THE QUASIGRADIENT METHOD FOR THE SOLVING
OF THE NONLINEAR PROGRAMMING PROBLEMS

E. A, Nurminskii UDC 512.25/26+219,3

In many applied extremal problems with nondifferentiable functions the requirement of concavity is
too burdensome, At the same time, these functions possess a series of special properties which allow us
to hope for the construction of some general approach,

In the present paper we introduce the class of weakly concave (convex) functions, which, in particular,
includes the differentiable as well as the concave (convex) functions and is closed with respect to the opera~-
tion of taking the minimum (maximum). '

For the weakly concave functions we introduce the concept of the quasigradient, which coincides in
the case of differentiable functions with the usual gradient and with the generalized gradient for concave
functions., We prove the convergence of the quasigradient method for the solving of the maximization problem,

Definition 1. A continuous function 7 : E,, — E; is said to be weakly concave if for every x € E, there
exists a nonempty set M(x) of vectors g such that for all y€E,
fO—F0<@y—0n+riny, | 1
rx,y)
|x—yl

From the definition it follows easily that M(x) is convex and closed. Let us prove that the set M(x)
is bounded, Indeed, if we assume the opposite, then for some x’ there exists a sequence ghé M(x%) such that
lg?l — =, Without loss of generality we assume that [gl| = 1. We consider the corresponding sequence

where for y—x, ~0 uniformly with respect fo x in each compact subset of E-

{y1}, where §* = — %ﬁ + %', We note that ly™x% — 0 for n — =, Then, by the definition of a weakly
P

concave function
FOUY— )<= 18" "+ gy > — oo
for n — «, which contradicts the boundedness of F(x) on the compact set {x: |x~x? | =1},

Definition 2, A vector g satisfying inequality (1) will be called a quasigradient of the weakly concave
function ¥ (x).

1t is easy to see that in the case of a differentiable function, the quasigradient coincides with the usual
gradient while for concave functions,with the generalized gradient,

We mention some properties of weakly concave functions.

1, If fi(X) are weakly concave for i=1, 2, .. ,, m, then f(x) = l<min f:(x) 1is a weakly concave
i€<m

function,

2. If f,(x) is weakly concave for each a €A, where A is a compact topological space and, moreover,
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r, (% )
[x—y|

Let us prove the second property, Let A(x)={a: fol®) =71 (x)} and o€A(x)., By the definition of a
weakly concave function

for y—>x —0 uniformly with respect to ¢, then f(x)-—:mei/rll [, is a weakly concave function,
o

fo @ — [ )< (&g y— %)+ 1, (x ) (g, y— )+ max 7, *, ).

But for o € A (x)
f,) =), [, @2F®.

Then we have
) —Ffn<g, y—x+ max To % ) = (8 J— %) 47 (%, ),

where r(x,y) satisfies the necessary condition in the definition of an asymptotically concave function.

We consider the problem

max f(x), (2)

X€E,,

where f£(x) is a weakly concave function,

At the formulation of the maximization problem of a weakly concave function there arises the ques-~
tion of the necessary conditions for an extremum, Here we will consider the maximum problem in the
absence of restrictions; therefore the necessary condition for an extremum is 0€ M{x).

We impose the following conditions on f(x):

X = {x:0eM(»)} is compact, (3)
G(a) = {x:f(x) > a} is compact for every . (4)

In order to solve problem (2) we consider the sequence { xn}, generated by the following relation:

x°+ pg(x) for £+ pg(x)€S,

yea for x*+ p.g (x°)€S;

(5)

xs+1

z! is the initial approximation, S and A (A CS) are some compact subsets of Ey which will be defined ex-
plicitly later, and pg is a numerical sequence such that

Pur
0, 0, 2 1, Vo = oo.
0.>0, p, >0, - 29, %

§==(}

Our proof of the convergence of the algorithm (5) will be based on the approach described in [1],
where it has been proved that in order that any convergent subsequence of the sequence {x"}, generated
by the relation (5), should converge to the set of the solutions X*, it is sufficient that the following con-
ditions should hold:

1) lim | #"' —x"| =0,
n-pce

where n is not a "jump" moment, i.e., Xn+png(xn)ES.
2) xP€S,

3) For any subsequence {x9k} such that k&g £ x € X , for all k and for sufficiently small £> 0
there exist indices my < =, defined by the relations

My = min r:lx —x | >e.
>,
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4) There exist a continuous function W(x) such that lim W (x™*) >klimW «™=W(x) for arbitrary
koo At

subsequences (x™}, {x '} , connected by the condition 3,
5) Wi(x}havea finite number of values on X*,

6) min W{x)> max W(x).
x€A x€38

For the sequence {x%}, generated by the relation (5), we set A= {xo}, S=G(f (x"—6), where 6 >0 is
some constant, Obviously, the set A is compact, while the set S is compact by virtue of (4).

As W(x) we will use f (x). Conditions 1, 2, 6 hold by virtue of the assumptions; condition 5 is also
assumed to be true, In order to prove that the conditions 3, 4 hold, we need some preliminary result.

LEMMA, Let D be a convex compact set, not containingthe origin; let {Vk} be some sequence of
vectors from D, and let {zk} be the sequence formed from the vectors yk in the following manner:

2=y, (6)
= (1— 02" + o™
where
1>%>Q%+Q§%=m. (7

R==—]

Then there exists >0 and N< « such that for an arbitrary sequence {yk}, at least for one k=N

k+1) > 7.

.y
Proof, Since D does not contain the origin, for all m we have 0< 6 = |y =A<, where

§=min{yl, A= max|y|.
y€D €D

We set ¥ = % 6% and we assume that for all k

&< ®)
Then from {8) we have
12 =12+ 20, ) — |22 D) + ol T — 2
Since z8€D and (8) holds, for sufficiently large s we have
¥< |22 — 02+ 20%6: < | 2° P — o,
Summing this inequality with respect to s, and taking into account (7), we obtain a contradiction, Con-

sequently, there exists s such that

T T
€y ) >y
From the proof it is clear that s < 1\?, where N< “does not depend cn the choice of the sequence {yk}
The lemma is proved.

Remark., The lemma remains true also when D is some not necessarlly convex subset of a convex
compact set not containing the origin.

We prove now that the conditions 3, 4 hold for the sequence {x'}, generated by the relation (5), We
assume that there exists a subsequence {x™}-»x €X' and that at first x'€ int S, Since 0€ M(x'}, one can

show that there exists &>0 such that for some direction e, all x€ U (x') = {x:lx=x'|= 4£} and all g€ M(x)
satisfy the following inequalities:

{ge=>06>0, (9)

147



lgl< A, (10
where 6 and A are some constants, Uyx') C8S.

The convex compact set of the vectors g which satisfy the inequalities (9), {10} will be denoted by 5
According to the construction of €, we have

Do U M.
2€U4p(x%)
We assume now that condition 3 does not hold, i.e., for all s>n,, |’ — £™* | <e, Putting in this in-
equality s=mny and taking the limit for k — % we have |x' -xnk',l = ¢, from where it follows, taking into ac~

count the previous inequality, that |x'—x5I = 2¢ for s >ny,. We note that here we can consider k' arbi-
trarily large.

In order to apply the lemma, we note that

Sl ;=1
L by p'g(x')—_-»( Yy p’)zﬁnk, (11)
re=my, r=n; /
where z(sk_)nk can be obtained from a relation similar to (6):
A" = g (x™),
25:-1-1 =(— 0'(nk)) Zxﬂ + U(,:)g (xnk+m)
k) 05
for Oi_nk = .

X A

re=np

It can be easily checked that lim o) =0, ¥ o = =, gince the conditions (7) hold for every fixed k.

m-peo
m==1

In addition we note that

. (k) __ 1
om O = mE T

y

By assumption g(x™ ™ eD . Then, as it follows from the lemma, there exists Ny, such that @, gty >

~
Sk

1/262 at least for one ;ksﬁk" By virtue of (12)[sic] I'\Ivk is uniformly bounded: ﬁks N < =, Substituting (113},

we obtain
~ ~ 1 nk+?k—l
R g™y > 2 8 2 o, (13)

re=np
We note that inequality (1) can be rewritten in the form _
fH—Fix =@ y—9—r ),

where
g=gmeMy).

Considering this inequality for y:—.x"""'?" ,x=2x"*, taking into account (13), we obtain
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n'-l’—v 1
np4sh ny, 1 o G ng-bsn np,
=65 8 Y g™,

re=lif

where §,=N< =,

We note that llx"k+‘k~— £*|>0 fork —,
By virtue of this, for sufficiently large k we have

~
aptsy,

g, 2
LAt 2 TR
T xﬂk+~k_ xnk ”
Since
& net-sh—1
”xnk k__xnk “<A Z pk'
"=ﬂk
we have
~ nk-{-‘;k—l
Ap+se n
f(xk )——f(xk\>-41—52 Z 0. (14)
f=np

We recall that by assumption x8€ Uyg (%'} C Uyelx') for s> n.. Repeating the arguments given at the

proof of the inequality (14), for an arbitrary index s > ny, we obtain

g1 s—1
P — e > 22 S — Lo Y o g fe)— i, 15
! z (15)

r=ng r=5—Trp

where rp, = N<®,

—i
Y, 0, <N sup p >0 for s—oco.
r>5—rp

I'=S—fk
Similarly
f)—F(xTH) -0 for 500,

gince || £ — "k || 0.

Therefore, taking the limit in (15) for s — «, by virtue of (6) we obtain a contradiction with the
boundedness of the continuous function 7(x) on the compact set Uyg(x'). The obtained contradiction proves
that condition 3 holds. Let

m, = minr:jjx —x"%| >e.
r>np

— m
By definition % KE Ug(xnk), but for sufficientlylarge k, x kE Usdx'), Therefore the inequality (15) re-
mains true also for s= my, i.e.,

mp—1 mp—1
m n 1 1 m -
P = > g 8 Yo — g8 Y ek W= 7,
I=np ’=’”k“’b
But
mp—1
e<lix —x*<A Y p,

an
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Therefore

my—-1
20?2

62 my—r
F— 1™z g — - Y e+ —fe™T),

r=mk—-rk
where, as mentioned before, rp=N<%

Because of this,

lim | (™) — f (™) | = 0,
kpeo

mMp—1
lim ¥ p,=0.
7
k‘)”rzmk—-—rk

Therefore, taking in (16) the limit for k — <, we obtain

Hmf (™) > lim f (x"%).
o koo

(16)

Thus, we have proved that the conditions 3, 4 hold at the interior points x' of the set S. Asassertedin
the remark to the proof of Theorem 2 of [1], this guarantees the finiteness of the number of "jumps" in the

set A; i.e., there exist only a f{inite number of indices n such that xn+png(xn) €S. Therefore, one can

prove in a similar way that the conditions 3, 4 hold at the points x' which are not interior points ofthesetsS,.

The convergence of the algorithm (5) is a consequence of the fact that conditions 1-6 hold,
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