). 
O ~ x ~ l  O~<x~ t  

Lemma 1 that  

Since z~l ..< M - -  m, zk~ ...< M - -  m, x~ - -  x~_ 4 ~ O~ therefore it follows from 

2, pn-M) 
8 r  

~ ax ~%+, (x)>~ 1 a ]/:A- S I I (z)dz .  

- - r  

But for any interval [x k,_l, x~] one has 
0 

! max (x) ~< 1 i/xk.----~x, k 171 (z) dz; 

therefore in accordance with the search procedure the calculations in the intervals whose length is smaller than 
g.A, 

[ 2(m--M) , ?~ 

will not  be carried out  (0 < g < 1). 

It then follows from Lemma 2 that  for all k one has 

where 0 < h = l - t *  < 1, 

min(x .k~x.  ~ .) >~ h . g . A ,  
l ~ i ~ < k  t ~ - - t  

m--M V I--t 

t* = arg max o V-g. A. t (1 - -  t) �9 S H (z) dz. 
~, . . . .  - - t : o  

Now it follows from (8) that for k > 1/(h • g.A) one h a s ~ ( x ~  n --x~_,) > 1, which is not  possible. 

inconsistency arrived at proves the theorem. 

(8) 

The 

Remark. The constraint f(0) = 0 is not  essential since the origin can always be chosen at f(0). 

EXPERIMENTAL INVESTIGATION OF CONVERGENCE 

The most important  characteristic o f  the convergence method in the case o f  realizations of  the random 
process f(x)  is its mathematical expectation f(X0k) as a function of  k. It follows from the results of  the 
preceding section that  the SSBM with the parameter a converges for almost all realizations of  the Wiener 
process with the parameter  o 0 = 1. I t  wilt be of  some interest now to find out how the convergence depends 
o n  0 .  

This problem has been investigated using a digital computer. The realizations of  the Wiener process f(x)  
have been replaced by the realizations o f  the process gn(x)  (0 ~< x ~< 1): 

g~ (x) = h (~-1) + (h ( x , ) -  h (x,_,))(x--x,_l) .N, 

x~_~ ~<x~<x  i, x ~ = i / N ,  i =  1, N, 

where h(0) = 0, h(x~) = h  ( ~ - i ) q - ~ / I / N ,  ~ is the normally distributed normalized random quantity. 

The fact that for N --> ~ the process gn(x)  converges in some specified sense to the Wiener process with 
a parameter equal to uni ty forms the basis of  our approximation,  and one also has .M { m;n gN (X)}-+ 

0~.<x -~ I 

M { min f(x)} [6].  It was assumed in the calculations that  N was equal to 1000; the averaging was carried out 
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TABLE 1 

" o ~  15 30 ~5 6~ 75 

I 
' t I D E  

I S S B M C  

--0,7212 
--0,7515 
--0,7430 
--0,7247 
--0,7t31 
--0,6268 
--0,7315 

--0,7252 
--0.7789 
--0,7772 
--0,7680 
--0,7553 
--0,6927 
--0.7716 

--0,7255 
--0,7799 
--0,7834 
--0,7811 
--0,7734 
--0,7151 
--0.7814 

--0,7258 
--0,7811 
--0,7861 
--0.7856 
--0,7822 
--0.7294 
--0,7855 

--0.7259 
--0.7813 
--0,7867 
--0.7869 
--0,7F52 
--0,7341 
--0,78701 

02 

1 
I 1 ~ - - - n  __  

Fig. I. Histogram.of parameter estimates for 
a Wiener process. 

over 200 realizations. The arithmetic mean of the experi- 
mentally obtained values of rain gN (X) was equal to 

- 0 . 7 8 9 0 .  It is also noted that 34 { min f(x)} = - 0 . 7 9 7 9 .  

The experimental results showing the dependence of  
the averaged value of gn (Xok) on k and o are given in 

Table 1. For comparison the averaged results are also 
given of optimization by the search method with uniform distri- 
bution of experiments (UDE) over the interval [0, 1]. 

In the case of minimizing realizations of the Wiener 
process with parameter % = 1 one can see from the table 
that for k ~< 75 one can select the optimal value of o. 
Since the SSBM is optimal in the sense of mean improvement 
on one step, therefore for k > 1 the optimal value of o is 
not uni ty as one could have expected. 

The convergence was investigated for o o = 1; the 
latter, however, does not  limit the generality since any 
Wiener process can be converted into the investigated one by 
an appropriate change of the scale. 

ESTIMATE OF THE PARAMETER 

Let a realization of the Wiener process with an un- 
known parameter o o be subject to minimization. It follows 
from the preceding sections that the SSBM converges for 
almost all realizations for any parameter o; the rate of 
convergence however, depends on the choice of o. 

Consequently, the necessity arises to find an estimate of %;  the following two facts are important: 

a) only a fairly small number of experiments can be used to estimate a parameter; 

b) it can be seen from the table that by varying o in the interval (300, 9% )  in which the optimal 
value of o for k ~< 75 is found the average error varies only slightly. 

Let us consider the case in which o 0 is estimated independently for each realization by employing the maxi- 
mum likelihood method using m uniformly distributed experiments: 

m 

- 1 / 2  o o ---- (] ( i / m ) - - [  ((i - -  l)tm)) ~. 

For m = 5 the estimate (8) was obtained for 200 realizations of the process gS(X). 
estimate was s = 0.9684. Its histogram is shown in Fig. 1. 

The average 

(8)* 

Since for 30 ~< k ~< 75 the value 7s is close to the optimal value of the SSBM parameter and since the 
relative frequency of the event ( 3~0 ~< 750 ~< 9a0) exceeds 0.9, therefore it is advantageous to select the SSBM 
parameter equal to 7ff o. Averaged results of  the search by a single-step Bayesian method with an estimate of  

a 0 and with the parameter ~=7~0 (SSBMO) are shown in Table 1 (the experiments for estimating the parameter 
are counted as search experiments). 

In the case of minimizing the functions which are not realizations of a Wiener process the recommended 
value for the parameter of the search method is 7o  o where o-- 0 is calculated by using the formula (8). 

STOPPING RULE OF THE SEARCH 

The optimal stopping rule of the search is of  theoretical interest. To construct a rule of this kind one 
needs "the cost" of  a single evaluation of the minimized function [ 1]. In practice, however, it is rarely possible 
to measure "the cost" of one evaluation in units of  the minimized function; moreover, it is difficult to imple- 
ment such a role. Therefore a simpler rule will be analyzed. 

The specifying in advance of the number of evaluations of  the minimized function is one such stopping 
rule. It seems to be suitable in the case of limited machine time, that is, when a single evaluation of the 
minimized funct ion is very costly. The ALGOL program for SSBMO with a fixed number  of evaluations is 

*Numbered as in Russian original - Publisher. 
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z, ~ ,lj,y~r e~ ~o 1o lz,. 9 Io t t .,~ t] Jl 

Fig. 2. Diagram of  the search strategy using the 
SSBMO method;  the points at which computat ions 
have been carried out are noted. 

given in [81. 

In some problems it is essential that the search be 
s topped when the prescribed accuracy has been reached. 
Since in an SSBMO algorithm one computes the mean 
improvement ~0 k of  the k-th step and regarding the latter 
as an accuracy estimate, the search should be stopped at 
the k-th step i f  

% < ~, (9) 

where e is the required accuracy in function values. 

The stopping rule (9) for the search was investigated 
experimentally in the case of  minimizing realizations of  a 
Wiener process. 

In all 200 realizations were minimized, the search 
being stopped in accordance with the rule (9) with e = 
0.05. In 180 cases the minimum was found with an 
accuracy e the average number of  calculations carried out 
up to the stop being 37.3. 

E X A M P L E S  

The SSBMO was used to minimize the function 

/ (x)  = r a i n  { ( x  - -  ~i) 2 .  2 0 0  + q~}, 0-.< x-,< 1, 

where ~i are independent random quantities with uniform distribution in the interval [0, 1], r h are independent 
random Gaussian quantities with zero average and standard deviation of  1.5. 

The averaging was taken over 50 realizations; the average of  the minima of  f(x)  was - 3 . 0 2 2 3 .  The search 
results were as follows: f (x03o) = -  3.0206, f (x~,~0) = -  3.0216, f (x~0) = - -3 .0219  where bars denote minimization 

over 50 realizations. It is noted that  after 100 steps the average of  the values reached by the UDE method was 
- 3.0208. 

In Fig. 2 the search strategy for the SSBMO method is Clearly shown. The minimized function was 

[ ( x )  = 2 (x - -~ .75 )"  + . s i n ( 8 ~ x - - ~ t / 2 ) - - O . 1 2 5  (0~< x ~ <  1). The minimum of  the function is at the point  

x o = 0.75 and then f(x  o) = -1 .125 .  The search stops when the specified number N = 35 of  evaluations of  the 

minimized function have been carried out;  x0, v = 0.7511,/(x0A,)=--1.1246; an improved result was achieved in the 
24th exper iment .  

To illustrate the search with the stopping rule (9) the maximization is considered of  the function 

f(x) = ~ i •  + l) x + i ) ,  

- -  10 ~ x ~< I0; 

the global maximum of  f(x)  is 12.0313 being reached at the points - 6 . 7 7 4 5  and 5.7919 [9].  The minimax 
method required 444 evaluations to reach the guaranteed error e = 0.01 [9].  The same function was maximized 
by using the SSBMO algorithm with the stopping rule (9) for e = 0.01. The search stopped after N = 255 
evaluations of  the maximized function, the best point  being XON = 5.7945, f (XoN) = 12.0301 ; other local maxima 

were also found with a high accuracy, namely, x'  = --6.7680, f (x') = 12.0245, x" = --0.50t4,  [ (x") = 12.0i56. 

LITERATURE CITED 

1. I . B .  Motskus, "Bayesian search methods of  ext remum,"  Avtomat.  Vychisl. Tekh., No. 3 (1972). 
2. A . G .  Zhilinskas and I. B. Motskus, "A Bayesian search method for an extremum,"  Avtomat. Vychisl. 

Tekh., No. 4 (1972). 
3. A . G .  Zhilinskas, I. B. Motskus, and L. L. Timofeev, "A Bayesian search method  for an extremum with 

limited memory ,"  Avtomat.  Vychisl. Tekh., No. 6 (1972). 
4. V . R .  Shaltyanis, " A  method of  multiextremal opt imizat ion,"  Avtomat.  Vychisl. Tekh., No. 3 (1971). 
5. A . G .  Zhilinskas, "Optimal  planning of  experiments in search for an extremum of a function of  a single 

variable," Inst. Fiz. Mat. Akad. Nauk. Litovsk. SSR, Dep. VINITI, No. 2130-70. 

165 



6. I . I .  Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes [in Russian], Nauka, 
Moscow (1965). 

7. H. Kushner, "A versatile stochastic model of a function of unknown and time-varying form," J. Math. Anal. 
Appl., 5, 150-167. 

8. A . G .  Zhilinskas, "Single-step Bayesian method of one-dimensional search," Inst. Fiz. Mat. Akad. Nauk 
Litovsk. SSR, Dep. VINIT!, No. 663-74. 

9. B .O.  Shubert, "A sequential method seeking the global maximum of a function," SIAM J. Num. Anal., 9, 
379-388. 

166 


