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DeFries and Fulker's (Behav. Genet. 15, 467-473, 1985) regression procedure (DF 
analysis) to estimate c a and h 2 was originally applied to selected twin data. Since then, 
DF analysis has been applied more broadly in unselected data and with multiple (nontwin) 
kinship levels. Theoretical work based on the matrix algebra of variance-covariance 
matrices has shown that estimates of c 2 and h 2 are unbiased in selected two-group settings. 
In this article, a simple proof is presented supporting the validity of DF analysis in 
broader settings. We use scalar algebra to show that parameter estimates of h a and c 2 
are unbiased in unselected settings with multiple (more than two) kinship levels. Caveats 
are offered, and other DF analysis problems are identified. 
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INTRODUCTION 

We present a simple algebraic demonstration that 
DeFries and Fulker's (1985) regression procedure 
for estimating heritability (h 2) and common envi- 
ronmental influences (c 2) provides unbiased esti- 
mates of population parameters in unselected samples 
with multiple kinship levels. Plomin and Rende 
(1991) suggested the name " D F  analysis." DeFries 
and Fulker developed the procedure to compare 
monozygotic (MZ) and dizygotic (DZ) twins in which 
one of the twins had been selected for an extreme 
score on the trait of interest. They also suggested 
that the method could be applied in broader set- 
tings. 

DeFries and Fulker's (1985) model estimates 
genetic and common environmental influences on 
traits under the assumptions of an additive behav- 
ioral genetic model. LaBuda et al. (1986) used ma- 
trix algebra to derive expected values showing that 
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certain regression coefficients from the model are 
unbiased estimates of h 2 and c 2 in a MZ-DZ twin 
design in which one of the twins was selected on 
the basis of an extreme score. They also presented 
empirical analyses that included unselected twin pairs 
as well. Cherny et al. (1992b) used matrix algebra 
to derive expected values for parameters of sub- 
models of the augmented model in unselec~ed sam- 
ples. 

A number of empirical DF analyses have been 
published with unselected data (Cherny et al . ,  
1992a,b; Cyphers et at . ,  1990; Detterman et a L ,  
1990; LaBuda et aL ,  1986; Rodgers and Rowe, 
1987; Rodgers et al . ,  1994; Zieleniewski et a L ,  
1987). Several of these (Rodgers and Rowe, 1987; 
Rodgers et al . ,  1994; Zieleniewski et  al . ,  1987) 
incorporated more than two kinship categories. 
Rodgers et aL (1994) adapted derivations from 
LaBuda et  al. (1986) to unselected settings for MZ-  
DZ twin pairs and suggested that theoretical exten- 
sions of that algebra to unselected settings and mul- 
tiple kinship levels should be addressed in future 
work. 

There are several reasons to use DF analysis 
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in broader settings. First, increased power results 
from using multiple kinship levels compared to the 
traditional pairwise comparison of correlations from 
MZ-DZ twins, adopted versus biological siblings, 
etc. Second, somewhat unusual kinship pairs (e.g., 
second cousins, offspring of twins, etc.) can be 
used alongside traditional kinship pairs (e.g., twins, 
full siblings). Third, several large national datasets 
have kinship information imbedded within them. 
DF analysis facilitates applying behavioral genetic 
models to problems that previously could not be 
addressed because of data limitations (although 
maximum-likelihood procedures are attractive in 
these settings as well). Fourth, DF analysis offers 
the advantage that it can provide control for genetic 
and shared environmental influences so that mea- 
sured indicators of the nonshared environment can 
be studied without the usual genetic/environmental 
confounds that have plagued the socialization lit- 
erature. Rodgers et al. (1994) illustrated the last 
two advantages in an analysis of problem behaviors 
in preadolescent children from the National Lon- 
gitudinal Survey of Youth files. 

We present the DF analysis model in the next 
section. Then, we present a simple algebraic deri- 
vation for the expectations of the parameters of the 
model. The derivation both simplifies and extends 
previous derivations. We conclude with caveats and 
identification of several other DF analysis prob- 
lems. 

DF ANALYSIS- -BACKGROUND AND 
MODEL SPECIFICATION 

DeFries and Fulker (1985) assumed an addi- 
tive genetic model, no assortative mating and equal 
environmental influences across kinship categories. 
If the latter assumption--that c 2 is constant, and 
not a function of level of relatedness--is violated, 
c 2 estimates average environmental influence across 
levels of genetic relatedness. 

The "augmented model"  from DeFries and 
Fulker (1985) fits the following regression equation 
to data: 

KI = bo + blK2 + b2 R + b3 (/(2 *R) + e (1) 

where K~ and K2 are scores on a given trait from a 
kinship pair, R is the coefficient of genetic relat- 
edness, e is the residual of the model, and the b's 
are estimated least-squares regression weights. 
LaBuda et al. (1986) showed that E ( b a ) = c  2 and 
E(b3) = h 2. They also demonstrated that in selected 

twin samples, b2 tests the equal environments as- 
sumption. Rodgers et al. (1994) showed that in un- 
selected samples the interpretation of b2 changes; 
there, a function of b2 provides a second indirect 
estimate of h 2. 

In the selected popuiation that DeFries and 
Fulker (1985) first used, the proband defined the 
independent variable (/s in the model. In unse- 
lected settings such as those considered in this pa- 
per, the ambiguity as to which member of the kinship 
pair should be entered as K1 and which as K2 is 
resolved by using double-entry (e.g., Haggard, 1958) 
where each individual is entered once as K1 and 
then again as K2. This procedure doubles the sam- 
ple size compared to that from selected settings. 
The estimates are still unbiased, however. Only sta- 
tistical tests based on distributional assumptions (e.g., 
independence of errors) are affected by double-en- 
try. An important feature of the double-entry pro- 
cedure for our derivation is that/s and K2 sample 
means and variances are identical (since every in- 
dividual provides both/s and K2 scores). 

A SIMPLE ALGEBRAIC DEMONSTRATION 

We first present our proof for the particular 
case of double-entered unselected MZ and DZ twins, 
then generalize to multiple kinship levels and gen- 
eral genetic relatedness. Under the additive genetic 
model (Falconer, 1981) expected values of corre- 
lations between scores of MZ and DZ twins are 

E(rMz) = h 2 + c 2 (2) 

e(,-Dz) = . 5 h  2 + c 2 (3) 

Further, in the simple regression model 

g 1 = a o + a l K  2 + e (4) 

the coefficient al associated with K2 can be com- 
puted as 

al = cov(K1,K2)/var(KO (5) 

But in double-entry settings where var(K1) =var(K2), 

al  = cov(K1,Kz)/X/var(K1) var(Kz) = rK1,K 2 (6) 

Thus, a 1 in this simple model has the same ex- 
pected value as rMz if /(1 and /(2 are scores for 
identical twins and as rDz if /(1 and/(72 are scores 
for fraternal twins. 

We now expand the augmented DF model from 
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Eq. (1) for each of these settings. If R = 1, then 
Ks = bo + b iK2  + b2 + b ~ 2  + e 

= (bo + be) + (bl + b3)K2 + e (7) 

I f R  = .5, then 

KI  = b o + b~K2 + .5b2 + .5b~22 + e 

= (bo + .562) + (bz + .563)K2 + e (8) 

In each case, we have reduced the DF model from 
Eq. (1) to the simple model from Eq. (4) in which 
the regression coefficients are the MZ and DZ twin 
correlations. Equating these derived correlations to 
those defined in Eqs. (2) and (3) gives 

h 2 + c a = E(bt + b3) = E(bx) + E(b3) 

.5h 2 + c z = E(b~ + .5b3) = E(b~) + .5E(b3) (9) 

These two equations are easily solved to give 
E(ba)  = c ~ and E(b3) = h ~. 

In a more general setting, consider (say) four 
levels of genetic relatedness indexed by R coeffi- 
cients ofg~, gz, g3, andg4 (e.g., g~= 1.0, g2 = .5, 
g3 = .25, and g4 = .125 for MZ twins, full siblings, 
half-siblings, and cousins, respectively). Then the 
extensions of Eqs. (2) and (3) are the following : 

~ ( r ~ )  --= g l  h a  + c 2 ( 1 0 )  

E(rz )  = g~h z + c 2 (11) 

E(r3) = g3h z + c ~ (12) 
E(r4) = g~h z + c z (13) 

Defining the same basic model as above and letting 
R = gx, ga, g~, and g4 successively produce DF 
models that reduce to the simple model in Eq. (4) 
for each specification: 

R = g ~ K 1  = (bo 

R = g 2 ~ / ( 1  = (bo 

R = g 3 ~ / ( i  = (bo 

R = g 4 ~ K x  = (bo 

As before, we equate 
in Eqs. (14)-(17) to 
from Eqs. (10)-(13): 

glh  2 u c z = E(bl 
g2h 2 + c z = E(bl 

g3h 2 + c z = E(bl 

g,h ~ + c 2 = E(b~ 

+ g,b2) + (b~ + g,b3)K 2 + e (14) 

+ gabz) + (b~ + gab3)K a + e (15) 

+ g3b2) + (b~ + g3b3)Kz + e (16) 

+ g4b2) + (b~ + g4b3)K 2 + e (17) 

the slope of the basic models 
their equivalent correlations 

+ glb3) = E(bl) + g~E(b3) (18) 
+ g2b3) = E(b~) + g2E(b3) (19) 
+ g363) = E(bl) + g~(b3) (20) 
+ g4b3) = E(b~) + g.E(b3) (21) 

Any pair of these equations can be used to solve 
for the expected values of bl and b3 ,  which are c 2 
and h 2, respectively, as before. Note that this de- 
rivation applies to any levels of genetic relatedness 

and to any number of levels. Since any relation g i h  2 

+ c 2 = E ( b t )  + giE(b3)  is proportional to any 
other, all such equations are consistent and will 
provide the solution above. 

We now derive the expected value for the b2 
coefficient from Eq. (1). First note that K1 = K2, 
because of the double-entry feature. Let this com- 
mon mean be K. Then, since the mean of the DV 
and IV aways fall on the regression line, we can 
use the DF model from Eq. (1) to assert that when 
R = g l ,  

if2 -- b 0 + b~ff2 + bag1 + b3glff2 

K (1 - b l  - g l b 3 )  = bo + b2g l  (22) 

Similarly, when R =g2, 

if2 --- bo + blff2 + bzga  + b 3 g ~ 2  => 

(1 - 51 - g a b 3 )  = bo + b2g2 (23) 

These two equations can be solved to show that the 
expected value of b2 is -R 'h  2. This is the same 
solution found by Rodgers et  al. (1994) using a 
different derivation that followed LaBuda et  al. 

(1986). Thus, the coefficient ba from the DF model 
in Eq. (1) gives a second estimate of h 2 when it is 
divided by the negative of the reciprocal of the sam- 
ple mean of the trait being measured. 

DISCUSSION 

We have presented a simple algebraic dem- 
onstration that DF analysis provides unbiased esti- 
mates of c 2 and h z in unselected samples and with 
multiple kinship levels. Of course, caveats must be 
offered as welt. The equal environments assump- 
tion has been a major concern in previous DF analy- 
sis research. Loehlin (1989) applied maximum- 
likelihood methods to Bouchard and McGue's (1981) 
IQ kinship correlations and estimated separate ca's 
for twins (c2= .39) and siblings (c 2= .27). This as- 
sumption is even more questionable for cousins or 
other kinship pairs who do not necessarily live to- 
gether in the same household. One approach to 
evaluating this problem with more than two kinship 
levels is to drop each level out of the model se- 
quentially and refit the equation~ While this ap- 
proach does not provide separate estimates of c 2, it 
does give a clear indication of how kinship levels 
differ in contributing to the estimate of average c 2. 
Contributions to estimating h a may be evaluated as 
well. The ability to do this type of sequential refit- 
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ting is an attraction of using more than two kinship 
levels. 

A second problem--one that is especially likely 
in using large national data sets--is  that an indi- 
vidual may be a part of more than one kinship pair 
(e.g., one child may be sibling to two others and 
cousin to yet a third). In this case, a correlated error 
structure can result that violates the assumption of 
independence of errors on which statistical tests are 
based. A possible solution involves coding the data 
within the context of a design that actually esti- 
mates the variance-covariance structure across 
members of a family (e.g., treating the different 
family members as repeated treatments in a re- 
peated-measures  design and using multivariate 
analysis). Alternatively,  maximum-l ikel ihood 
methods may be used that explicitly model corre- 
lated errors. 

In general, maximum-likelihood procedures 
provide an attractive alternative to the regression 
approach on which DF analysis is based. Their ad- 
vantages include increased power and fewer restric- 
tive assumptions. On the other hand, regression 
procedures are more conceptually straightforward 
in most settings, and the estimation of maximum- 
likelihood models may be impractical with ex- 
tremely large data sets. It is important tO note that 
estimates obtained from least-squares and maxi- 
mum-l ikel ihood procedures can differ, and re- 
searchers must trade off the advantages offered by 
the two different approaches in deciding on the ap- 
propriate estimation procedure to use. 

We conclude by noting that the development 
of DF analysis has an historical counterpart that 
occurred in the context of the development of 
regression analysis in the late 19th century. Sir 
Francis Galton (1885) developed his "reversion" 
technique (shortly thereafter renamed "regres-  
sion") because he was interested in pairs of scores 
from a selected population: Given that a father is 
tall, will a son be tall as well? Quickly, regression 
was adapted to apply to unselected settings as well. 
Similarly, DF analysis was motivated by consid- 
ering differential regression toward the mean of the 

cotwins of selected individuals who fell in the tail 
of the distribution of a trait. Like Galton's setting, 
however, DF analysis applies equally well to un- 
selected pairs, and is in fact a useful and powerful 
method in such settings. A whole analytic arena is 
opened up by the ability to apply behavioral genetic 
modeling based on least-squares approaches (e.g., 
DF analysis) or maximum-likelihood methods to 
national probability samples. 
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