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S T E P  C O N T R O L  F O R  D I R E C T  

S T O C  HAS T I C -  P R  O G R A M M I N G  M E T H O D S  

S. P. Uryas'ev UDC 512.98 

There  is  cons iderab le  p r a c t i c a l  i n t e r e s t  in eff icient  numer ica l  methods of s tochas t ic  opt imizat ion,  which 
can be used in planning under  conditions of uncer ta in ty  and in opt imizing s tochas t ic  s chemes  such as se rv ic ing  
s y s t e m s ,  inventory management ,  and s tock control .  

A new method is desc r ibed  for  s tep  ad jus tment  for  s tochas t ic  a lgor i thms  of gradient  type. The step is 
adjusted f rom the rea l i za t ions ,  which does not r equ i re  much computat ion,  so  the technique has been used with 
p rob lems  of la rge  dimensions .  The scheme  is based on step complet ion,  which provides an efficient  c r i t e r ion  
for  halting the p roces s .  

The convergence  is examined via an approach  dif ferent  f rom the t radi t ional  ones [2, 3] because  the step 
s ize  may i nc r ea se  during the p roces s  and is not n e c e s s a r i l y  requi red  to tend to zero .  

PRELIMINARY REMARKS 

We present some informal arguments that explain the step adjustment. We consider a problem instochas- 

tie programming without constraints [2], i.e., minimization of 

f ix) = MF(x, ~), 

where ~ is an elementary event in probability space (0, ~, P) ; to minimize f(x) we use the scheme x s+l = x s - 
0s~, where ~ = ~s/11 ~sl] for ~s ~ 0 and M(~S/x ~ .... x s) = Vf(xs}; if we know the function 

or ~7~Os(O) then the step Ps can be chosen from the condition for a minimum in q~s(P) with respect to 0. The exact 
values of ~s(P) are not known in this case. In a step s it is possible to calculate the scalar product (~s ~-i), 

and it is readily seen that the following chain of equalities applies: 

M ((~, ~SH--l)/x~ . �9 ~ XS) = (Vf  (xs), ~--1)  = Of (X s-IOp- p~/-- l)  IPs--1 = - -  V(~s--i (Ps--1), 

i .e . ,  in s tep s we know a r andom quantity whose ma themat i ca l  expectat ion is the ant igradient  of q~s-l(P) at the 
point Ps-1. Then if ~s(p) and ~s- l (P)  a r e  s i m i l a r  one can approach  the min imum in ~s(P) by using the gradient  
p rocedure  Ps = Ps-1 + ks( }s,  ts-l~ 0, ~H ,, where  k s > 0, s = ~r 

P a r a m e t e r  Xs must  be chosen such that 0s is g r e a t e r  than ze ro ,  so the previous formula  is be t ter  r e -  

( ~ s , ~ - l ) ,  where  a s > 1 for s = 0,  ~. wr i t t en  as Ps = Ps-~ " as-1 

In fact ,  in s tep  s a check is made whether  a min imum hag been passed through along the ~ - I  d i rec t ion  
in the preceding  step.  The sign of the s c a l a r  product  (f s ,  ~ t  -1) enables one to judge this with a ce r ta in  prob-  
abil i ty,  i .e . ,  an a t t empt  is made at adjust ing the s tep adaptively.  

Trans la ted  f rom Kibernet ika ,  No. 6, pp. 85-87,  94, N o v e m b e r - D e c e m b e r ,  1980. Original a r t i c le  sub-  
mit ted J anua ry  18, 1979. 
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CONVERGENCE PROOF 

We thus have to minimize f(x) = MF(x, 0), where f(x) is a smooth complex function that satisfies the 
Lipshits condition throughout the space R n of the function. 

We consider the sequence of approximations 

l s + l  ~ I s  - -  p s ~ i  , 

p,+~=p~.a'~ ' - -A,  A>O,  a > l .  

V e c to r  ~s s a t i s f i e s  the fol lowing condi t ions :  

a) 
!~ = vf (x~) + b~ (x~) + n~(x% 

sup iI b~ (x) II <~ b~, M (n~ (x~)/x ~) = 0; 
xER n 

~}~=~(Vf (Xq)H + b~ (x 9 + n2 (xP, ~ >  O, 

sup 11 b~ (x)]1 < b2, M (*1~ (xg/x9 --~ 0; 
xER n 

(1) 

(2) 

(3) 

b) 
I(b~ (x'+q, n,. (x~)) I < ~, 

sup I ~ t x) l ~ l~; 
xr n 

(4) 

c) 

sup r! > (x)ll < C. (57 
xE~ n, s- ]_~ 

We now make some  c o m m e n t s  on the condi t ions .  It is r ead i ly  s een  that  t he r e  a iways  ex i s t  funct ions bt(x) , 
b~(x), 5(x) and cons tan ts  bl, ba, /3, a such  that  (3) and (4) a r e  me t  if (5) is  obeyed.  

We note a l s o  that  (37 and (57 imp ly  the fo l lowing bound for  the n o r m  of the g r a d i e n t  If Vf(x) It < e + bl for  
a l l  x E Rn; if  b1(x) is cont inuous ,  then condi t ion (4) may  be e l imina ted .  

THEOREM.  If the fol lowing r e l a t i o n s  apply  fo r  C, A, bi,  and a: 

In a. (C--  A) ~ I, (6) 

lna .  (C --~ A)2 < A --hi ,  (7) 

then all the limiting points of the sequence {x s }generated by the process of (I) and (2) with probability 1 belong 
to the solution region X*, where 

f 
1 bl'b~+~'bt+(bt+C) b2+A+~ t (87 

x ' - - -  x:!Ivf(x)ll~< ~z " 

I t  is a lways  pos s ib l e  to choose  A such  as  to m e e t  the condi t ions  of  (6) and (77. 

LEMMA. The fol lowing bound app l i e s :  

?r 

( ~  ',, 90 + f (>:o~ __ f (x') 

~ Ps ) ~  A - -  in a.(C -4- A) 2 -  bl' 
0 

where x* is the point at which the minimum in f(x) occurs. 

Note that  the t r ad i t i ona l  condi t ion N/~ 9 = o e  [21 fo r  c o n v e r g e n c e  of a s t o c h a s t i c  p r o c e s s  is not r equ i red~  
0 

Proof .  We make  s o m e  e s t i m a t e s .  As f(x) is a convex  funct ion  we have 

- -  (vf  (xs+l), ~)  ~> f (x*+~) - -  f (x~) 
9~ 

It is r e ad i l y  shown that  the fol lowing inequal i ty  is obeyed  if p _< ! :  

e P ~ l + p §  2. 

(9) 

(10) 

8,q7 



We now de r ive  a bound for  ~s'  F r o m  (2), (5), 16), and (10) we have 

- -  AL>:) % G k I -v- In a i(~' , g}~)--3.--~-Lr~ a(C-~- _~)-')), 

We in t roduce  the s y m b o l  e s :  ~s : (~s- t ,  ~ )  _ (Vt.(xS+~), 4ft) and use  (9) wi th  ~s to get  

0-~p~iI  + h~c, i:Fs =- (Vf (x,;~-~), ~;~) . . . .  % lna (C + 5 ) : ) ) ~ G ( 1  q- h~ a(xf~ /(x'~ :)--/(x~) 

�9 ) < Oo + In a ~ 't~m, -_ 4~- ( _  ? (x'>'~ + / (x0) + ( -~a  + In a (c + ,a)~) 4~ ~ = ~o 
u 0 

in a X' ~,,~o,-- / (,v+~) + ~ (x ~ + ( -  • + !n a ~c + a) 2) "~' o , /~<  oo + in a z-. / 
0 

X 1 0  ~ ~gzi),, - -  [ (x*) + ~ (x ~ + ( - -  A + In a IC + A/~) . P~ 

F r o m  the l a t t e r  inequal i ty  we ge t  0~Vo 

We use  (3) to get  a bound for  ~ M ( ~ z P z ) :  
O 

+ :~:- i ~,~ (~t~m~)--/ix*)+f(x ~) T34 P~ (--~ -i- '-~(C+A)~)). 

s 
M (p tF~) = M M  (~zp, /x  ~+~ xq = E A!M (p~ ((~'+~, ~ )  - -  (vf (x,+,~, ~ ) ) / x  ~.-~I , X ~ ) 

0 0 0 

~ MM(pz(b~(xL+t),~})/xl+'~ x 0 ~ MM(pzHbi(xZ+l) l]/x~+l,xO~ X M(p,.bi) =b,M p, . 
0 0 0 

We subs t i tu t e  the f a s t  bound in the p rev ious  inequat i  V to ge t  0 ~ p0 q-In a(i  (x~ M( E Pz " [ h i -  A q- 
\ 0  lna (C + A)Z)). 

We pass  to the l im i t  in the l a t t e r  e x p r e s s i o n  to get  the a s s e r t i o n  in the l e m m a .  

Consequence .  G ~ 0 with p robab i l i t y  1. 

Subsequent ly  for  b r ev i t y  we wil l  omi t  the p a r e n t h e s e s  in (Vf(xs))H and w r i t e  VfH(xs).  

By def in i t ion  

~+; = Vf (x~+~) + b~ (x '+~) + n~ (x~+~), 
~sn = ~ZVdH (xs) + b2 (xs) + n2 (xs), 

w h e r e  M(~l (xS* l ) /x  s+l) = 0 and M(~2fx s ) / x  s) = 0. 

The consequence  of the i e m m a  imp l i e s  that  [] x ~+l --  x ~ [l -+ 0 wi th  p robab i l i ty  1. 
s--~ co 

We in t roduce  the s y m b o l  T(xS): 

T (x ~) = (r h (x~+l), ~zVf a, (x ~) -q- b e (xO + x12 (xs)) + (W (x0, B~ (x0) + (hi (x~+l), ~12 (x~)) - -  ~ (xg" 

We use  the cont inui ty  of the v e c t o r  funct ion VfOr for  the s c a l a r  p roduc t  (~s+l, ~ )  to make  the fol lowing 
equ iva len t  t r a n s f o r m a t i o n  wi th  p robab i l i t y  1: 

, ~H, = (V[ (x ~+~) + b~ (x~+ l) + ~ (x~+~), 

~Vf,,'~ i-'~') + b~ (x') + ~l~ (xO) = (V/~ (xO + bi (x'+~) + rl~ (x*+l), o~V[ ~ (x') + b~ (x') + qs (xO) + D (S). 

The  l imi t  t r a n s i t i o n  D(s) --~ 0 app l i e s  fo r  D(s).  
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Using T(x s) with (3), (4), and (5) together with the previous equalitv~ for (~set ~H )~s we can estimate the 
latter: 

.~ , ~ ,  - rz (V]  (x~), Vf,~ (x~)) + (V~ (z~), b,~ (x')) , -  ~ {b~ (x~+% V& (x0) + (b~ (x~+',), b~ (x0) 

+ ~ + T (x9 + D (s) >i ~ [[ Vf ( ~ [[ -- (C + b O. b~ -- o~b~ -- bp~. -- ~ + 7" (x') + D (s)o 

F r o m  (2) and the bound for  (~s+l, ~ i )  we have 

.~+~.~-~. 
0 

Ps+~ = P0 'a ,%. a~ ~ (~ il V f (x9 il - -  ( C + b~), 4 

--o:.b~--b, bo--A--[~+D(1))+--~-_ T(x9 . 
S3 O 

{ll) 

quantity -~-- '~' T(#) converges in probability to zero, since The random 

S j- ~0 

M --W-1 T(xZ : M(T(x~)) z +-r-__ i M(T(xg~ 
~s T o o S 3 

Using (ll), we obtain the assertion in the theorem from the converse. The lemma implies tl~at the se- 
quence {x s 1 converges with probability I. The function II V f(xj II is continuous, and therefore if x s --x is not 
obeyed with probability I, where x t X*, the probability that 

s 

s ~ ~ _  (~z l IV f (xZ) l i - - (C+b, )b~- -a .b  , - - b , . b . . . - - A - - ~ - - k D ( t ) ) +  T (x  z) ! -++o~ 

is not zero. Then it follows from (II) that the limit p,+%--~0 is not obeyed with probability I. The latter con- 
flicts with the lemma. 

SOME PRACTICAL RECOMMENDATIONS 

We make some comments on the practical implementation of (I) and (2). The criterion for halting the 
process may be Ps < e, where a is some sufficiently small positive quantity. In the implementation, it is better 
not to reduce the step size continuously via parameter A but instead to vary a, i.e., one can use the formula 

c (~F ~ if @% ~+% > 0, 

The coefficients a I and a 2 are chosen adaptively in the process in such a way that 0s does not vary too 
sharply. In the deterministic case, it has been demonstrated [4] that this adjustment converges for unsmooth 
convex functions. If the dispersion of the random quantity is act large, one can use the following scheme, which 
is highly recommended by practice although few theoretical evaluations have been made: 

~f @, ~,+~) > 0, 

l<yi, 0<7~<1, 71.%<1. 

1, 

2. 
3. 
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A ME T H O D  

F U N C T I O N  

OF MINIMIZING AN UND!FFERENTIABLE 

WITH GENERALIZED-GRADIENT AVERAGING 

V. I .  N o r k i n  UDC 519.853.6 

A method is given here for unconditional minimization of an undifferentiable function (generalized dif- 
ferential  function), in which the direct ion of descent  is chosen f rom a convex shell of general ized (anti)gra- 
dients taken on a fixed number of preceding i terat ions ,  while the step size is adjusted by the software.  This 
method resembles  the method of [1] taking a position intermediate  between relaxation and nonrelaxation meth- 
ods. 

Definition [2, 3]. The function F(x), x ~ R m is called general ized differentiable if there exists a semi-  
continuous f rom above point-set  mapping G(F) :x ~ R m ~ G(F, x) ~ R m such that the sets G (F, x) are bounded, 
convex, and closed,  and at each point y e R m the following applies: 

F (x) = F (y) + (g (x), ~ - -  x) + o (y, x, g), (1) 

where  o(y, x,  g ) / i x  - y~ --  0 uniformly for  x - - y  and g 6 G(F, x). The elements of set  G(F, x) are  called the 
general ized gradients  of F at point x. 

The class  of general ized differentiable functions contains continuously differentiable ones, convex func- 
tions, and concave functions, and it is closed under the finite operations of maximum, minimum, and super -  
position. The gradients  of continuously differentiable functions and the subgradients of convex functions are  
general ized gradients  of these. To calculate the general ized gradients of complicated functions one has rules  
analogous to the rules for calculating ordinary  gradients .  A general ized differentiable function sat isf ies the 
local Lipshits condition. A necessa ry  condition for a turning point in F at x is 0 ~ G(F, x) [2, 3]. 

To minimize F we use an algori thm: 

x% x~ . . . . .  x q 6 R ' ,  (2) 

X k+l  = Xk - -  Oh " pk  (Xk gk . . . . .  X k-nk, gk--nk), k ~ q, (3)  

p~ ~ 0, p~ --,- 0, ~ p~, = oo, (4) 
~ 0  

p~ = ]~ ~, (x ~, ~ . . . . .  x~-'% ~-"~) ~, is) 
t=k--tl k 

g" 6G(F,x~), (6) 

0 ~< nk ~< rain (n, k), n = const, (7) 

. . . . .  (8) 
r--_-~--a k 

I P k I ~ M <  ~ .  (9) 

The following minimizing property of the algorithm of (2)-(9) applies. 

THEOREM I. Let Ys --Y, 0 ~ G(F, y); for each s we consider the sequence ix}, k > max (0, s - n)} formed 

in accordance with the following rules: 

x~ = y~, k < s ;  (10) 
X~-}-I k k s = x ~ -  p~, .P~ , k > s ,  (11)  

�9 � 9  , X~r -nk  k--nk" p~ ~-Pk(x~,g~ ~ ,gs }, g~EG(P, x~). (12)  

Transla ted  f rom Kibernetika,  No. 6, pp. 88-89, 102, November -December ,  1980. Original ar t ic le  sub- 

mitted September 13, 1978. 
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