
T H E  Q U A S I G R A D I E N T  M E T H O D  F O R  T H E  SOLVING 

OF T H E  N O N L I N E A R  P R O G R A M M I N G  P R O B L E M S  

E .  A~ N u r m i n s k i i  UDC 512.25/26+219~3 

In many applied exiremM problems with nondifferentiable functions the requirement of concavity is 
too burdensome~ At the same time, these functions possess a series of special properties which allow us 
to hope for the construction of some general approach. 

In the present paper we introduce the class of weakly concave (convex) functions, which, in particular, 
includes the differentiable as well as the concave (convex) functions and is closed with respect to the opera- 
tion of taking the minimum (maximum). 

For the weakly concave functions we introduce the concept of the quasigradient, which coincides in 

the case of differentiable functions with the usual gradient and with the generalized gradient for concave 
functions. We prove the convergence of the quasigradient method for the solving of the maximizationproblem: 

Definition i. A continuous function f : E n --" E i is said to be weakly concave if for every xEE n there 

exists a nonempty set M(x) of vectors g such that for all yE E n 

/ (y) - -  f (x) ~ (e,  y - -  x) + ~ (x, y), (17 " 

where  for  g - + x ,  ix~g;l'~" -+0 uni formly  with r e spec t  to x in each compac t  subset  of Eno 

F r o m  the definition it  follows eas i ly  that  M(x) is convex and closed.  Let  us p rove  that  the se t  M(x) 
is bounded. Indeed, if we a s s um e  the opposi te ,  then for  some x ~ the re  exis ts  a sequence gnE M(x ~ such that  

t gnl - -  ~ .  Without loss  of genera l i ty  we a s s u m e  that I gnl >- 1. We cons ider  the cor responding  sequence 

{yn}, where  y~=-- g'----~' I g" 13/2 + x~ ~ We note that lyn-x ~ I -~ 0 for  n -~ ~ .  Then, by the definition of a weakly 

concave function 

f ( F )  - -  / (x  ~ ~ - -  Pc ~ I ~/~ + r (x ~ u ~) ~ - -  ~ ,  

for  n ~ ~,  which cont radic ts  the boundedness of f(x)  on the compact  se t  {x: ] x -x  ~ I -<1}. 

Definition 2. A vec to r  g sa t i s fying inequali ty (1) will be called a quas igradien t  of the weakly concave 
function f(x). 

It  is easy  to see  that in the case  of a d i f ferent iable  function, the quas igradient  coincides with the usual  
gradient  while for  concave functions,  with the genera l ized  gradient .  

We mention some  p r o p e r t i e s  of weakly concave  functions.  

1. If f i (x )  a re  weakly concave for  i=  1, 2, . . . .  m, then f(x) = rain /~ (x) is a weakly concave 
l~ i~ .<m 

function, 

2. if  f ~ ( x )  is weakly concave for  each a ~_A, where  A is a compac t  topological  space  and, m o r e o v e r ,  
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fo r  y-+ x ~r(x 'v)  --~u^ u n i f o r m l y  with r e s p e c t  to a ,  then , f(x)=min~EA [~(x) is a weakly  concave  funct ion.  

L e t  us p r o v e  the  second  p r o p e r t y .  L e t  A(x) = { a  : f a ( x )  = f ( x ) }  and aEA(x) .  By the  def in i t ion of a 
weak ly  concave  funct ion 

f,~ (y) - -  f~ (x) ~< (g~, V- -  x) + r~ (x y) ~ (g~, V - -  x) + max r~ (x, V). 
aEA 

But  for  ~ E A (x) 

T h e n  we have 

f,;, (x) = J: (x), f,~ (v) > f (v). 

w h e r e  

We c o n s i d e r  the  p r o b l e m  

p (y) - -  f (x) ~< (g~, y - -  x) + max r~ (x, V) = (g~, Y- -  x) + r (x, y), 
gEA 

r (x ,  y) s a t i s f i e s  the  n e c e s s a r y  condi t ion in the  def in i t ion of an a s y m p t o t i c a l l y  concave  ffmctiono 

w h e r e  f ( x )  is  a weak ly  concave  funct ion.  

max [ (x), (2) 
x E E  n 

At the f o r m u l a t i o n  of the m a x i m i z a t i o n  p r o b l e m  of a weakly  concave  funct ion t h e r e  a r i s e s  the q u e s -  
t ion of the  n e c e s s a r y  condi t ions  f o r  an e x t r e m u m .  H e r e  we will  c o n s i d e r  the  m a x i m u m  p r o b l e m  in the 
a b s e n c e  of r e s t r i c t i o n s ;  t h e r e f o r e  the n e c e s s a r y  condi t ion f o r  an e x t r e m u m  is 0E M(x). 

We i m p o s e  the fol lowing condi t ions  on f (x ) :  

X" = {x : O E M (x)} is  c o m p a c t ,  (3) 

G(a) = { x : r ( x ) ~  a} is c o m p a c t  fo r  e v e r y  a .  (4) 

In o r d e r  to so lve  p r o b l e m  (2) we c o n s i d e r  the s equence  ~xn}, g e n e r a t e d  by- the fol lowing re l a t ion :  

t xs + Psg (xs) fo r  x s~ + p,g (x ~) E S, 
x , + l  _ (5)  

- [ y E A  fo r  x~ + p,g(xs)-E3; 

x ~ is the in i t ia l  a p p r o x i m a t i o n ,  S and A (A c S) a r e  s o m e  c o m p a c t  subse t s  of  E n which will  be  def ined ex -  
p l i c i t ly  l a t e r ,  and Ps is a n u m e r i c a l  s equence  such  tha t  

P~+l -+ 1, X p~ = oo. p ~ > 0 ,  ps -+ 0, P~ 
~ 0  

Our  p roo f  of the c o n v e r g e n c e  of the  a l g o r i t h m  (5) will  be b a s e d  on the app roach  d e s c r i b e d  in [1], 
w h e r e  it  has  been  p r o v e d  tha t  in o r d e r  tha t  any c o n v e r g e n t  s u b s e q u e n c e  of the sequence  {xn}, g e n e r a t e d  
by the r e l a t i o n  (5), should c o n v e r g e  to the s e t  of the  so lu t ions  X*, it is  su f f i c i en t  tha t  the fol lowing con -  
di t ions should hold: 

1)  lira I x~+l  - -  x~]  = O, 

w h e r e  n is  not  a " jump"  m o m e n t ,  i . e . ,  x n + p n g ( x n ) E s .  

2) xneS .  

3) F o r  any s u b s e q u e n c e  {x nk} such tha t  lim x ~ ---- x E X" , f o r  all  k and fo r  su f f i c ien t ly  s m a l l  ~ > 0 

t h e r e  ex i s t  ind ices  m k < ~,  def ined by the r e l a t i o n s  
nk 

rnk= rain r : l x ' ~ x  1>8. 
r >  n k 
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4) T h e r e  ex is t  a continuous function W(x)such  that 

a k  
subsequences  {x }, {x ~k} , connected by the condition 3. 

5) W(x)have a finite num ber  of va lues  on X*. 

6) rain IV (x) > max W (x). 
xEA xESS 

lim W (x zk) >limW (x "k) =W (x ~) for a r b i t r a r y  

F o r  the sequence {xn}, genera ted  by the re la t ion  (5), we set  A = {x~ S = G ( f ( x ~  ), where  6 > 0 is 
some  constant~ Obviously,  the se t  A is compact ,  while the se t  S is compact  by v i r tue  of (4)~ 

As W(x) we will use  f (x). Conditions 1, 2, 6 hold by v i r tue  of the assumpt ions ;  condition 5 is also 
a s sumed  to be t rue .  In o rde r  to p rove  that  the conditions 3, 4 hold, we need some p r e l i m i n a r y  resu l t .  

LEMMA. Le t  D be a convex compact  se t ,  not containingthe origin;  let  {yk} be some  sequence of 
vec to r s  from---~, and let  {z k} be the sequence  fo rmed  f r o m  the vec to r s  yk in the following manner :  

z' = y', (6) 

z k+' = (1 - -  o~)z k + ohg ~ ' '  , 

where  

co  

l ~ a ~ 0 ,  o h - + 0 ,  ~] z ~ = c o .  

Then there exists 7 >0 and I~< ~ such that for an arbitrary sequence {yk}, at least for one k -< 

( zk,/+~) > 7- 

Proof .  Since D does not contain the origin,  for  all m we have 0 < 5 -<- ly m] -<A< ~o, where  

5 =  minlyl ,  A =  max [Yf. 
g~D ;JED 

We set  3' = ~/2 62 and we a s s u m e  that for all k 

Then f r o m  (6) we have 

(7) 

(z", d +~) < v. (8) 

i z ,§  }_ 2G((z,, y~+,)__lz~l~ ) __~'2 Y~+l __ z~l~ 

Since zSED and (8) holds, for  suff icient ly l a rge  s we have 

6~ ~< I z~+~ 12 ~ I z s i 2 - -  o~6 2 + 2a2o] < I z~ 1 ~ - -  7~,. 

Summing this inequality with r e s p e c t  to s, and taking into account (7), we obtain a contradict ion.  
sequently,  t he re  exis ts  s such that  

Con- 

5+1 
(z ~ , g , > y. 

F r o m  the proof  it is clear that  s < N. where  -N < ~~ not depend on the choice of the sequence ~'k}. 
The l e m m a  is proved.  

Remark. The lemma remains true also when D is some not necessarily convex subset of a convex 
compact set not containing the origin. 

rn We prove now that the conditions 3, 4 hold for the sequence ~x }, generated by the relation (5). We 
assume that there exists a subsequence {x"k}-+z'CX ~ and that at first x'E int S. Since 0~M(x'), one can 

show that there exists ~>0 such that for some direction e, all xEU4~(x')= {x: I x-x' I <- 4~} and all gEM(x) 

satisfy the following inequalities: 

(g, e) >~ ~ > O, (9) 
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Igt < A, (10) 

where  6 and A a r e  s o m e  cons tan t s ,  U4~x')  C S .  

The  convex c o m p a c t  se t  of  the v e c t o r s  g which sa t i s fy  the inequal i t ies  (9), (10) will be denoted by D. 
A c c o r d i n g  to the cons t ruc t i on  of g ,  we have 

D =  U M(x). 
x~.U4~(x') 

We a s s u m e  now that  condi t ion 3 does not  hold, Joe., fo r  all  s > n k, [ x ~ - -  x "~" ] *gs~ Put t ing  in this  in -  

equal i ty  s = n k and taking the  l imi t  f o r  k ~ ~, we have Ix' -xnk : l  -< e, f r o m  where  it fol iows,  taking into a c -  

count  the p rev ious  inequal i ty ,  that  I x ' - x S l  -< 2s for  s >nk,~ We note  tha t  h e r e  we can c o n s i d e r  k' a r b i -  

t r a r i l y  l a rge .  

In o r d e r  to apply the l e m m a ,  we note  that  

x ~ - x  "~= 32, p ~ ( ~ ) =  P, ~ . k '  
r ~ n  k r .~ 

where  z(sk!nk can be obtained f r o m  a r e l a t i on  s i m i l a r  to (6): 

(ii) 

g~k) nk = g ( x  ), 

.(k) _-- (1 o m-(k)x! -ta~ .{_ urn-(k)-g t *~tnk+m~! ~:m-'[- I - -  Z.'r{ 

f o r  _(k) Ps 
US.- -n  k ~ S * 

Zp, 

I t  can  be eas i ly  checked that  lim o~ ) = 0, ~ o~)--  - 
m - ~  

% s ince  the condi t ions  (7) hold fo r  eve ry  fixed k. 

In addit ion we note  that  

lira ~(k)_ 1 
m m + l "  

By  a s s u m p t i o n  g (x "~+m} E D ~ Then,  as  it fol lows f r o m  the l e m m a ,  t he re  ex i s t s  l~ k such that  (z~) , g (x "~S~ }) > 
sk 

1/2 5 2 at l eas t  f o r  one Sk-<Nk~ By v i r tue  of (12) [sic] N k is u n i f o r m l y  bounded: N k <- N < % Subst i tut ing (11), 

we obtain 

nkq'~ k -  1 

(X.k+~k .k ~ 1 82 Z - -  x , g(x "k+ ~k)) > ~- p ,  (13) 

r ~ n k  

We note  tha t  inequal i ty  (1) can be r e w r i t t e n  in the f o r m  

: (y) - -  f (x) ;~ (Z, y - -  x ) - - r  (y, x), 

where  
g = g ( y ) E M ( y ) .  

nk 
Cons ide r ing  this  inequal i ty  fo r  y ~ x  " k + ~  , x ---- x , taking into account  (13), we obtain 
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~ 1 82 ~ t (x~k+~k) - -  I (x ~ )  W - ~  p, - -  r (x ~ + ~  , x~k), 

nk+'~/V..*l 

Z 
r ~ n  k 

where  s~k -< N < ~. 

We note that Ilx"k+7~--x"~tl-~0 for  k ~ .  

By vir tue  of this ,  for  sufficiently large k we have 

. nk-l-s k nk. 
l r~x  , x  ~[ 

II xnk+~ -- xnk II 

~2 

Since 

we have 

r~e/k 

n ~  sle-i  

f(x",+7~)_f(x?k~_ 1 62 (141 
~ T  E Or. 

m n k  

We reca! l  that by assumption xSEU2e (x') c U4e(x') for s > nko Repeating the arguments  given at the 

proof  of the inequality (14), for  an a r b i t r a r y  index s > n k, we obtain 

s--I s--I 
1 62 1 t(x')-f(x% > ~  ~ p r - ~ 6 ~  ~ Pr+f(x~)-f(x'-~k), (15) 

r=nle r = s - - r  k 

where rk -< N< oo. 

3--I 

p~<N sup pr-~O for s-+co. 
r~s__r k r~>s--rk 

Similarly 

f ix') - -  f (x'-'J') --,- 0 for s --,- co, 

since ]! F - -  x ' - ' ~  ]]-+0. 

There fo re ,  taking the l imit  in (15) for  s --* ~, by vi r tue  of (6) we obtain a contradict ion with the 
boundedness of the continuous function f(x)  on the compact  set U2e(x'). The obtained contradict ion proves  
that condition 3 holds. Let  

m , =  m i n r : H x ' - - x  ~g[l>s. 
r>n k 

By definition xmk~'ue(xnk) ,  but fo r  suf f ic ient ly[arge  k, xmkE U4dx'), T h e r e f o r e  the inequality (15) r e -  
mains t rue  also for  s = m k, i .e . ,  

mk--I m k ~ l  

1 62 1 
f (x ~ )  - f (x% > -4 ~ p, - --4 ~ ~ p, + f (x% - f (~- '~) .  

r=n k r = m # ~ r  h 

But 

mk--I 

*<llxm~ ~ P,~ 
r=n k 
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T h e r e f o r e  

e8 ~ 
f (x".) - -  f (x "k) > ~-g 

where ,  as mentioned before ,  rk  -< N < 

Because  of this ,  

rakml 
8 ~ 

r----mk--r k 

p, + f (x ~') - -  [ (x ~k-'~ ), 

lim ][ (x mk-rk) -- f (x rob) [ = O, 
k ~  

mk--1 

lim ~ p,  = O. 
k~oo r"~mk--rk 

T h e r e f o r e ,  taking in (16) the l imi t  for  k ~ ~o we obtain 

lirn/(x~k) > lira [ (x*a). 
k->-'-~ k-}o~ 

Thus, we have proved  that  the conditions 3, 4 hold at the in te r io r  points x ~ of the se t  S. As a s s e r t e d i n  
the r e m a r k  to the proof  of T h e o r e m  2 of [1], this guarantees  the f ini teness of the number  of " jumps"  in the 
se t  A; i .e . ,  there  exis t  only a finite number  of indices n such that  x n + p n g ( x  n) ES. The re fo re ,  one can 
p rove  in a s i m i l a r  way that the conditions 3, 4 hold at the points x' which a re  not in te r io r  points o f t h e s e t S .  

The convergence  of the a lgor i thm (5) is a consequence of the fact  that conditions 1-6 hold. 
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