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STEP CONTROL FOR DIRECT
STOCHASTIC-PROGRAMMING METHODS

S. P. Uryas'ev UDC 512,98

There is considerable practical interest in efficient numerical methods of stochastic optimization, which
can be used in planning under conditions of uncertainty and in optimizing stochastic schemes such as servicing
systems, inventory management, and stock control.

A new method is described for step adjustment for stochastic algorithms of gradient type. The step is
adjusted from the realizations, which does not require much computation, so the technique has been used with
problems of large dimensions. The scheme is based on step completion, which provides an efficient criterion
for halting the process.

The convergence is examined via an approach different from the traditional ones [2, 3] because the step
size may increase during the process and is not necessarily required to tend to zero.

PRELIMINARY REMARKS

We present some informal arguments that explain the step adjustment. We consider a problem instochas-
tic programming without constraints {2], i.e., minimization of

[ () = MF{x, 8),

where 6 is an elementary event in probability space (@, %, P); to minimjze f{x) we use the scheme xS = %8 -

ot where £5; = £5/11£51 for ¢5 = 0 and M(ES/x%, . . ., x5) = VEK®); if we know the function
' @, (p) = (o — ) — [ ()

or Vg (o) then the step pg can be chosen from the condition for a minimum in ¢g(p) with respect to o. The exact
values of @g(p) are not known in this case. In a step s it is possible to calculate the scalar product (¢S, 5%‘1),

and it is readily seen that the following chain of equalities applies:

of (»—" — pE ")

M (&, &)/ -2 = (W (), §) = — 3 =—vo,_, (o, )

Ps—1

i.e., in step s we know a random quantity whose mathematical expectation is the antigradient of ¢s-4 (o) at the
point pg_s. Then if ¢g(p) and ¢g_¢(p) are similar one can approach the minimum in @g(p) by using the gradient
procedure pg = ng_y + Ag(t®, £fr'), where Ag >0, s =0, =.

Parameter Ay must be chosen such that pg is greater than zero, so the previous formula is better re-
s gS-1
written as pg = P51 * aég_l'&H )
In fact, in step s a check is made whether a minimum has been passed through along the &%‘1 direction
in the preceding step. The sign of the scalar product (¢ s, i%‘i} enables one to judge this with a certain prob-
ability, i.e., an attempt is made at adjusting the step adaptively.

, where ag > 1 for s = 0, .
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CONVERGENCE PROOF

We thus have to minimize f{x) = MF(x, 6), where fx) is 2 smooth complex function that satisfies the
Lipshits condition throughout the space R of the function.

We consider the sequence of approximations
B =2 0fy, (L)
Oop :ps-a(§s+l'§;1)—ﬁ, A0, a> 1L (2)

Vector ¢8 satisfies the following conditions:

)
) & = f (x%) 4 by () + ny (%),
sup || by () || < by, My ()/2) =03
xER"
B, =af () s+ by (8) My (), @0, (3)
sup || by (1)) < by Mg (2)/x9) =0;
XERM
b)
[y (1), my (D < B,
sup |Bix0) | <SPy {4)
*€R"
c)
s 1E@]<C. 5
*X€ERM, 5=, %"

We now make some comments on the conditions. It is readily seen that there always exist functions by (x),
by &), B{) and consiants by, by, 8, o such that (3) and {4) are met if (3} is obeyed.

We note also that (3) and {5) imply the following bound for the norm of the gradient | Vi)l <¢ + by for
all x €RY; if by(x) is continuous, then condition (4) may be eliminated.

THEOREM. If the following relations apply for C, A, b, and a:
Ina.- (C—AY< 1, 6)
Ina-(C-4 AR << A—b, (7}

then all the limiting points of the sequence {xs}generated by the process of (1) and (2) with probability 1 belong
to the solution region X*, where

f

)
, biby by (b +C) b+ A+ P @)
X = lxliviwli< .

¢4

It is always possibie to choose A such as to meet the conditions of (6) and (7).

LEMMA. The following bound applies:

TS A—Ing €+ AR—b°

< B Oy i £ 40 "
T A PO Ry R 6
M(‘g‘o §< mna
o

where x* is the point at which the minimum in f{&) occurs.

Note that the traditional condition ‘Zpﬁ:cc [2}] for convergence of a stochastic process is not reguired,

Proof. We make some estimates, As f(x) is a convex function we have

i —fe)

— (Vi (T, B = o 9)
It is readily shown that the following inequality is obeyed if p < 1:
e -p+pt 10
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We now derive a bound for pg. From 2), 5, ), and (10) we have

LA waEsTLES J—4)
; - Wil ® H oLt
Telpy, =y =0, Lo (TR Ina 3By — A) Lfing (&+, %)

3

— )~ = maig LS —A+lnal+ )R,
We introduce the symbol ¥g: wg = st g%) - (Vt‘(xb ), S,H) and use (9) with ¥y to get

0<Cp, il + e ily - (7 (@), 5) = A = Ina (C+ 9 <l +ine ¥, ke =)

0
s

w8t 8] = n e, — F ) £ ] ) o (— A+ I a(C o A7)

0T ma{\E‘sz, + V=) ) (= A+ lnaC 4+ 4 ¥ ol> fo
u 0 &

g FWip, = F @) + T (00 + (— A+ ina<C+A)~)§pﬁ}$poT Ina
0 0

-
0 ¢

X/“‘Fm—/ Y F () + (— A+ Ina <C+m2>‘%7p,).

From the latter inequality we get 0<lpg, -+ i01u

% j M {Wp) —F )4 [ () i (Z ol) V- na(C + AY).
0 K
We use (3) to get a bound for EM(‘szl):

N Mp¥y= Y MM¥p/x 5= Z ALM (p, (B Bp) — (VF (), /%, )

Q Q

MM (o, (0 (9, B/, x) < X MM (o [10y (&) /x4, ) < X Mip,oby) = baM (2 p,) ~
0 9 0 0

We substitute the last bound in the previous inequality fo get 0<{¢, + Ina{f () —Ff{+") 4 M{ E 91)‘ by —A +
Ina(C + A)%). Ao

We pass to the limit in the latter expression to get the assertion in the lemma,

Consequence, p,— 0 with probability 1,
Tm——————— S—x

Subsequently for brevity we will omit the parentheses in (VfxS))y and write Vfp(xS).
By definition
E =y ) b () e 0,
& = ayfy(x%) 4 by (¥) + ny (#),
where My, &S71) /x5™) = 0 and M(n, &5) /x5) = 0.
The consequence of the lemma implies that || x+! — & II;: 0 with probability 1.

We introduce the symbol Tx5):

T (x) = (g (05 Y), @y, (8) + by (87) + My (09) (V7 (), M (#)) + (0 (x°H), M (2 — B (5°)-

We use the continuity of the vector function Vf(x) for the scalar product (¢5¥!, £3)) to make the following
equivalent transformation with probability 1:

EFLE) = (W () + by (o) + my (),
ayf,, () - by (%) + My (%)) = (v (x) + by (& F1) -+ (xH), ayf, (1) + by (x5) + 1, (x9)) + D (s).
The limit transition D(s) — 0 applies for D(s).
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Using T(xS) with (3), (4), and (5) together with the previous equality for #5!, ¢3) we can estimate the

latter:
EFL 8 = o (0] (), UFy () A (9F (), by (50)) b & (B (0ot D), 9F 5 (6)) = (By (x5+), by (%))

+ BT E)+DE Zelviw | —(C 3 b)by—ab —bb, — 8 4 T (e} + D {s).

From (2) and the bound for (¢57!, ¢§)) we have

E«‘H" "y LI
Popr = 0p@ =00 (—-g g @l v | —(C+by-b,
g8 4
'““‘bi“bibg“A—ﬁ‘FD{f)}‘f“‘i" —‘T(x’}\;, 11
S_g- )

s

E T (%) converges in probability to zero, since

i
&

The random quantity

%2}

[

M<—2_E ) [——_ EM(T(JC‘))Z WM(T( )T (#1) = 0.
— c~3 o

s 0

Usmg (11}, we obtain the assertion in the theorem from the converse. The lemma implies that the se-
quence {xS} converges with probability 1. The function | Vi)l is continuous, and Lherefore if x5 —x i3 not
obeyed with probability 1, where x € X*, the probability that

—

Ty '>tco
Sy

{ eo
i

|

9 5
ST(—.?LEunvfcxl)u ~(C+b)by—ab —bib,—A—B+ D)+
ST 0

5 0

is not zero. Then it follows from (11) that the limit 04 0 is not obeyed with probability 1. The latter con-
flicts with the lemma, oo

SOME PRACTICAL RECOMMENDATIGNS

We make some comments on the practical implementation of (1) and (2). The criterion for halting the
process may be pg < &, where ¢ is some sufficiently small positive quantity. In the implementation, it is better
net to reduce the step size continuously via parameter A but instead to vary a, i.e., one can use the formula

@s.gh us
Ja T EED>0 a<a
ps—H = ps i 2

5gs~l) o
g 7 @a<o.

The coefficients «; and a, are chosen adaptively in the process in such a way that oy does not vary too
sharply. In the deterministic case, it has been demonstrated [4] that this adjustment converges for unsmooth
convex functions. If the dispersion of the random quantity is not large, one can use the following scheme, which
is highly recommended by practice although few theoretical evaluations have been made:

Vis if (Ev §s+l)>{)?
v &P,

l<y, O<vwe<<l, yoy,<<L

ps-J,-l = ps‘
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A METHOD OF MINIMIZING AN UNDIFFERENTIABLE
FUNCTION WITH GENERALIZED-GRADIENT AVERAGING

V. I. Norkin UDC 519.853.6

A method is given here for unconditional minimization of an undifferentiable function (generalized dif-
ferential function), in which the direction of descent is chosen from a convex shell of generalized (anti)gra-
dients taken on a fixed number of preceding iterations, while the step size is adjusted by the software. This
method resembles the method of [1] taking a position intermediate between relaxation and nonrelaxation meth~
ods.

Definition [2, 3]. The function F(x), x € RIM is called generalized differentiable if there exists a semi-

continuous from above point-set mapping G(F) :x € RM — G(F, x) < R™ such that the sets G(F, x) are bounded,
convex, and closed, and at each point y ¢ R the following applies:

F(x)=F(y)+(g(x)v q—x)—{—o(y,x,g), (1)

where o(y, x, g} /1x — y! — 0 uniformly for x -y and g € G(F, x). The elements of set G(F, x) are called the
generalized gradients of F at point x.

The class of generalized differentiable functions contains continuously differentiable ones, convex func-
tions, and concave functions, and it is closed under the finite operations of maximum, minimum, and super-
position, The gradients of continuously differentiable functions and the subgradients of convex functions are
generalized gradients of these. To calculate the generalized gradients of complicated functions one has rules
analogous to the rules for calculating ordinary gradieats. A generalized differentiable function satisfies the
local Lipshits condition. A necessary condition for a turning point in F atx is 0 € G(F, x) 2, 3].

To minimize F we use an algorithm:

®, x5, ..., xeR™, 2)
xk+1 = xk —Pr Pk (xk- gkv (L} xk—"k, gk-"k), k > - (3)
ph>0’pk,._).o,zph=w, (4)
k=0
-3
P = 2 My (5, &5, on , BT, &g, (5)
r=k—np
g €G(F,x), (6)
0 << ny < min (n, k), n = const, (7)
k
N 0, e T 2T =1, ®)
r=k—ny,
|PH < M << oo (9)

The following minimizing property of the algorithm of (2)-(9) applies,

THEOREM 1. Letyg, —y, 0¢ G(F, y); for each s we consider the sequence {xls‘:, k = max (0, s — n)} formed
in accordance with the following rules:

=y, RS (10)
O = —p, - PEL k>, (11)
PE PR @b T g, g €GUF, X0)- (12)
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