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In connection with the study of piecewise-continuous almost-periodic functions 
we introduce the notion of a countable almost-periodic number set. We investi- 
gate various properties of it: In particular, we prove that the space of al- 
most-periodic sets is closed with respect to the operation of free union. 

i. Among the various generalizations of almost-periodic functions, the specialists in 
differential equations with impulse action (and with discontinuous dynamical systems) most 
often include the class of piecewise-continuous almost-periodic functions, considered for 
the first time by Wexler [i] in connection with the determination of a piecewise continuous 
almost-periodic solution of the impulse system 

dx/df = A ( t ) x ,  

Ax[,~ = ch, tk>t~_v 

Wexler [i] gave the following definition of almost-periodicity for a piecewise-continuous 
function x(t): R + R with discontinuities at the points {tk} = {tk}k=_~+~: 

H0~ For each ~ > 0 there exists a relatively dense set of the points T such that 

[ x ( f + ~ ) - - x ( t ) l < e  " V t E R : I t - - t ~ [ : > ~  V,'eE,~. 

Let us observe that the discontinuity at the point t s is removable and therefore, strict- 
ly spreaking, the object of determination is the pair X = (x(t), {tk}), where the following 
condition has been imposed on the sequence {tk} in [i]: 

H I. tim I h =q-co and the sequences {tkJ } = {tk+ l - tk} are almost-periodic (with re- 

spect to k) equipotentionally with respect to j e ~ . 

Moreover, the piecewise-continuous almost-periodic functions, considered in [i], have 
the additional properties HI and H2, following from the boundedness of the almost-periodic 
function A(t) and of the almost-periodic sequence {Ck}: 

H2.~>O ~6(e)'_>O:lx(t ')--x(t")j<~, 

~r t " : ] ! ' - - l " t - < 6 ( ~ ) ,  It'. t"lN{lj,} = 2~. 

H 3. x(t) is bounded: Ix(t)l ~ m e R Vt e R. 

As we will see in the sequel, none of the above conditions is a consequence of the 
others. The existence of the limits ]fl11 x (f) = x (li~ --4- 0) follows from H 2. By definition, we 

t---~! I,' _4- 0 

let the function x(t) be continuous on the left. 

Properties H0, HI, and H= with the additional condition t k > tk_ z were isolated for the 
first time and taken as axioms for the definition of a new class of piecewise-continuous 
almost-periodic functions in [2]. In [2, 3] certain results that characterize this class 
of functions have been obtained. In [4, 5] two different (it can be shown that they are non- 
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equivalent) definitions of the piecewise-continuous almost-periodic functions (x(t), 
are p r o p o s e d ,  which  a r e  however  e q u i v a l e n t  t o  t h e  d e f i n i t i o n  o f  [2]  f o r  inf l ~: > O. 

k 

{tk}) 

The abundance of definitions of piecewise-continUous almost-periodic functions and the 
small number of results about them (even the closedness with respect to addition has not 
been proved) have inspired the authors to write this article. In particular, special atten- 
tion will be paid to piecewise-continuous almost-periodic functions that satisfy (in the 
sense of Wexler) axioms H0, H~, H=, and H a. We denote the class of these functions by APW 
(R). 

The first part of this article is devoted to the analysis of condition H z. 

2~ Let T be a countable set of real numbers such that it contains arbitrarily large 
positive and negative numbers and for each m > 0 the Set {t �9 T: It I ~ m} is finite. We 
denote the family of these sets by ~. It follows from the definition that each number t �9 
T occurs in T only a finite number of times, called the multiplicity of t. The number 

9(T,,T~)=i,~[SUl)j~p(l)--t[, 
'I, IE 7, 

where the infimum is taken over all bijections r T~.T~69[, defines a distance in 9[. 
It is easy to show that the space (9[, p) is complete. If T �9 , then for �9 e R the set 
T + r, whose elements are precisely the elements of T increased by ~, also belongs to 9[, 
p(T + ~, T) ~ ~, and 

p(T~__'~,T.,+T)=p(T~,To) ~T,,T,,_.TffP{, ~ffR. 

The mapping 0~:N x R-+9{. defined by the equality 8s(T) = T + s, is continuous with re- 
spect to the totality of arguments and, obviously, defines a dynamical system on (9[, 0) and 
is such that 

piO~(r,), O~(T~))= !,(T,,T~t ~/-V,, r.:,~. (1 )  

3. We make small digression from the treatment. Let (M, d) be a complete metric space, 
in which a continuous dynamical system cp s: H x R + M with the following property is defined: 
C ~ 1 such that 

d(%(nz')'q'~(mg)~Cdt'zt'ma' V s ' ' n " m e "  (2)  

Besides the usual definition of a Bohr-almost-periodic motion (for each r > 0 there exists a 
relatively dense set of e-shifts of the trajectory), in this system we can give also the def- 
inition of the Bochner-almost-periodic motion q s(m): Each sequence {~n} must have a subse- 
quence {~nk} such that lim qa,,~(m~ =,n~. for a certain m I �9 M. 

THEOREM I. Under the above conditions each Bohr-almost-periodic motion is equivalent 
to a Bochner-almost-periodic motion. The set H(m) = Closure{'! s(m), s e R} is compact if 
and only if q>s(m) is an almost-periodic motion, and moreover, H(ml) = H(m)~ m I �9 H(m). 

Proof (cf. [6, 7]). Let ~ s(m) be a Bochner-almost-periodic motion and {mk} c H(m). 
Then there exists a sequence {=k} of real numbers such that d(mk,~f,~k(m)) < i/k. we choose 
a subsequence {~kp} c {~k} such that p-~lim r Ira) = tn E H (m) Then p~lim d (m~./m) <~ D~lirn (d (m%, ~'~")~j " 

d (m, ~ ~ 0 P~1~p)) = and, therefore, H(m) is compact. The compactness of H(m) ensures in the usual 
manner that ~s(m) is a Bochner-almost-periodic motion. Further, if m* �9 H(mx), then limd(q% 

k~oo 

{m~), m') = 0 for a certain sequence {~k}" We choose {~k} such that d(~k (gnu), q~. (m)) < I/k. 
Then limd(r ), r and m* �9 H(m); H(ml) c_ H(m). On 

the other hand, if mz �9 H(m) and lim d(~ak(m),nh)=0, then, by (2), d(~p_a,, x (;nl),m)~Cd(ml, q~ak 

(m)) + 0 and m �9 H(ml). Arguments, similar to the preceding ones, show that H(m) c H(ml) , 
and as a consequence I{(m) = ll(mx). 

Thus, if the motion ~Ps(m) is Bochner-almost-periodic, then the closure of its trajec- 
tory is a compact minimal set and therefore, by the first Birkhoff theorem [7, p. 69], the 
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motion q's(m) is recurrent. Since the dynamical system (M, ~ s) is Lyapunov-stable by virtue 
of (2) [7], it follows by the Marker theorem [7, p. 98] that the recurrent motion is Bohr- 
almost-periodic. 

Conversely, if the motion q s(m) is Bohr-almost-periodic, then it is recurrent [7, p~ 86], 
and, by the second Birkhoff theorem [7, p. 70] in a complete space, the closure of the tra- 
jectory of a recurrent motion is a compact minimal set. By the same token, the theorem is 
proved. 

4. The space (~ , 8 s) satisfies all the conditions of Sec. 3, and Theorem 1 is valid 
for it, and, by (i), the definitions of almost periodicity reduce to the following one: 

a set T e ~ is Bohr-almost-periodic if for each ~ > 0 there exists a T(e) > 0 such 
that each interval of length T(~) contains a number �9 such that p(T, T + ~) < s 

a set T e ~ is Bochner-almost-periodic if each sequence {hk} his a subsequence {hkn } 
such that T = hkn + T l e ~ as n + ~. 

COROLLARY i. If T o , TI, ..., T m are almost-periodic sets, then the set T~.~ Tm 
is also almost-periodic, where A u~B denotes the free union of A and B. 

Proof. It is sufficient to consider the case n = 2. At first we observe that the fol- 
lowing statements are valid for P, Q, R, S e ~ and h e R: a) P~Q6~; b) (P~Q)+h:(P+h) 
~--.(Q+h); and c) p(P~Q~ Rt---~S)~max(p(P,R); p(Q,S)). Since T~ and T~ are almost-periodic 
sets, each sequence of real numbers {hk} has a subsequence {hkn} such that T i + hkn ~ Ti* 
as n ~ ~, i = i, 2. We set T~ = T~ ,T a and T~* = T~*~-T~*. Thenp(T,~+h~n,T~ )= p((T, + 
hz,)' ~(T~+h~.), T]t..-~T;)~max(p(T,+h~.,T~):p(T~+h~,~,T~))_(), and~ therefore, the set Tx~ is 
almost-periodic. 

Definition. A set T e ?l will be said to be strongly almost-periodic if its elements 
can be numbered T = {tn}n=_~+~ such that the set of sequences {tnJ } is almost-periodic with 
respect to n equipotentionally with respect to j. We will call such a numbering of elements 
of T an almost-periodic representation of the almost periodic set T. 

Example. The set of integers ~ c R with the natural representation ~r = {n} is strong- 
ly almost-periodic: The sequences {tnJ } = {j} are periodic with period 1 ~ j. Each strongly 
almost-periodic set has an infinite number of almost-periodic representations, e.g., ~ = {n + 
(-l)n+x2}, but, as we show below, there always exists a representation {tn} of it (unique up 
to shift of numbers) such that t n 2 tn_ ~ ~ n. 

THEOREM 2 [8]. The set T is strongly almost-periodic with an almost-periodic represen- 
tation {tn} if and only if 

t .  = na + c., (3 )  

where {Cn} is an almost-periodic sequence and a ~ 0. 

Let i(~, ~) denote the number of elements of the strongly almost-periodic set T in (=, 
8). Theorem 2 ensures the existence of the limit 

limq~Ji(~,~ + q) =l/a, 

u n i f o r m l y  wi th  r e s p e c t  to  ~. We w i l l  c a l l  the  number a in (3) the  growth index of  T. 

5. THEOREM 3. A s e t  i s  Bohr ( B o c h n e r ) - a l m o s t - p e r i o d i c  i f  and on ly  i f  i t  i s  s t r o n g l y  
a l m o s t - p e r i o d i c .  Moreover, an a l m o s t - p e r i o d i c  r e p r e s e n t a t i o n  of  an a l m o s t - p e r i o d i c  s e t  can 
be ob ta ined  by numbering i t s  e lements  in  i n c r e a s i n g  order  (wi th  regard  f o r  m u l t i p l i c i t y ) .  

~ 

Proof. Let ~ denote the set of all increasing sequences of real numbers {tn} that are 
unbounded above and below and do not have finite limit points and suppose that t o e 0 is a 
number such that either 81) t0 = 0 or ~2) to.> 0 and (0, t0)~l~i We introduce in ~ a dis- 
tance d between its elements {tnil) } and {tn[2)} (it may be equal to +~) by the following 
relation: 

n 

where the infimum is taken over all order-preserving bijections @ : 
such bijection obviously has the following form: ~n ~(t~1))= ~(~) , 

~n+mo)- 

{tn(1)} + {tn(2) } (each 
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LEMMA I. The spaces (9/, p) and (~ , d) are isometric, andan isomorphism %:91-+~ is 
given by the numbering of the elements T e 9~ in increasing order (with regard for multiplic- 
ity) and by the choice of an element of T that satisfies ~) and $2) at to. 

Proof. It is obvious that the mapping ~ is one-to-one and P(T1, T 2) ~ d()~(Tx), %(Ti)). 

Now let the number 9(TI, Ti) be finite. We prove that then 9x2 ~ 0(T~, T=) = d(l(T~), 
X(T=)). By virtue of the above-given definitions, for each e > 0 there exists a bijection 

�9 : I(TI) + A.(T2) such that 9,~.~supJ~(t(.~ Starrting from ~, we construct an 

. c o ,  t~2~<-o! order preserving bijection ~0: X(T I) + ),(T 2) (*(l(n I)) <~2~,n+I)<::) ~.-H ~t~), such that 

p~,~<supl*(t(. ~ tc . ' ) l~)~+~ (4) 

[ b y  d e f i n i t i o n  o f  0~2 ,  t h e  l o w e r  bound  i n  ( 4 )  i s  o b v i o u s ] .  

I f  we s e t  q~( /~) )=  t(~)(i) t h e n  t h e  b i j e e t i o n  ~P: ;k(T~) + X ( T i )  i s  d e f i n e d  i f  and  o n l y  i f  
t h e  b i j e c t i o n  q~':Z?.--)-~Z i s  d e f i n e d .  L e t  u s  s e t  Po { i > O : q > ' ( i )  <r and  M 0 = { k > O : q F ( k )  > 
~'(0)}. The set Po is finite since for i ~ Po 

(tCo ~)) = ~) ~) (tp), �9 ~'(0) ~ ~'(~) -- (P 

o ~< ,p (t~o '~) - ,p ( t p )  ~< ,p (t~") - ,~ ( t p )  + ~')  - t~" = (~ (t~ ') ) - t~ '~) - ({p ( t p )  - , ,  ~'> ) < 2 (p~ + ~), 

and I(T 2) ~ 93 when Po is infinite. Similarly, for k e Me we have ~(l~))~>~ (t~ O) and Me is 
finite. We assume that 

Lde~ --f MoUPoU {o} ~- {k, <: kn--, < ... <: ka < 0 < i, < ... < irn}. 

We rep lace  the  r e s t r i c t i o n  ~':L-+~p'(L) by the  o r d e r - p r e s e r v i n g  mapping . ~ ' : L ~  qz'(L), [ ~ * ( k  n) 
i s  t h e  minimum number in  q~* (L ) ,  e t c . ] .  I f  we se t  ~ ' : ~ - ' ~ , ~ ,  where ?s163 q~; and 
"~:Z(T,)--->-X(T=), where "~( t~ ')) = t (.-2) then ~ and 7#" are b i j e c t i o n s  and q~'(s)' 

T t  i s  s u f f i c i e n t  t o  p r o v e  t h i s  r e l a t i o n  o n l y  f o r  p ~ L. L e t  u s  c o n s i d e r  t h e  c a s e  m < n ( t h e  
r e m a i n i n g  c a s e s  m = n and  m > n a r e  c o n s i d e r e d  a n a l o g o u s l y ) ,  I f  m < n ,  t h e n  ~" (PoU{O})c  

q~' (.4//0) and, therefore, for ~ t t(~)~'~/~) - ,~(0, ~(1) ~(2) #)) (~) ~(') = ~ (l(#~r))_ l()) 
(~) ~(~) but if - (1) l TM then ~e~(lk, ) - -  "~r < O~- + e; ep (li~ ) < 0.. ' 

t(b - -  (D = l(~) l(2) ~ l( D .(~) l ( h  ,(2).  ~(1) m / l ( D .  

Further, ~" ({I- ...... kn-m+l}) --= ~" (Po), and therefore for ~tl(1)x~(1)i~6 1~,~ , 86{kn, ---, k.--m+i}, we have 

r o < ~ (t~ ')) - (t2)) = q~ (t?o)) - ,~ ~ ~ (t2)) - t(~ ') < ~,~ + ~; 

but if ~"(~)" J~(t) t~6 l~-~ , then 

~__ (/(l), o < t~" - ~ ( t 2 b  = 12' - ,~.,,,"~' = t~" - ~.,,~"~' tg" - ,p (t~'~') < t p '  - ,~,  ,~ ,  < ~,~ + ~; 

~" ({k.--r. . . . . .  lq}) c ,p" (Me O {o}). 

The following estimate is valid for ~.(1)~(Dt~ I ~.k~, 

o<t~'~,' - ' " "  , ( "  .,~, . ~,', ,,",,<<t?-,~(t?)<f,,:+~. 
Further, for ~'(k6) c~'(MoU{O}) there exists a V ~ 6 such that ~'(k.)~*(k0), since, otherwise, 

V ] a ~ 6  

~" (k),) < ~* (ko), ~" ({kn . . . . .  k6}) ---- {qo" (s) : s 6 L, q>" (s) ~< ~o* (ks)} = q~" (Po U {0} U {k,~ . . . . .  ks}). 

T h e r e f o r e ,  f o r  ~ (t~)) :>  l " '  ~c. we h a v e  

a n d ,  by  t h e  same  t o k e n ,  ( 5 )  i s  p r o v e d .  

l,,b r /(1~ tt(l) ~ r 
k~ ~ < , ~ . ( h , ) - -  k ~ = ~ k  M - ~ k . < 9 1 ~ + ~ ,  
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Now let J0 : ~*(0), and set ~(ts(~)) : tj0+s(=), and prove (4) for this ~,~. For exam- 

ple, let s > 0 and J0 + s = ~*(=). If ~(ts (~)) ~ ts (~), then 

a2) for ~ > s there exists a positive number S ~ s such that ~" (~) ~" (=). otherwise, 

considering ~'(N)={m6~:m>;o}, we would have ~'@)<%" (=) %+O<~<s and {&, ]~ ~-I .... , & +s} 

=~'{0, I ..... s,=}. Therefore 0 <<~(l?l)--l~ ~)_~(l(=i')_t?)<~(~i')_~i'<px,nce . But if ~(f~))< 
l[n, then 

b2) for each ~ < s there exists a S ~ s such that 6"(~)~<~ (=), otherwise, since ~'(N)= 

{m~Z:m>j0}, we would have ~'~)>$'(=)u and {]0,J~ ~u 1 .... ,/o~-s}=$'{0,! ..... s-- I}. There- 
fore, 

o < ~?> - ,  (t?') = t~ '~ - ~ (t~ '~) ~< 4" - T~ (t~ '~) < ~ + ~. 

Analogous investigation of the case s < 0 completes the proof of estimate (4) and Lem- 
ma I. 

LEMMA_____~2. The set T is strongly almost periodic with an almost-periodic representation 
{tn} if and only if for each q > 0 the set ~n of all numbers e such that 

tt~ ~ -  e l < ~ l  ( 6 )  

for a certain h e e ~ and all n e ~. is relatively dense in R. 

Lemma 2 was proved for the first time in [i] for tn+ l > t n. Its proof, given below, is 
a modification of the arguments of [i] for the general case. 

Proof. Necessity. By virtue of Theorem 2, the necessity of the denseness of ~D is ob- 
vious [if heq is the period for the almost-periodic sequence {Cn} from (3), then (6) is ful- 
filled with e = heal. 

Sufficiency. Let us set HD = {h~, e e ~}. We arrange the integers from H D in the 
strictly increasing sequence {hi}i=_m ~. It is obvious that if we set h 0 = 0, hi =-h_ i ~i- 
We prove the relative denseness of {hi}i=_~ +~ (to this end it is sufficient to show that 
lim hz = ~ ~ and the sequence {hi+ z - hi} is bounded above); )i~ht= ~oo, since in the con- 

trary case ([hi[ ~ m0, by virtue of the symmetry of H n) we would have -~z ~ t0hw ~ c ~e ~ ~, 
and by (6), |e{ ~ c + N, which contradicts the relative denseness of ~. 

We set ~i = {e: h e = hi} and prove that for all j ~ i 

(oj -- (o~ ~ --2N (7) 

(e k e Qk). Since 

t--h~+. - -  t--ht+~ = t,,r ( 8 ) 

and with respect to (j, i) we can always find an ~ = d(i, j) such that thj_hi+g ~ tg (other- 
wise, la+~<l, ~s6~, where h = hj - h i e j - i >- 0 an |ira tnh+s< +oo), it follows that 

-- t at . ~0 ,  Since inJht+'~ -nt+~ 

(for arbitrary k and r)' we have (oi ~ >~ (t_h~+'~ n) -- (t~ht+~ + q) >~ -- 2,1 

Further, if lim(hi+,--hl)=+co, then, by virtue of (8) (for s = 0, j = i + 1) we can 
i~oe 

assert that for each L there exists an i0 such that I_~r176 -- ,-hi ~_~ +6~I. But then, by (9), 
+~ 

wi+z - e i ~ L + 4D, which contradicts the relative denseness of ~----- U ~ [in an interval 

( 9 )  
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(~i0 + 2q, mi0+1 -- 2q) of length at least L that does not contain mk for any k e ~ by vir- 

tue of (7)]. 

Thus, the sequence {hi+ i - hi} is bounded and the set H n = {h i } is relatively dense. 
Each integer h i E Hq is a 2q-almost-period, common for all sequences {thJ}, j e ~ (since 
t~+h~ -- tJ. hi th~ = t,+ i- , ~],n). By the same token, the proof of Lemma 2 is complete. 

Now we complete the proof of Theorem 3. Let the set T be Bochner (Bohr)-almost-period- 
ic. Then X(t) is an almost-periodic representation of it. Indeed, for each e > 0 there ex- 
ists a T(E) > 0 such that on each segment of length T(e) we can find a T such that p(T, T + 
~) < g. But then l-in+j0 + t n - ~I = d(X(T), X(T + ~)) = p(T, T + ~) < e [here k(T) = {tn}, 
X(T + T) = {tn_j0(T ) + T}). By virtue of Lemma 2, we see that T is a strongly almost-period- 

ic set with an almost periodic representation X(T). 

But if the set T is strongly almost periodic, then the conditions of Len~ma 2 are ful- 
filled and for each D > 0 there exists a relatively dense set ~q such that for m e ~q 

( T , T + e ) < s u p [ q ~ ( t n + o ~ ) - - t , , - - c , ; < ~ ]  fP (l,, -5 ~) = tn+a~, 
n 

and, therefore, T is a Bohr-almost-periodic set. Theorem 3 is completely proved. 

COROLLARY 2. If T I .... , T n are almost periodic sets with growth indices a~ ..... a~, 
respectively, then T----TI~ ..~T~ is also an almost-periodic set with growth index a, where 

1/a = l/a~ -5 ... + 1/a~. 

Corollary 2 follows from Corollary i and the remark to Theorem 2 with regard for the 

fact that i(~, 8) = ii(~, $) + ... + in(~, B). 

COROLLARY 3 (see Theorem i). If T o is an almost-periodic set with an almost-periodic 
representation T0 = {an + Cn(~ then T e H(T0) if and only if there exists an almost-peri- 
odic representation T = {an + c n + 8}, where 8 e [0, a), {Cn} e H({cn(~ 

H( { Cn( .(0) I = 0). Proof. i. Let T = {an + c n + 8}, where {Cn} e 0)}) (i.e., limsuplc~--%+m~ 
k ~  n 

for a certain sequence of integers {mk}). But To -5 [~-- am,, = {an -5 c~ ~ -5 O-- amk} = {an -sc<,~mk+@ } 
and, therefore, To + 8 -am k + T as k + +~. 2. If T e H(T0) , then for a certain sequence 
of real numbers {hk}k=l +~ we have T O + h k ~ T as k + +~. We set h k = mka + 8 k �9 Then To + 
h~ = {an -}- c(, ~ -5 h,~} = {an -5 C~O)_mk -5 Oh} Since the sequence {Cn( 0 ) } is Bochner-almost-periodic, 

the sequence {mk} has a subsequence {mkj } such that limsuplc <~ --CnI=O and {c~}6H({cC,~ 
i ' ~  n n--rot"/ 

I n  t h i s  c o n n e c t i o n ,  we c a n  a s s u m e  t h a t  0 k j  ~ 8 e [ 0 ,  a ] .  B u t  t h e n  To + h k j  * {an + c n + 8 } ,  

a n d ,  t h e r e f o r e ,  T = {an  + c n + e} ( i f  8 = a ,  t h e n  T = {an  + C n _ l } ) .  
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