MAPPINGS CONJUGATE TO CONVEX MANY-VALUED MAPPINGS

V. V. Beresnev UDC 519.3

A great number of extremal problems of practical importance are described in terms of many-valued
(point-set) mappings. Among problems of such type are optimal control problems for discrete processes,
the problem of finding the minimax for connected sets, on which is based the solution of many nonantagon-
istic games with information transfer, a whole series of problems connected with the investigation of a
family of mathematical programming problems, etc. Pshenichnyi [1] introduced the concept of a conjugate
transformation for convex many-valued mappings and pointed out the fruitfulness of using such a transfor-
mation for investigating and solving extremal problems given by convex many-valued mappings. But in
order for conjugate mappings to become a convenient and effective mathematical tool for the investigation
and solution of convex extremal problems, it is necessary to develop a technique for computing the con-
jugate mappings for complex convex many-valued mappings obtained as a result of operations over other
convex many-valued mappings., The creation of a certain foundation for such a technique for computing the
conjugate mappings is the first and foremost aim of the present paper. However, it should be noted that
several results of the paper (Theorems 6, 8, 9) are of independent interest, In particular, by using the
method of proof of Theorem 2 of [1], from Theorem 8 we easily obtain a generalization of the marginal
value theorem to the case of arbitrary locally convex spaces.

Bagic Definitions and Notation, Auxiliary Results

As in [1] all problems are investigated in real locally-convex separable linear topological spaces
X, Y, Z.

Let £ be some function on X with values from [~ e, + ®], It is obvious that for a convex function f
the set

domf={x:x€X,f(x)<-+ oo}
is a convex set, while the convexity of the set
detf ={(x,a): (x,) X X R,a>f(x)}

is equivalent to the convexity of function f, By 8 f (xy) we denote the subdifferential of the convex function
f at point x); however, if ¢ is a convex function of the product of spaces X and Y, then the subdifferential
of ¢ atthe point (x,, y,) is denoted by 0 x,y‘P(Xo, ¥o), whereas 8, ¢ (x, y) is the subdifferential of function

@(x, y) at point x; with respect to the argument x for a fixed y.

By M(X, Y) we denote the collection of all many-valued mappings of space X into space Y; here, in
contrast to [2], we allow that an empty set can be a value of a many-valued mapping. We stipulate that for
this case, for any £¢ C Y, A€R,

E+ =0
MY =@

Let a€ M(X, Y). We say that mapping a is convex if for any x;, %, €X

adx +(1—WNx) DAhax) +(1—Na (xy),
0<A<K L

Translated from Kibernetika, No. 5, pp. 79-83, September-October, 1973, Original article submitted
March 13, 1972,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

813



Two sets are closely related with each convex many¥va1ued mapping:
doma={x:x¢€X, alx)# &},
grafa ={(x,9): (x, YEX X Y, y€a(x),

while with each pair (xy, yy)€ graf a, the cones of admissible directions
Ky. (@, xo) = {_y :.TJ = }"(y - yo)r Y € axg), A> 0}'

Ka (xov yg) ={(;, y—) : (,_V,—Z/)= A (JC — XY — y[])'
(x.y) €grata, b > O}.

It is easy to see that graf aanddomea are convex sets in X XY and X, respectively, We also note that the
giving of set graf ¢ uniquely defines the mapping ¢ since if ¢ is a convex set in X XY, then the mapping
a(x)=1{y:(x, y)€¢} is convex and graf a= £,

In what follows we denote by W(X, Y) the collection of all convex many~valued mappings of space X
into Y, Let g€ W (X, Y), y*€Y* We set

inf{ < y,y*>:ycax)}, xcdoma;
wa(xv y*) = !

4+ o0, x¢doma.

The function w,(x, y*) is a convex function and

dom w, (x, 4*) = dom qa.
The many-valued mapping a’; : Y — X*, defined by the rule
0

a, (4") = 0w, (x, ¥')
is said to be conjugate to a at point x;.
THEOREM 1. (~x*, y*)€Kz(xy, ¥o) if and only if y* €K} (a, %), while x*éa’;o(y*),

THEOREM 2, Let ¢ be a continuous convex function on X XY and let there exist a point (xy, y;) such
that ¢¥(xq, y4) < 0. In addition, let the lower bound of <y, y* >with respect to y on the set ¢(x, y) = 0 be
achieved at a point y;,. Then for the mapping

a(x)={y:ex, y <0}

@, () =4 (—=x, N eUra,, o, y)

P

Both theorems are due to Pshenichnyi [1]. The first one of them permits us to reduce the finding of
a conjugate mapping to describing a cone dual to K,(xg, ¥o), which in many cases essentially simplifies the
tagsks, The second theorem describes the conjugate mapping for a very important class of convex many-
valued mappings and is a corollary of the first,

Operations over Many-Valued Mappings

Definition 1. A mapping a€M(X, Y) is called the sum of mappings a, +a, € M(X, Y) and is denoted ay+
as if

a{x) = g, {x) + a,(x).
By the product of a mapping b€ M(X, Y) on A €R we mean the mapping A b, where
(Ab) (x) = A b(x).

It is easily seen that relative to the operation of addition the set M(X, Y) is an Abelian semigroup,
while the operation of multiplication by a number from R is commutative, associative, and distributive. We
note that
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doma, + a, = domg, ﬂ dom a,,

dom A b = dom b.

The set M(X, Y) can be partially ordered. For this it is sufficient to set o > b if forall x€X, a(x)2b(x).
If ¢ is an arbitrary subset of mappings, then by

Ve pe

a€:
we denote, respectively, the upper and the lower bounds of set ¢, i.e., the following mappings:

()e/ a)(x) =[] a;

) ag:

<{;a>(x)=ﬂa(x)-

€z
It is obvious that in the complete distributive lattice M(X, Y) the zero element is the mapping a(x) =@, while
the unit element is b(x)=Y,

With each mapping 2 € M(X, Y) there uniquely corresponds the mapping ¢~1€ a, defined inverse to M(Y, X)
as follows: .

a” (y) = {x:yEa(n).
It is understood that ¢~1{a (dom a))= dom a and, in addition, (z~1)~1= 4.

Definition 2, If a€ M{X, Y), b€ M(Y, Z), then by the product of mappings ¢ and b we mean the mapping
be g€ M(X, Z), where

{bea) (x) = b (a(x)).
We note that (boa)~! = g=1 o b~t,

Let A be a linear operator mapping space X into space Y, and let B be a linear operator mapping
space Z into space U, Then with every «€ M(Y, Z) we can associate a mapping b€ M(X, U) defined as follows:

b (x) = Bai{Ax). (1)

THEOREM 3, 1, The set W(X, Y) is closed relative to the operations of addition and multiplication
by an element of R and to the operation of intersection of mappings.

2, If a6 W(X, Y), then g~t€ W(Y, X),

3. If g€W(X, Y), b€W(Y, Z), then bea €W(X, Z).

4, If g€ W(Y, Z), A is a linear operator from X into Y, B is a linear operator from Z into U, then
the mapping defined by formula (1) is a convex many-valued mapping of space X into U,

To prove the theorem it is enough to be convinced that in each of the items the graph of the many-
valued mapping — the result of the operation — is a convex set,

Computation of Conjugate Mappings
THEOREM 4, Let g€ W(X, Y) and A €R, Then

(hay, (¥ =|M|a, (signky’).
Proof, For all x¢X and A €R

@, V=T < g >y €ha(t = b <y y > :ycata) =
= Minl{ <y signhy >:ycalx) =RMw, ix signhy).
k4

The theorem's validity now follows at once from the definition of a conjugate mapping,

815



THEOREM 5, Let a, bEW(X, Y). Assume that there exists a point from N dom b at which either
the function w,(x, y*) or the function wy(x, y*) is continuous. Then

ta-+0b), (¥ =@, +b) ).
Proof, For allx€ dom a Ndom b

wa+b(x,!/*)=ir:f{<y,!/“>:y6a —{—b(x)}_mf{\yl,y>+ Yo > ylea(x),yQQb(x}

Y1:y2

= i(?f{ <Yp ¥ >y, €ax) +i$1f{<y2, Y>>y, b =w, (1, ¥) +w, (£,.4).

Consequently,

@, (x. y)+w (%, ¥"), xcdom a dom b;

W, =
ath i—}— 0,  xCdoma dom 6.

By the theorem's hypothesm there exists a point from dom wg(x,y* N dom wb(x, y ) at which one of the
functions, say w (X, y ), is continuous. This allows us to take advantage of Theorem 1 from [3] and to com-

plete the proof of the theorem,

THEOREM 6. Let g €W(X, Y) and let the lower bound of ¢, x*) with respect to x on the set a~1(y;)
be achieved at point x5, Then

(@ () = — (027 (— %),
where b*xo is the restriction of the mapping aXo to the cone K (a, %Xp)e

Proof, The lower bound of <x, x*> with respect to x on the set a=i(y;) is achieved at point x;; therefore,
*EK (a1, yy). By Theorem 1-—y *e (a‘i)y (x*) if and only if d ) X )EK ~1{¥y, X)o But since

grafa™' = {5, » :x€a” (Y =1y, » 1y €a ()} =y, %) : (x, y) Egrai a},
then K (g, %) = {(y, %) : (x. 5) ¢ K (x,, yo)} and (x*, y*) € Ka(xo, ¥y). Consequently,
&, 9 € K, (x5, 5y)
if and only if y*GK;o(a, o), while —x*Ea*Xo(y*). Therefore, (@), (x)={—y : —x €a, (), ¥ €K, (a, x0)} =

—{y i — X el ()} = — b)) (—x).

THEOREM 7, Let g, b€W(X, Y) and let there exist a point in graf ¢Ugraf b, an interior point either
for graf a or for graf b, Assume that the lower bound of <y, y*> with respect to y on the set a(x;) N b(xp)

is achieved at point y, and that there exists a point in o (x)) N b(x;), an interior point either for (x;) or for
b(xg). Then

@A), () ={x: % =x, +x, €4, (1),
%6, (4, 4,€K, (0, %), 4 €K, (b, %), 4" = 9, + b} 2)
v Proof, Let ¢c=a Ab and X*EC;O(Y*). Since graf c= graf ¢ N graf b and there exists a point of graf c
which is interior either for graf a or for graf b,

K: (xoy yo) = K; (xO’ yo) + K; (xor yo)' (3)

The lower bound of <y, y*> with respect to y on the set c(x;) is achieved at point y,; therefore, y*EK;‘,O(c, Xg)
and by Theorem 1 '
( - X*, y*) E K: (JC(), yO)'

Using (3) we obtain
(— 2% 4 = (—x19) +(— %5, ),
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where (— xi, 4}) €K} (xg, Yp), (— x; ,y;)eK; (*y Yo » But by the same theorem
xea; (U Yy €K, (a, xp),
(4)

£,€5, (9), Y€K, (b, x).
Consequently, x* = xf + <5, y* =y} +y5, where xf, <3, v¥, y% satisfy (4). Thus, we have shown that tho(Y*)
is included in the right-hand side of (2).

Now let x§ belong to the right-hand side of (2), i,e., there exist x¥, xf, y¥, y¥ which satisfy (4) and
5 +xF = x4, y5 + y4 = y*. We note that y*@K’§,O (c, xp), since by virtue of the last hypothesis of the theorem

K, (e, x) =K, {a,x) + K (b, x).

Therefore, by Theorem 1

(— X0 YD EK, (x4, Ug)y (— x5 43) €K (%, Yo,
C;o (y‘) = {X":(— %", y*)E K; (x()x yo)}

From equality (3) we obtain
(— %L + (=%, g = (— x5,y EK (xg, ).
Consequently, x%€ c’;io (v*). By the same token we have proved the inclusion of the right-hand side of (2) in

%, 7, which proof completes the proof of the whole theorem.

Let a€ W(X, Z), ¢ be a real-valued convex continuous function on Xx Z, We set

inf {o, (x, 2:2€ a(x)}, x¢dom g; (5)
fo=4{"  _
-+ oo, x£doma.

It is easy to verify that f is a convex function. We compute the subdifferential 9f (xg) of function 7 at the
point x;, assuming that the lower bound of ¢,(x;, z) with respect to z on the set a(xy) is achieved at a point
Zj. Let Y=ZXR such that y is a pair (z, o). We set

P Y =0 (x,2) —a
and we introduce the following convex many-valued mappings into consideration:

b(x) =a(x) X R;
c(®) ={y9(x, y) <O}
d=2>b N\ C.
If y*(z*, a¥), then
w,(xy)=inf{<2,2"> L a'w:zca (),

(z,a

inf{<z2> 4+ &Py (%, 2):2€a (@)}, o S 0

-—oo,o(,'<0,

In particular, if y§ = (0*, 1), then wy(x, y%)=F(x). Consequently, the computation of 9f (%9) is reduced to
the computation of d;{o(yo*). Since d=b A ¢, we make use of the preceding theorem, We convince ourselves

that all the hypotheées of Theorem 7 are fulfilled. Since

Py (%, H<al =

grafb =grala X R, grafc = det g,
we have that
(x, 2, o) € int (graf ¢) N} graf b.
is valid for any triple (x, z)€ grafa, o € 9,(x, z) by virtue of the continuity of ¢;. In exactly the same way
we can prove that there exists a point from d(x,) which is an interior point for ¢(xp). Since f(xg)= ¢ y(x,,

zg), where z,€a(x)), and y}= (0%, 1), the lower bound of <y, y* >with respect to y on the set d(x;) is achieved
at the point yy= (zy, ¢, (%, z3)). Consequently, by Theorem 7,
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Of (k) = {x":x" = x7 + x5, £, €, (), % €€, 13); Y1 €K, (0, x0), 45 € K, (3 %)y Yy =y + Y3} (6)

Let us compute the dual cones and the conjugate mappings occurring in (6), Since the function ¢y is con-
tinuous, by Theorem 2.2 of [4]

K;, (6.5 = U 0,0 (%5, 9) = Uv 0,945 29) X {—1}).

<0 P<0
It is obvious that
K (b, %) = K., (a, x;) X {0}

Now let y} = (2%, 0), 3 = vo(z3, —1), and y}§ = y¥ + y%, where
z;eK; (@, %), 2, €0,0,(%, 2), ¥, 0.
Then 0* = zf + vyz¥%, 1= —v,. Consequently, v, = —1, z¥—z% = 0%, Since the function ¢, is continuous
0,9y (% 29) = P 7.0, , @y (X 2)-
Therefore, by Theorem 2 we obtain
&, ) = {6 (— 2, 4D € — 0, , 9lxp yo)} =
= {x"(—~x",—2, 1)E— 00, @4*q 2) X{—1D} = {x":(x".2)} €9, 9, (xp 2}
We obtain the next theorem from formula (6) by keeping in mind that b;o(yf ) = a";io(z"{) and z} = z%,

THEOREM 8, Let a€W(X, Z), ¢, be a real-valued convex continuous function on X xZ, If for x= x;
the lower bound in the right-hand side of formula (5) is achieved at the point z,, then for the function 7
defined by equality (5),

Of (x) = {x": x" = %]+ %3, x{€a; (2), (% 2) €0, 9, (X, 2)); 2 €K, (a %)}

THEOREM 9, Let a€W(X, Y), b€ W(Y, Z), and let wy(y, z*) be a continuous function of y on dom b,
If the lower bound of wy(y, z*) with respect to y on the set a(x,) is achieved at point y,, then

(boa), () = (d,08]) (),
where d;o is the restriction of mapping a’;{O to the cone K;o(a, Xg)e
Proof, Let c=beg, Then for any x€ dom c,

W, (x,2) =inf{<2, 2> 12¢(bea) ()} = inf{<2, Z£x:2€ [J o)
2 z yealn

Since set c¢(x) is convex,

w,(x,2") = inf{inf L2,2)>:yca(x)} =inl{w,(4,2):ycax)}.
y  z€bly) Y

The theorem's hypotheses ensure the applicability of Theorem 8 in the case at hand, Therefore,
¢, (@) ={x"x"€ca, (¥ y b, @)NK vl x)t = {x"xtedy, W), ¥ el ()} = (d,0 b, ) ().

THEOREM 10, Let a€W (Y, Z), A:X —Y, B:Z — U be linear continuous operators. If w,(y, B*u*)
is a continuous function of y on dom a, then for mapping b, which is defined by formula (1),

b, (W)= A'ay, (B'W).
Proof, We set c=a-A. Since
w, (%, u") = ix:f {<u,u"> :uch #)}= inzf {<Bz,u*> :1z€c(x)} = inzf{<_z, B'u'™> :zeé(;c)} =uw,(x, B'w),
b"}‘{o (%= c”;;O(B"h* ). But by virtue of the theorem's hypothesis and of Theorem 9,
g Buwy={x"x =AY, y¢ a,, Bu)},
which proves the theorem, .
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