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A Computational 

Steven P. Abney I 

Model of Human Parsing 

This report describes licensing-structure parsing (LS-parsing), a computational model of 
human parsing. LS-parsing corresponds to human parsing at three points: (1) the order in 
which the LS parser builds nodes is psychologically more accurate than the orders in which 
either LL or LR parsers build nodes, (2) the LS parser's preferences in resolving local 
ambiguities are preferable to Frazier's strategies on both empirical and theoretical grounds, 
and (3) the backtracking strategies the parser uses when it has made an error at an earlier 
choice point model the distinction between weak and strong garden paths--strong garden paths 
being irrecoverable, weak garden paths causing psychological difficulty, but not preventing 
recovery of the correct structure. 

INTRODUCTION 

This report describes a computer program that is intended as a 
computational model of human parsing. Two aspects of human parsing 
receive particular attention: (1) the role of attachment preferences and (2) 
the distinction between weak and strong garden paths--strong garden 
paths being irrecoverable, weak garden paths causing psychological 
difficulty, but not preventing recovery of the correct structure. The 
program I describe is intended as an explicit hypothesis about the 
mechanisms underlying human syntactic analysis, though of course with 
the caveat that it characterizes human cognitive processes only at a certain 
level of abstraction. 
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I will assume without argument that the human parser has the 
following properties: It is deterministic on most input it encounters; when 
it does parse nondeterministically, it backtracks, as opposed to pursuing 
multiple parses in parallel; and the parser's backtracking is experimen- 
tally detectable. For argumentation on these points, I refer the reader to 
the work of Lyn Frazier and her colleagues (Frazier, 1978; Frazier & 
Fodor, 1978; Frazier & Rayner, 1982). 

Standard Deterministic Parsers 

Most natural language parsers are thoroughly nondeterministic be- 
cause of the high degree of local ambiguity in natural language. There have 
been preliminary attempts at adapting deterministic parsers to natural 
language by providing them with humanlike preferences for resolving local 
ambiguities (Shieber, 1983; Pereira, 1985). But standard deterministic 
parsers are not well suited to psycholinguistic modeling. Shieber and 
Pereira proposed supplementing a standard bottom-up deterministic parser 
(i.e., an LR parser; see Aho & Johnson, 1974, 1975) with conflict- 
resolution strategies to model human parsing preferences. However, LR 
parsers cannot model the incrementality of human parsing. Namely, in 
right-branching structures, LR parsers build no structure until all the input 
has been read. LR parsers build such structures literally bottom-up. The 
lowest node is the first node built, and it is not built until all the input has 
been read. By contrast, people clearly build structure before the end of the 
sentence and pass it incrementally to the semantic processor. 

Standard top-down deterministic parsers (e.g., LL parsers) are 
capable of producing structures incrementally. Unfortunately, though, 
they introduce spurious local ambiguities that force them to backtrack 
where people do not. Consider, for example, a grammar that includes the 
rules VP ~ V NP PP and VP --~ V NP. On a sentence beginning "John 
found," the parser builds the following structure and attempts to expand 
VP: 

(1) 

NP 

John V NP PP? 
I 

knows 

However, the parser has insufficient information to determine which 
expansion to use. Therefore, it must guess, and backtrack if it guesses 
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wrong. This means it will be forced to backtrack on one of "John found 
the book" or "John found the book on the desk";  this is unsatisfactory 
since there is no indication that people backtrack on either of these 
sentences. 

Licensing-Structure Parsing 

The parser I will consider here, a licensing-structure (LS) parser, 
does not suffer from either of these drawbacks. Intuitively, the common 
problem with LR and LL parsing is that they use global characterizations 
of phrasal expansions. In LR parsing, for example, a node can be built 
only when all daughters of the node have been found; and in LL parsing, 
when a node is expanded, the parser must decide on the identity of all the 
daughters of the node at once. In licensing-structure parsing, by contrast, 
node expansions are collections of smaller pieces of structure, i.e., binary 
relations between head and sister--a sister appearing in the expansion of 
XP if and only if it is assigned a licensing relation by the head of XP. 
Unlike in LR parsing, we can build a VP as soon as we have seen the V, 
without waiting to see the remaining daughters of VP; but unlike in LL 
parsing, we do not have to specify what those daughters are going to be 
at the point of VP expansion. We can incorporate them as they appear, 
whether only an NP follows or both an NP and a PP. 

A licensing "grammar"  consists of a set of specifications of the 
licensing relations various words (or classes of words) can assign (cf. 
Abney, 1987). The following are examples of phrase structure rules and 
the corresponding licensing-relation sets: 

(2) VP ~ Vkiss NP (PP) 
kiss: [ 4  NP 0], 

[--~ PP M] 

(3) S ~ NP VP 
Del: [~ NP S], 

[--~ VP F] 

The licensing relation [--+ NP 0], for example, specifies that kiss can 
license a noun phrase to its right by 0-assignment (i.e., as an argument). 
In (3), we are forced to assume an empty head for the exocentric category 
S. ( ' T '  or " 'Infl" stands for '~ see, e.g., Chomsky, 1986.) 
All four relation types are illustrated in this small example: 0-assignment 
(0), modification (M), subjecthood (S), and functional selection (F). The 
first three are self-explanatory. Functional selection, for want of a 
standard term, is what I call the relation between a functional ("non- 
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Fig. 1. An LS parser. 

lexical," "extragrammatical") category like Infl and its complement 
(VP, in the case of Infl). 

There is a natural method for parsing licensing grammars, the 
simplest version of which is as follows. A Simple Licensing-Structure 
parser (SLS-parser) is a nondeterministic parser that recovers licensing 
structure by considering pairs of nodes, attaching one to the other where 
possible. More precisely, a configuration of an SLS parser consists of a 
stack of unattached nodes, and the unparsed input (see Figure la). The 
top of the stack is to the right. Two of the partially assembled trees are 
distinguished. The tree on top of the stack (furthest to the right) is the 
current tree (C), and the tree immediately below it (to its left) is the left 
tree (L). 

At any point, there are three actions the parser can take: (1) It can 
Shift a word from the input onto the stack, projecting it to XP (Figure lb); 
(2) it can Attach the current tree as a right sister to some head in the near 
edge of the left tree (Figure lc), provided that the head in question has a 
right-directional relation by which it can license the current node; or (3) 
it can perform the mirror-image operation, which I call Attach-L (Figure 
ld), provided the head in the near edge of the current tree has a 
left-directional relation by which it can license the left node. ("Attach- 
L"  stands for Attach the Left node. For consistency's sake, we can 
consider "At tach"  to be an abbreviation for Attach-C.) 

A sample parse is presented in Figure 2. 
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[a) J o h n  will leave 

NP IP 

, I i (b) N I leave 
[ I 

J o h n  will 

SHIFT 
SHIFT (c) 

ATTACH-L 
SHIFT (d) 

Fig. 2. A parse. 

IP VP 
\ T } 

N P - - I  V ] 

J o h n  will leave 

IP 
I r 

N P - - i - - V P  [ 

J o h n  will leave 

ATTACH 

C O N F L I C T  R E S O L U T I O N  

The next action of an SLS parser will be highly underdetermined. In 
accordance with our assumptions about the nature of the human parser, 
then, the first step in making an SLS parser into a psycholinguistic model 
is to "determinize" it. We require a set of conflict-resolution strategies, 
which determine which action to choose when more than one next action 
is legal. 

There are six logically possible next-action conflicts: (1) Attach/ 
Attach, (2) Shift/Attach, (3) Shift/Attach-L, (4) Attach-L/Attach-L, (5) 
Shift/Shift, and (6) Attach/Attach-L. I will discuss each in turn. 

Attach/Attach Conflicts 

Attach/Attach conflicts arise in examples like I saw the man with 
the telescope. At the point where with the telescope is the current tree, 
and I saw the man is the left tree, there are two ways of performing an 
Attach action: The PP may be attached as a right sister to the N or to the 
V. 

I propose that Attach/Attach conflicts be resolved in favor of 
0-attachment--i.e.,  attachment mediated by a 0-relation--and tailing 
that, in favor of attachment to a canonical 0-assigner--i.e.,  a verb. In 
detail, I propose the following preferences: Pl: Prefer 0-attachments over 
non-0-attachments. P2: Prefer attachment to verbs over attachment to 
nonverbs. P3: Prefer low attachment. 

These strategies are applied in the order given. The following 
examples illustrate their application: 



134 Abney 

(4) a. Prefer 0-attachment 
i. I saw----..... 

a man ~ with a telescope 
ii. I thought 

about his interest in the Volvo 
iii. the d e s t r u c t i o n ~  

of the city ~ with a 20M-ton warhead 
b. Else, prefer V 

i. I sang 
to the cat in the kitchen 

ii. I wrote 
a letter ~ - t o  a friend 

c. Else, attach low 
a gift 
to a boy in a box 

(The last example, by the way, underlines the fact that attachment 
preferences are genuinely syntactic preferences, not semantic prefer- 
ences: the preferred analysis in (c) is semantically anomalous.) 

This set of preferences is intended as an alternative to Frazier's 
Minimal Attachment and Late Closure. I have serious misgivings about 
Minimal Attachment on both empirical and theoretical grounds. The 
section on minimal attachment provides a discussion of the issues. 

As for Late Closure, because I am approaching parsing preferences 
in terms of next-action conflict resolution, rather than in terms of 
structural properties of competing analyses, it is necessary to revert to 
something similar to Kimball's original Right Association and Closure 
principles (Kimball, 1973). P3 (Low Attachment) corresponds roughly to 
Kimball's Right Association principle. Kimball's Closure principle 
corresponds in the present model to P4 below. 

Shift~Attach, Shift-Attach-L Conflicts 

The general principle determining the resolution of Shift/Attach and 
Shift/Attaeh-L conflicts is " i f  you can build structure now, do so." In 
other words, Shift is an action of last resort: P4. Prefer Attach over Shift. 
P5. Prefer Attach-L over Shift. 

Attach-L/Attach-L Conflicts 

A consequence of resolving Shift/Attach-L conflicts in favor of 
Attaeh-L is that Attach-L/Attach-L conflicts never arise. In an Attach- 
L/Attach-L conflict, the Left node (L) can be licensed by two heads in the 
near edge of the current tree, call them A and B. At an earlier point in the 
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parse, only L and one of A and B were on the stack. At that point, we had 
a Shift/Attach-L conflict. Resolving Shift/Attach-L conflicts in favor of 
Attach-L effectively resolves potential Attach-L/Attach-L conflicts in 
favor of low attachment. 

This appears to make the right predictions, empirically. Consider 
examples 

(5) a. 
b. 

(6) a. 
b. 

like the following: 

[quite surprisingly] big (low) 
[quite surprisingly big] (high) 
those [hundred-pound] bags (low) 
those [hundred-pound bags] (high) 

(5a) means "big to a quite surprising degree";  (5b) means "quite big, 
and surprisingly big." (5a) seems to be the preferred interpretation. (6a) 
and (6b) are adapted from Marcus (1980). In (6a), the bags each weigh 
100 pounds; in (6b) the bags weigh a pound, and there are 100 of them. 
Again, the low-attachment structure (6a) is preferred. 

Shift~Shift Conflicts 

A Shift-Shift conflict arises exactly when the next word is categor- 
ially ambiguous, the conflict being which category is to be shifted onto 
the stack. I will not hazard a proposal about the resolution of lexical 
ambiguity beyond suggesting that the simple expedient of ranking 
alternatives in the lexicon will take us a good way. There are quite 
complex issues involved, though, that I cannot hope to do justice to here. 

Attach/Attach-L Conflicts 

A final type of conflict that could arise in theory is Attach/Attach-L. 
For an Attach/Attach-L conflict to arise, both L and C must be able to 
license the other. I have been unable to construct any examples where that 
occurs. 

Conclusion 

To sum up, we require basically three preferences: (I) Prefer 
0-attachment, or failing that, attachment to a canonical 0-assigner. (2) As 
a default, prefer low attachment. (3) Shift only as a last resort. These 
resolve all conceivable conflicts, with the exception of Shift/Shift 
conflicts, about which I have little insightful to say, and Attach/Attach-L 
conflicts, which, though conceivable, appear not to mise in fact. 
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ON MINIMAL ATTACHMENT 

In this section, I would like to consider Frazier's Minimal Attach- 
ment principle (Frazier, 1978): "Minimal Attachment (MA): Choose the 
analysis which involves building the least number of nodes." Minimal 
Attachment (and its companion, Late Closure) have been widely adopted 
in the literature. However, I have felt it necessary, for a number of 
reasons, to make the alternative proposal presented in the previous 
section. 

Empirical Predictions 

First, MA makes empirical predictions that disagree with the 
attachments assumed in the sentences of (4). For example, MA predicts 
that PP-attachment to NP will never be preferred over attachment to 
VP Frazier assumes that PPs are uniformly Chomsky-adjoined to NP 
but simply attached to VP, hence that it takes one more node to associate 
a PP with NP than to associate it with VP. I claim that attachment to NP 
will be preferred when the noun 0-marks the PP but the verb does not. 
The crucial example is sentence (4.a.ii.), "I  thought about his interest in 
the Volvo." My intuitions are strong that attachment to NP is 
preferred--though, of course, final resolution of the issue awaits 
experimentation. 

Consider also cases where two NPs are involved. MA makes no 
predictions; hence, Late Closure takes over, predicting uniformly low 
attachment. On the other hand, my strategies predict high attachment 
when the lower attachment is a non-0-attachment and the higher attach- 
ment is a 0-attachment. The crucial examples, then, are ones like 
(4.a.iii.), the destruction of the city with a 20M-ton warhead. My 
strategies predict high attachment ("destruction by means of a 
warhead"); Frazier's strategies predict low attachment ("the city that 
possesses a warhead"). Again, my intuitions are strong that high 
attachment is empirically the correct preference. 

Structural Assumptions 

My second reservation concerning MA is that it depends essentially 
on certain structural assumptions that I find linguistically unjustifiable. 
Frazier assumes that PPs uniformly Chomsky-adjoin to NPs, requiring 
the creation of a new NP node, whereas they simply attach to VPs, 
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requiring no extra node. This assumption has not been defended on 
linguistic grounds, to my knowledge, and I consider it highly implausi- 
ble. 

A position that would be defensible is that adjunct PPs are Chomsky- 
adjoined, while argument PPs are simply attached. In conjunction with 
this position, Minimal Attachment would make roughly the predictions of 
Pt above, without P2. Hence, it would make no prediction in cases where 
both sites or neither site involves argument-attachment (examples (4.b.)), 
with the result that Late Closure takes over, predicting low attach- 
ment--exact ly the wrong prediction. 

If we make what is perhaps the standard structural assumption--that 
base-generated PPs are never Chomsky-adjoined--then there is no 
distinction between attachment to VP and attachment to NP in terms of 
number of nodes built; hence, MA makes no predictions at all. Late 
Closure takes over, predicting low attachment, and the result is that PPs 
are uniformly attached to NPs- -a  hopelessly wrong prediction. 

Parsing Assumptions 

My third qualm with MA is that it depends crucially on contestable 
assumptions about the order in which nodes are built. Consider the fact 
that utterances are frequently not complete sentences, but PPs or NPs 
standing alone. It would be reasonable, then, if the parser did not build 
an S node until it had evidence that it was in fact dealing with a complete 
sentence--i .e. ,  until it encountered a word that could not be incorporated 
into the NP it was building. Under this view, in the main clause analysis 
of the horse raced past the barn fell, the parser builds both VP and S 
when it encounters raced. If we assume that the ~'reduced relative" 
reading involves building only a PtcP over raced (rather than a true 
relative clause), and if we assume that this PtcP attaches directly under 
NP, rather than Chomsky-adjoining, then PtcP is the only node built 
under the reduced relative analysis--versus two nodes, VP and S, under 
the main clause reading. Given these assumptions, MA falsely predicts 
that the reduced relative reading is preferred. 

In short, MA works only if one makes a number of auxiliary 
assumptions that have not been defended, to my knowledge. Certain of 
these assumptions I cannot accept--in particular, Chomsky-adjunction to 
NP but not to VP, and the assumption that S is built as soon as the first 
word is encountered. Hence, I am unable to adopt MA. 



138 Abney 

STATE 

Any parser that recovers a unique initial parse will necessarily 
misparse certain sentences, initially. We desire that those sentences be 
precisely those that people initially misparse; it is the role of the 
conflict-resolution preferences we have discussed to guarantee that this is 
the case. But we also desire that the parser be able to recover from 
misparses in precisely those cases where people are able to recover. In the 
remainder of the paper, I discuss when and how the parser backtracks 
from an initial misparse. 

LR-States 

First, the parser must be able to recognize that it has misparsed. A 
simple LS-parser is not able to recognize that it has made an error, at least 
not until it reaches the end of the input and discovers that it has multiple 
trees on the stack. This is so because Shift is always a legal action. We 
must permit the parser to shift when it cannot attach because, in 
left-branching structures, the licenser of the current tree is still waiting in 
the input. What we need, then, is an encoding of local state, such that the 
parser knows when it is conceivable that a licenser is yet to come, and 
when no following word could possibly rescue the current partial 
structure. 

I will use standard techniques to accomplish this. A state in LR 
parsing is a characterization of how much of a phrasal expansion one has 
parsed. For example, the state 

(7) [NP ~ Det.AP N] 

encodes the following information: (a) The parser is building an NP, (b) 
it has seen a Det, and (c) it is expecting an AP next, followed by an N. 
On any word that can start an AP, state (7) has what I will call a 
continuation. For example, if the next word is A, the continuation is the 
state [AP--* A .]; i.e., we are now building an AP, and we have seen an 
A. As long as there is a continuation on the next word in the input, the 
parser may Shift. If there is no continuation on the next word-- i f  the next 
word is a verb, for example--the parser recognizes that it has gone down 
a garden path: Either it made an error at some choice point, or the 
sentence is ill-formed. 

When we reach the end of an expansion encoded in an LR-state, we 
perform a "reduction,"  which consists of a series of Attach-L actions. 
For example, when we reach the state [NP --~ Det AP N .], N is on the 
top of the stack. We project it to NP, and do two Attach-L's to 
incorporate the AP and Det preceding it. 

In brief, then, LR-states keep track of unassembled pieces of a 
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INP-->.DAPNI - -Dl~t ~[NP-->D.APN] ---/kip .... [NP-->DAP.NI .... N ... .  [NP-->DAPN.I 
/ 

A 

Fig. 3. LR states in an LS parse. 

phrasal expansion, and encode information about which continuations 
will lead to a well-formed phrase. They are necessary only until the 
licensing head has been found--i .e . ,  on left-branching portions of the 
structure. On right-branching structures, words can be immediately 
assimilated as they are shifted onto the stack; hence, there is no need for 
local state to keep track of the pieces of an unassembled phrase. 

Figure 3 illustrates the use of LR-states in an LS-parse. For reasons 
that will become clear as we proceed, we show the stack explicitly, by 
connecting members of the stack with dotted lines. We include LR-states 
on the stack for ease of recognizing which is the current state (i.e., the 
one on top of the stack), but they are otherwise "invisible." The next 
action in Figure 3 will be a reduction--i.e. ,  a sequence of two Attach-L 
actions--which will assemble the NP. 

An exception to the rule that LR-states are used only on left- 
branching pieces of structure arises with functional categories like Infl. 
Infl is frequently phonologically empty, presenting a problem for 
recognizing when it has been encountered. Let a licensing grammar's 
LR-relations be the class of relations used to construct LR states. A 
solution to the empty-head problem is to include left-directional relations 
plus functional-selection relations among the LR-relations. 

For example, instead of using the LR-state [IP --> . NP (I)], we will 
use the state [IP ---> . NP (I) VP]. We will know to build an IP when we 
have seen NP and VP, even if the Infl is phonologically null. (If the Infl 
is null, we will insert it when we do the reduction.) 

This contrasts with the LR-state used in parsing VP, which will not 
include any complements of V, inasmuch as complements of V are not 
functionally selected but are either 0-complements or modifiers. Corre- 
spondingly, V must be overt; we cannot permit empty V's. 2 

aTaking this approach to the problem of empty heads requires us to put strong constraints on 
functional selection. If we allowed V to functionally select IP, for example, we would 
introduce into LS-parsing the problem that caused us to reject LR-parsing--namely, that in 
certain right-branching structures, no structure is built until the end of the input. Basically, we 
cannot permit functional-selection cycles of the form 

[xpX--F-+[yeY . . .  F-+ [ x p . . .  
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NP . . . . .  [IP --> N P .  (I) VPI 

D N . . . . .  [--> �9 PPI 
I I 

t he  m a n  

Fig. 4. LR and LS states. 

in  t he  p a r k  

LS-States 

For consistency's sake, we can construct a kind of  state from 
right-directional relations as well. For example, if  V licenses a noun 
phrase to its right, we can map the relation [----~ NP 0] to an " L S "  state 

(8) [---~ . NP] 

(8) signifies that we have seen nothing, but we are looking for an NP. 
Like an LR-state, it has a continuation on any word that can start an NP. 
But unlike an LR-state, when we have reached the end of  an LS-state 
(e.g., when we have seen an NP and gone on to the state [--~ NP .]) we 
do not do a reduction, but an attachment. To keep track of  which node to 
attach to, we start a new stack for every right-directional relation, where 
the licenser possessing the relation to assign is the initial node on the 
stack. Figure 4 illustrates. We have two s tacks--an " L R - s t a c k , "  
terminating in the LR-state [IP ~ NP . (I) VP], and an "LS- s t ack , "  
terminating in the LS-state [----~. PP]. The LS-state has a continuation on 
the next word, in. Eventually, a PP is built, and the current state becomes 
[----~ P P .  ], which calls for attachment of the PP as a right sister to the N. 

BACKTRACKING 

Let us consider now how this machinery will permit us to recognize 
misparses, and how the parser recovers from misparses. At a choice 
poin t - - i . e . ,  where there is more than one legal continuat ion-- the parser 
chooses one continuation on the basis of the conflict-resolution prefer- 
ences discussed earlier. The other continuations are abandoned. Back- 
tracking consists in finding an abandoned continuation and "resur- 
rect ing" i t - - i . e . ,  making it the current LR-state. We continue parsing 
from the new state, ultimately recovering an alternative parse. In 
recovering the second parse, we can reuse a good deal of the structure 
built during the first parse-- in  fact, we can do so without destroying the 
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C P  . . . . . . . . . . . . . .  [IP - -> C P .  NP  VPI . . . .  
- . .  . . . . . . . . . .  . l ip  - ->  C P  N P .  VP] @ 

w h i l e  s h e  w a s  VP  -i NP 22__ 
I ..... '"./~ ......... E--> NP. I | 

V . . . . . .  [ - - > .  NP] - - ' "  t h e  s o c k  
[ 

m e n d i n g  

(a) At the point of conflict 

CP . . . . . . . . . . .  [IP - ->  C P .  NP  VP] 

w h i l e  ... VP  

V NP  ............. ( [IP - ->  C P  N P .  VP] ) 

t h e  s o c k  

(b) At the point of backtracking 

Fig. 5. A weak garden path. 

V 

fel l  

initial parse. For reasons of space, though, I will not discuss how this is 
done. 

The key question is how the parser finds abandoned continuations 
and decides which to resurrect. I propose that there are a handful of 
simple heuristics for finding abandoned continuations, and the difference 
between weak and strong garden paths is that the heuristics that would be 
necessary to find the relevant continuation in the case of strong GPs are 
too "complex ,"  in an intuitive sense of complex, which will suffice for 
the clear cases I wish to discuss here. 

Let us contrast two well-known examples, one a weak garden path 
and one a strong garden path. Consider first the weak garden path, 
"While she was mending the sock fell off her lap." The crucial choice 
point comes in the configuration of Figure 5a. Both the LR state [IP --> 
C P .  NP VP] and the LS state [---->. NP] have continuations on NP; state 
(1) for the former, state (2) for the latter. Continuation (1) calls for a shift, 
and continuation (2) calls for attachment; attachment is preferred over 
shifting, so continuation (2) is chosen as the new current state, and 
continuation (1) is abandoned. 

The parse continues until we reach the configuration in Figure 5b. In 
Figure 5b, the current state, lIP ----> C P .  NP VP], has no continuation on 
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NP . . . . . . . . . . .  [IP --> N P .  VPI . . . . . . . .  . . . . . . . . . . . . .  [VP --> V .  l ( ~  
--. V','- P t c  . . . .  

t h e  N- . . . . . . . . . . .  [ - - > .  P tcP]  . . . . . . . . . . . . . .  x . / /  . . . . .  [P teP --> P t c .  ] (~) 
I f l o a t e d  

b o a t  

(a) At the point of conflict 

IP 

NP V P  . . . . . . . . . .  [ - - > .  PP] 

t h e  b o a t  V P t c  ........ ( [P tcP  - ->  P t c  . ] ) ( ~ )  

f l o a t e d  

V 
J 

s a n k  

(b) At the point of backtracking 

Fig. 6. A strong garden path. 

the verb fell. Hence, the parser recognizes that it has misparsed and must 
backtrack. (The state given in parentheses is the abandoned continuation 
(1) of Figure 5a.) 

At this point, we require a heuristic for finding the relevant 
abandoned continuation. A candidate is the following: Search the fight 
edge of the Left tree for an abandoned state which has a continuation on 
the Current node. This heuristic will find the abandoned state [IP ----> CP 
NP .  VP] in Figure 5b. Making this the current state will ultimately yield 
the correct analysis, in which the sock is the subject of the main clause. 

Let us contrast this with the parser's actions on a strong garden path, 
the boat floated sank. Let us assume a very simple structural analysis, in 
which the conflict is between a postnominal participle phrase and a matrix 
verb. At the point of conflict, the structure is that given in Figure 6a. We 
have a Shift/Shift conflict. Assuming that the verb reading is preferred 
over the participle reading, continuation (1) becomes the new LR-state, 
and (2) is abandoned. 

At the point of backtracking, we have the situation in Figure 6b. The 
current state, [---->. PP], has no continuation on V. If we search the right 
edge of the left tree, we find no relevant abandoned states. Even if we 
look at lexical alternatives and find the abandoned state (2), state (2) has 
no continuation on V either. The chain of deductions that would be 
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necessary to determine that state (2) is relevant would go something like 
this: If we build the PtcP and attach it to N, we can get floated "out  of 
the way ,"  and the current state will become lIP ~ NP.  VP], which does 
have a continuation on V. In effect, to determine if state (2) is relevant, 
the parser has to blindly resurrect it and see what happens. My claim is 
that weak garden paths arise where an abandoned state is both accessible 
and clearly relevant; the parser fails to find the correct alternative parse 
otherwise. 

CONCLUSION 

In sum, I have proposed a particular way of modeling human 
parsing. First, we require a basic parsing algorithm that provides us with 
the right " t races" in the default case--i .e . ,  that builds nodes at the right 
time. (Thus, for example, we rejected standard LR parsing because nodes 
were built much too late in right-branching structures.) Second, there is 
a set of preferences for local ambiguity resolution. I believe the 
preferences I have proposed are empirically more adequate than Frazier's 
proposals and are not dependent on questionable assumptions about 
syntactic structure. Finally, there are heuristics for deciding which parse 
to pursue next at the point of backtracking. If we suppose that the parser 
has only a restricted set of "s imple"  heurist ics--on an intuitive notion of 
"simplicity" that is at least adequate for certain clear cases--then we can 
give an account of the difference between strong and weak garden path 
sentences. 
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