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Modeling the Suppression Effect of Correctional 
Programs on Juvenile Delinquency 

Syni-An Hwang I 

Studies of the effects of correctional programs on juvenile delinquency have 
observed that delinquents exhibit a sharp rise in their arrest rates up to the time 
of intervention. The drop to a lower rate following intervention has been labeled 
a suppression effect. A controversy has arisen regarding the nature of the 
suppression effect; some scholars attribute it to the effectiveness of the correc- 
tional programs, while others claim that it is due to a selection artifact. In this 
study, we examine attempts to model such phenomena and point out that the 
general terms in the model are not identifiable. Without identifiability, one can 
construct models that attribute the suppression effect either to the correctional 
program or to the selection artifact. Some identifiable models are proposed and 
their associate likelihood functions are used to present a process of model-based 
analysis to analyze data collected originally by the American Institutes for 
Research. Discussion of the feasibility of this type of probabilistic modeling 
approach to criminal justice phenomena is also given. 

KEY WORDS: suppression effect; correctional program; identifiability; point 
process; model-based analysis; Poisson process. 

1. I N T R O D U C T I O N  

In  s tud ies  o f  t he  effects  o f  c o r r e c t i o n a l  p r o g r a m s  o n  j u v e n i l e  de l in -  

q u e n c y ,  d e l i n q u e n t s  h a v e  e x h i b i t e d  a s h a r p  r ise  in t he i r  a r res t  ra te  ( po l i c e  

c o n t a c t s  o r  a r res t s  p e r  yea r )  up  to t he  t i m e  o f  i n t e r v e n t i o n  in the  f o r m  o f  

a c o r r e c t i o n a l  p r o g r a m ,  a n d  t h e n  t h e y  d r o p  to a l o w e r  ra te  f o l l o w i n g  r e l ea se  

f r o m  the  c o r r e c t i o n a l  p r o g r a m .  This  d r o p  in the  a r res t  ra te  is s o m e t i m e s  

r e f e r r e d  to  as the  s u p p r e s s i o n  effect.  H a v i n g  o b s e r v e d  this  s u p p r e s s i o n  effect  

p h e n o m e n o n ,  a n u m b e r  o f  a u t h o r s  (e.g., see  M u r r a y  et al., 1978; M u r r a y  

a n d  C o x ,  1979) h a v e  c o n c l u d e d  tha t  t he  p r o g r a m s  t h e y  s t u d i e d  are  v e r y  
e f fec t ive  in r e d u c i n g  j u v e n i l e  d e l i n q u e n c y .  
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Others, however (e.g., McCleary et al., 1979; Maltz et al., 1980; Maltz 
and Pollock, 1980) have showed that intervention occurred at a time when 
juveniles were particularly active committing offenses and that, even without 
the intervention of a correctional program, the individual's arrest rate would 
have dropped. In other words, the observed phenomenon is just the product 
of  a selection artifact. 

The difficulty that arises when one attempts to adjudicate between these 
arguments is that the data available to examine delinquent behavior do not 
come from a simple random sample (SRS). The juveniles who were institu- 
tionalized and whose data are studied had higher arrest rates compared 
with others not studied. The goal of this paper is to explore the use of the 
process model-based approach to study the suppression effect, given such 
a biased sampling situation. A model for the pre- and postintervention 
criminal activity of an individual juvenile is proposed, and several models 
are considered for the intervention scheme (the selection mechanism that 
decides whether to send an individual to a correctional program after each 
arrest). The modeling approach is illustrated through the reanalysis of  data 
from the American Institutes for Research (AIR) and the suppression effect 
is reexamined based on some of the models developed. 

2. DATA AND GENERAL MODEL 

The AIR data consist of  the records of  juveniles who were committed 
either to Unified Delinquency Intervention System (UDIS) institutions or 
to Illinois Department of  Corrections (DOC) institutions. The UDIS sample 
has 246 subjects, the DOC sample has 317, and 23 subjects have been sent 
to both the UDIS and the DOC. Before the current term of institutionaliz- 
ation, all subjects had received only supervision or probation as correctional 
treatment. 

For each subject the following information was available: race, date 
of  birth, and arrest history. The arrest history contains the date of  each 
arrest, type of crime, whether the arrest resulted in intervention, length of  
the intervention, etc. 

The average age of  the sample subjects at the time of institutionalization 
(DOC or UDIS) was 15.7, and they served an average of 10.8 months until 
first parole. Subsequently, they were back on the street for an average of 
16.8 months (until they turned 18 or were sent back to an institution). 

For the purpose of this study, the rather complex juvenile justice legal 
process is simplified and represented in the form of a failure time model. 
Failure, in our context, means reincarceration. It is assumed that an 
individual's "events" occur according to a random marked point process, 
i.e., a point process where there is an auxiliary variable, called a mark, 
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associated with each point. In our case, the mark is the associated probability 
for the decision whether or not to send a juvenile for intervention "treat- 
ment." In other words, after each arrest the judge examines an individual's 
record and then decides whether to send the juvenile for intervention 
according to some criterion. This is referred to as the "intervention scheme." 
As it is used here, " judge" is a general term representing all people involved 
in making probation decisions. 

Given the structure of the AIR study data, the complete process is 
broken down into separate pre- and postintervention processes. The prein- 
tervention process can be considered as a point process, say X(u) ,  beginning 
at time 0 (which corresponds to the individual's twelfth birthday) and an 
associated stopping rule (intervention scheme) that terminates the process 
under the condition that intervention occurs before an amount of  time, A, 
elapses (corresponding to the eighteenth birthday). Let T be the random 
variable for the intervention time. The intervention scheme can be specified 
in terms of  P ( T =  t]X(u) ,  u <-t), the probability of an individual being 
sent to an institution at time t given the arrest record up to t. 

During the postintervention process, the juveniles are observed after 
they are released from the institution, say at time R, until they turn 18, until 
their second intervention occurs, or until the date the study ended (say, C). 
In other words, we observe the postintervention process only from time R 
up to Min{AT*, C} is observed. The postintervention process can be 
modeled with a new process, X*(t*),  and a new intervention scheme, 
specified in terms of  P ( T * =  t* lX*(u) ,  u <- t*). 

Under the condition that the firstintervention occurs on or before each 
individual's 18th birthday, and assuming independence of the pre, and 
postintervention processes, we can write the likelihood function for the 
entire process as 

f ( T ; X ( u ) , u < - T [ T < - A ) f ( T * ; X * ( u ) , R < - u < - M i n { A , T * , C } )  (1) 

where f ( X ( u ) ,  u <- t) is the likelihood function for the process X ( u )  up to 
a fixed time t and it does not change with the intervention scheme. 

We can rewrite the component  for the preintervention process as 

f ( X ( u ) ,  u <- t)P( T =  t, t<-AIX(u) ,  u <- t) 
f ( T ;  X (u ) ,  u<- T] T <-A) = - -  

P{T-<A} 
(2) 

P (T-<A)  depends on both the process and the intervention scheme. 
Moreover, since all of  the juveniles in our sample have been sent to 
intervention, the second term in the numerator of the Eq. (2) is simply 
P ( T =  t [X(u) ,  u <- t). We can decompose the likelihood function for the 
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postintervention process in a similar way. In the following section we 
consider a specific model for the likelihood function f. 

It has been shown previously (Hwang, 1984) that the general terms in 
Eq. (2) are not identifiable. This means that we can derive the same likelihood 
function with different sets of  parameter. While we may induce identifiability 
by assuming specific function forms for the terms in Eq. (2), any inference 
we draw will be model-sensitive. In fact, there may be widely disparate 
models that are consistent with the observed phenomenon. We believe that 
this is one of  the reasons for the controversy surrounding the interpretation 
of  the suppression effect. Below, we develop a variety of identifiable models 
that we then use to study the suppression effect. 

3. SPECIFIC MODEL 

Given the structure of the study and the decomposition derived in Eqs. 
(1) and (2), we can derive the full process model by studying the arrest and 
intervention processes separately. 

3.1. Arrest Process Models 

For each individual in the study we assume that pre- and postinterven- 
tion arrest processes IX( t )  and X*( t ) ]  are homogeneous Poisson processes 
with rates h and h*, respectively. The value of  A* is equal to the product 
of p and A, where p is a constant reflecting the ratio of arrest rates after 
intervention to those before. Our justification of Poisson assumption is as 
follows. In our data file, only those offenses in which a police contact occurs 
are recorded. Many offenses are not recorded simply because the juveniles 
have not been arrested (Boland and Wilson, 1978). Therefore, events in the 
criminal activity process have been deleted to produce what is known as a 
thinned arrest process, in which those events that were never recorded are 
considered to have been deleted�9 In addition, there are no multiplicities 
(the offenders cannot be arrested twice simultaneously)�9 Then if (1) the 
deletion of  each point is independent of the others and independent of the 
offense process, and (2) the process is stationary, we can show that the 
arrest process approximates a homogeneous Poisson process. Further dis- 
cussion about the thinning process is given by Cox and Isham (1980), Maltz 
(1984), and Hwang (1984)�9 

Let preintervention arrests be observed at times tl, t 2 , . . . ,  tn(,~, until 
the intervention occurs at T - - t ,  where N(t) is the number of the arrests 
up to time t. Similarly, let t*, t* , . .  * �9 t N*(,*) and N*(t*) be the corresponding 
terms in the postintervention arrest process. Then we can write the likelihood 
function of  the pre- and postintervention arrest processes for each subject 
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in the study as 

N(t )  

f ( X ( u ) ,  u <- t) = [I 
t = l  

t~ e -A( t i - t i -1 )  = A N ( t )  e -A t  (3) 

f ( X * ( u ) ,  0 < - u <- Min{A, T*, C}) 

f (Ap)N[( t*-R)  e-Xp~,*-R~, 
~ -  J ( l~p )N .  (A-R) e-XO<a-n~, 

((Ap)u ~c-R~ e-,p~c-R), 

for T* = t*--- Min{A, C} 

for A _< Min{ T*, C} 

for C -< Min{ T*, A} 

(4) 

3.2. Intervention Models 

The construction of  the intervention model is much more difficult than 
the construction of the arrest process model. It is very difficult to develop 
a realistic intervention scheme, and even harder to compute the related 
intervention probability because there are many factors that we need to 
consider. To demonstrate our approach and simplify the computation, we 
use only the information on the number of arrests in the records and the 
length of time between arrests, and we neglect the other covariate informa- 
tion. Qualitatively, we might expect the following behavior: 

(1) the higher the number of  arrests in the records, the higher the 
probability of  intervention; 

(2) the shorter the time between the present and the previous arrests, 
the higher the probability of intervention; 

(3) there is a higher probability of  being sent for intervention after a 
delinquent is released from an institution compared to before the 
first intervention; and 

(4) there is a lower probability of  being sent to intervention after a 
period of  good behavior. 

With these rules in mind, we consider the following five models for the 
intervention scheme: 

(a) For each arrest there is a constant probability P of intervention 
occurring. 

(b) At the ith arrest there is a probability Pi of  intervention occurring. 
(c) Intervention occurs whenever an arrest succeeds the previous arrest 

by fewer than r months. If  we assume that ~- is a fixed number 
and let Z~, Z 2 , . . . ,  be the corresponding interarrest times (i.e., 
Zi = t ime between i -  l th and ith arrest), then T =  

n 
Min{Sn = ~ = ~  Z~, Zn - z, n -- 1}. 

(d) This is the same as scheme c except we assume that r is a random 
variable (varying from arrest to arrest) with a distribution L. 
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(e) Intervention occurs at a given arrest if an individual has more than 
k arrests in the past r months, where we allow r to be a random 
variable (varying from individual to individual). 

Similarly, we can represent five intervention schemes for the postinter- 
vention process by adding asterisks to the corresponding terms (e.g., P 
changes to P* in scheme a, assuming that P < P*, Pi < P * , . . . ,  etc.). The 
K-nearest-neighbor intervention scheme (scheme e) says that judges will 
make their decisions based on both the number of arrests in the record and 
the length of  the interarrest times. This is probably the most appealing of 
all the schemes. Unfortunately, even with ~" fixed, computing the distribution 
of  the time to intervention in scheme e means computing the distribution 
of  the time until a Poisson process produces k events in an interval of length 
~', is a formidable task (see Huntington and Naus, 1975). Nonetheless, it is 
possible to obtain rather good estimates of means and standard deviations 
of parameters using simulation. More discussion of this model is given by 
Maltz and Pollock (1980) and Tierney (1983). 

We now describe the likelihood function for intervention schemes a-d. 
The intervention mechanism in each case enters into the likelihood function 
in Eq. (2) through the second term in the numerator and through the 
denominator. The terms in the numerator are generally easy to compute. 
In scheme a we know that P { T =  t[X(u) ,  u < - t} is given by a geometric 
distribution, i.e., P{ T = t[ X(u ) ,  u -< t} - (1 - p)N(O-1p. In scheme b we have 

P{T=tlX(u),u-<t}= (1 - P,) PN(O (5) 
\ i = l  

For schemes c and d, P{ T = t IX(u) ,  u <- t} is an indicator function. 
Next we derive the term P{ T-< A}. According to intervention scheme 

a, we can view the time to intervention as the time to absorption in a simple 
two-state Markov process. Thus a straightforward calculation shows that 
P{ T-< A} = 1 -- e -*aP. For scheme b we condition the total number of events 
that happened before h and then use the law of total probability to get 

P{ T <_ A}= I -  P{ T >  2~} 

= 1 .  ~ P { T > A [ N ( ~ ) = n } P { N ( A ) = n }  
n = O  

n=o n! (6) 

where Po = 0. 
Scheme c has been discussed by Tierney (1983), who shows that 

P{T-<A} = ~ { H " ( A - ( n - 2 ) ~ ' ) - e - A ~ H ~ ( A - ( n - 1 ) ~ ' ) } e  -x~- l~  (7) 
n = l  
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where H ~ is a gamma distribution with parameters n and nh. Finally, we 
refer to Hwang (1984), for a derivation of the likelihood function for scheme 
d based on standard renewal theory. 

4. F I T r l N G  THE M O D E L S  

Since our main purpose is to explore the use of the model-based 
approach to study the suppression effect, we fit to the simplest model 
developed in the previous section to the AIR data, assuming that the pre- 
and postintervention arrest processes are homogeneous Poisson processes 
with rates A and A*, and the intervention scheme a is appropriate. Moreover, 
we assume that each delinquent in our data file has the same rate parameters 
(A and A*). We also make the implicit assumption that all of  the criminal 
acts of  an individual are of  the same type. Finally, we discuss the possibility 
of relaxing various assumptions in our models. 

4.1. Sample Log-Likelihood Function for the Basic Model 

From the results in the previous section, we have that the sample 
log-likelihood function is as follows: 

(a) Preintervention process: 

N 

L( N, n,, t,; A, P ) - - l o g  [l f (n , ,  ti ; A, P) 
i - 1  

:(i~ l~i) l~176 
+ N log P - N log (1 - e -6AP) (8) 

where 6 years is the length between age 12 and age 18 (the potential ages 
for being a juvenile), and 

N = total number of  juveniles in the sample 
n~ = total number of  preintervention arrests for ith juvenile 
t~ = time between the ith juvenile's twelfth birthday and the first 

intervention 
(b) Postintervention process: 

L*( N, n*, t*, N:, N2, R~, A~; A*, P*) 

N 

= log n j~(n*~, t~, R,, A, ; A*, P*) 
i = l  

: l o g (  ~ (A*)":e-**r \i=l 
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where 
C: 
R~: 

A~: 
n*: 
t*: 

NI: 

N3: 
N2: 

N 2 

x U (A*)'Te-X*(a'-R')(1--P*) "'; 
i = l  

x II (A*)';e-~*(~-~')(1-e*) ~ 
i=1 

n* logX*-x* (t*-R,)+ E (A*-R,)+ Z (C-R,) 
i=1 \ i = 1  i = l  i=1 

+ ( ( i~ ,  n*) log  A * - N i ) l o g ( 1 - P * ) + N ,  IogP* (9) 

Censoring time (the end of the project). 
Time of the ith juvenile being released from the first inter- 
vention. 
Time of the ith juvenile's eighteenth birthday. 
Total number of postintervention arrests for the ith juvenile. 
Time between the ith juvenile's twelfth birthday and the second 
intervention. 
Total number of juveniles for which the second intervention 
occurs ( T <  Min {Ai, C}). 
Total number of juveniles being censored (C < Min { T*, Ai}). 
= N -  N~-  N3. 

4.2. Parameter Estimates 

For the postintervention process, we get the maximum-likelihood 
estimators (MLEs), 

~ $  _ _ E N 1  n/# / ~ $ =  N, (10) 
TP ' ~,~:, n* 

where TP is the total postintervention follow-up time for the juvenile in 
the sample, i.e., 

N I N 2 N 3 

TP= E ( t * - R , ) +  E (A , -R , )+  E ( C - R , )  
i=1 i=1 i = l  

Note that ~* is equal to the total number of arrests occurring during the 
follow-up period divided by the total follow-up time TP. In other words, 
~* is equal to the average postintervention arrests per year. Also, /3* is 
equal to the proportion of juveniles in the data sample who have a second 
intervention. 

For the preintervention process, the likelihood equations for ~ and /3 
cannot be solved explicitly and we tried several numerical methods to 
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approximate them. These numerical results suggest that /3 is equal to, or 
at least very close to, zero. Thus the MLE may not be a good estimate of 
P, the probability that the intervention occurs after each arrest. However, 
we can still make inferences about A (or 1 - p )  using the following approach 
for estimating (for more discussion in this issue, see Hwang, 1984). 

Take the derivative of the preintervention log-likelihood function [Eq. 
(8)] with respect to A and P set it equal to zero (i.e., derive the likelihood 
equation). If P is a constant, then by solving the likelihood equation as a 
function of A, we get the following equation: 

Nn ) __ ~ / E i = l  ,,i = N 1 
' ~ -  N t (11) 

\ Yi=l i 1 - P  

The MLEs of A and P should satisfy the above equation. If 0-</3 </3* is 
assumed, then 

n,=N 1 
N t \ E,=, , - - \  E ~ , ~  ~ (12) 

Our main purpose is to examine the suppression effect, which has been 
defined by Murray and Cox (1979) as 

(preintervention arrest ra te)-  (postintervention arrest rate) 

preintervention arrest rate 

In our notation, the suppression effect is equal to 1 - p  (note that A* is 
equal to hp). Thus we rewrite Eq. (12) in terms of the suppression effect: 

1 - (  (Y.~t ti) A*~ <_ 1-f i  <-1-[ ( ~ i  t,) A*~ 
\~,~l n , - N ]  \ E ~ ,  n , - N ]  (1 _/3.) (13) 

When /3* is small, the upper and lower bounds of Eq. (13) are very close 
to each other. As we discuss later, the suppression effect (1 -p )  changes 
little with different values of/3. 

4.3. Analysis and Results 

4.3.1. Basic Analysis 

The AIR sample can be divided into three subsamples according to 
the intervention program a juvenile has been through. We label these three 
subsamples of juveniles, "UDIS," "DOC," and "COM" (UDIS and DOC 
combination) and denote the full sample AIR. We summarize the observed 
results used in the sample log-likelihood function in Table I. Using the data 
in Table I and Eq. (10), we calculate the MLEs of A* and /3, for the four 
groups in Table II. Finally, by inserting the above results into Eq. (13), we 
get the upper and lower bounds for the suppression effect in Table III. In 
each case the two bounds are reasonably close to each other. This implies 
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Table I. Observed Values from the Data 

Observed values UDIS DOC COM AIR 

Preintervention process 

Total arrests 3195 4347 364 7906 
Total years 862.11 1171.70 79.76 2113.57 
Number  for first intervention 246 317 23 586 

Postintervention process 

Total arrests 908 906 43 1857 
Total years 353.61 443.49 19.65 816.75 
Number  for second intervention 45 89 6 140 

Table II. The MLEs and Variances of  ~* and P* 

MLE 
(variance) UDIS DOC COM AIR 

A* 2.57 2.04 2.19 2.27 
(7 .3•  3) (4.6• (1 .1•  1) (2.8•  

P* 5.0 • 10 -2 9.8 • 10 -2 1.4 x 10 -1 7.5 x 10 -2 
(5.2 • 10 -5) (9.8 • 10 -5) (2.8 • 10 -3) (3.7 • 10 5) 

that the suppression effect changes little with any reasonable values of 16 
and gives us the ability to derive the inference that is of  interest. 

4.3.2. Modification of the Basic Model 

We consider two modifications of  the model: one takes into account 
the variability of/3* and the other adjusted the starting point of the model. 

Table IlL Estimated Upper  and Lower Bounds for the Suppression Effect 

Estimate UDIS DOC COM AIR 

Unadjus ted  starting-point model  

Lower bound  0.25 0.41 0.49 0.34 
Upper  bound  0.29 0.46 0.56 0.39 
Modified upper  bound 0.30 0.48 0.63 0.40 

Adjusted starting-point model 

Lower bound  0.19 0.39 0.47 0.31 
Upper  bound  0.23 0.45 0.55 0.36 
Modified upper  bound  0.30 0.46 0.60 0.37 
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To take into account the variability of/3", we let 0---/3 _</3. + 2 ~ . ,  where 
~ ,  is the variance estimate of/3* which we obtained by inverting the 
sample information matrix. Using t3.+ 2 ~ .  as an adjusted upper bound 
for P, we can find the modified upper bound of the suppression effect by 
inserting/3* + 2 ~ .  for/3* in Eq. (13). We give the result, labeled as modified 
upper bound, in Table III. 

The upper and modified upper bounds are very close to each other, 
except for the COM sample, which has a 12% difference (COM also has 
a very small sample size; N=23). We have also considered similar 
modifications to A and A*, i.e., 

(~*-2~.) 

Since the variance estimates of a and A* are relatively small, the modification 
has little effect on the results. 

Next, we consider the effect of adjusting the starting point of the 
process. When constructing the model, we made the assumption that each 
individual's preintervention arrest process began at the twelfth birthday. 
Among the 586 juveniles in the AIR sample, there are 284 individuals who 
have arrest records prior to their twelfth birthday. In other words, those 
284 individuals began their criminal activity process prior to age 12. One 
way to avoid this problem is to use the minimum of either one's first arrest 
date or one's twelfth birthday as the starting point but this makes the sample 
log-likelihood function very complicated and difficult to handle. Moreover, 
among the 302 juveniles whose first arrest occurs after their twelfth birthday, 
we can also argue that their arrest process actually began much later than 
their twelfth birthday. Instead, we define the average interarrest time as 

Y ~  (ith individual's intervention t ime-  first arrest date) 

Y~ ~1 (number of preintervention arrests for ith individual) - N 

where N is the sample size. We then compute an estimator of the starting 
point of the arrest process by subtracting the average interarrest time from 
the average first arrest age. Based on these estimated starting points listed 
in Table IV, we repeated the analysis and computed the upper and lower 
bounds of the suppression effect in Table III (labeled as the adjusted starting 
point model). 

4.3.3. Results 

In general, the suppression effect estimated under our model is lower 
than that suggested by the analyses of Murray and Cox (1979). Even if we 
use the most conservative of our estimates, the upper bound for the sup- 
pression effect, we find that AIR as a group has a 39% suppression effect, 
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Table IV. Adjusted Starting-Point Estimates 

Estimate UDIS DOC COM AIR 

Average first-arrest age 
(years) 12.03 12.17 12.12 12.11 

Average interarrest time 
(years) 0.30 0.29 0.23 0.29 

Average starting age 
(years) 11.73 11.88 11.89 11.82 

which is much lower than the two-thirds reduction claimed by Murray and 
Cox. Modification to include the variation o f / 3 .  shows very little effect on 
the results, i.e., 40 vs 39%. Adjusting for the starting point of  the arrest 
process also shows little effect on the outcome, i.e., 37 vs 39%. The sup- 
pression effect is even lower when the lower bound of the suppression effect 
is used as our estimator (e.g., 34% for the AIR sample). 

Also, we found that the DOC group has a much higher reduction in 
the incidence of  offenses than does the UDIS group: 46 vs 29% for the 
upper bound and 41 vs 25% for the lower bound. Selection biases between 
the UDIS and the DOC samples do not appear to explain the difference. 
Quantitatively, the selection biases were not apparent: UDIS juveniles 
averaged 13 preintervention arrests, while DOC had 13.7. Both cohorts have 
exactly the same average preintervention interarrest time, 0.27 year. Qualita- 
tively, most judges and probation officers said they tried to send the more 
incorrigible juveniles to DOC, and the more manageable but committable 
juveniles to UDIS (Murray and Cox, 1979). An intriguing point is that the 
percentage of juveniles whose second intervention occurs in the DOC sample 
is much higher than the UDIS sample: 28 vs 18%. But the average postinter- 
vention interarrest time for DOC is longer than the one for UDIS: 0.49 vs 
0.39 year. This result contradicts the general rule about the intervention 
scheme-- the shorter the interarrest time, the higher the probability of 
intervention. One explanation of this conflict is that the DOC cohort might 
have committed more serious postintervention crimes than the UDIS cohort. 
Therefore, the second intervention occurs much more quickly for the DOC 
cohort than for the UDIS cohort. A study of  index and nonindex (index 
offenses have been considered as felonious offenses) crimes looked at 
separately, however, does not support this interpretation. 

For the preintervention process, DOC has a slightly higher average 
number of  arrests than UDIS on both index and nonindex crimes, 8.2 vs 
7.8 for the index crimes and 5.5 vs 5.2 for the nonindex crimes (see Table 
V); however, DOC has lower averages than UDIS on both index and 
nonindex postintervention arrests, 1,5vs 1.9 for the index crimes and 
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Table V. Observed Values for Index and Nonindex Crimes 

389 

Observed values UDIS DOC COM AIR 

Preintervention process 

Index arrest 1914 2612 233 4749 
Nonindex arrest 1281 1735 141 3157 
Index intervention 175 236 17 428 

Postintervention process 

Index 457 467 23 947 
Nonindex arrest 451 439 20 910 
Index intervention 30 69 4 103 

1.4 vs 1.8 for the nonindex crimes. While these results suggest that there is 
some weak evidence of the selection bias between DOC and UDIS (DOC 
sample has higher averages on both index and nonindex preintervention 
arrests), the results also suggest that the judge might treat the juveniles in 
the DOC program more severely than the juveniles in the UDIS program. 
Even if they commit the same crime, the juveniles from the DOC programs 
are sent back to the programs much more quickly than the UDIS juveniles. 
In other words, there are treatment biases between the juveniles in the two 
samples in the postintervention process. The reason for such differential 
treatment between DOC and UDIS subjects is not clear to us; however, 
both the selection and the treatment biases are in the opposite direction 
from the observed effect. If  the selection and treatment biases do exist, then 
the differences in a suppression effect between DOC and UDIS may be 
even larger than that observed. 

4.3.4. Extension of the Model 

There are different ways to build a model in a model-based approach. 
Here we constructed a simple and basic model and then extended this basic 
model by relaxing some of the assumptions. For example, we might like 
our model to include the covariate information that reflects the seriousness 
of  the offense. One way to take into account the differential seriousness of 
offenses in the model is to give a higher weight to a very serious offense 
and a lower weight to a less serious offense. Using these weights, we could 
construct a model employing a scoring rule based on the total weight in 
the arrest process. We note, however, that it is very difficult to determine 
sensible weights for various offenses (Sellin and Wolfgang, 1964). Instead, 
we might assume that there exist separate arrest processes for different types 
of  offenses. To simplify our approach, we categorized the offenses into 
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index and nonindex offenses. Generally speaking, we consider index 
offenses as felonious offenses. 

We assume that an individual's index and nonindex arrest processes 
are Poisson processes with parameters A1 and A2, and the probabilities that 
the intervention occurs after an index and nonindex arrests are P1 and P2. 
Let 7"1 and T2 be the intervention time random variables for the index and 
nonindex arrest processes. T1 and T2 will have the exponential distributions 
with parameters AlP1 and , ~ . 2 P 2  . Let T be the intervention random variable, 
i.e., T = m i n  {7"1, T2}. If the index and nonindex arrest processes are 
independent,  then T has an exponential distribution with parameter A 1P1 "[- 
A2P2. We define the postintervention parameters in a similar fashion (e.g., 
P~*,P2,*..., etc.). If  we further assume that the last preintervention arrest 
is the one that induced the intervention, then we can derive the pre- and 
postintervention sample log-likelihood functions similar to Eqs. (8) and (9). 

By applying a similar procedure as in Section 4.3, we estimate the 
parameters in the sample log-likelihood function. For each fixed P2, we 
can find the MLEs of  AI, A2, K, where P1 = KP2. We summarize some of 
the results in Table VI, including estimates of  the suppression effect for 

A A A : ~  
index and nonindex crimes, i.e., /91 ----)tl*/~l and p2=3~2/)t2 (see Table VI). 
We also give the results for the adjusted starting point process in the same 
table. 

The most interesting finding of  this analysis is that the reduction of 
the arrest rates occurs mainly for index offenses. Actually, there is a two- 
to fourfold difference between index and nonindex suppression effects (see 
Table VII). This suggests the following interpretation: after a juvenile has 
been released from his first intervention, he feels that he will have a much 
greater probability of being sent back to an intervention should he commit 
another crime. Moreover, if he commits an index crime, the probability of 
being sent back to an institution will be even higher than if he commits a 
nonindex crime. As a result, a juvenile may tend to avoid index crimes 
because of  the higher probability of being sent back to an institution. 
Actually, the reduction that we observe in the arrest rate might have little 
connection with the correctional programs to which a juvenile has been 
sent. It may be that the more important factor in reducing juvenile crime 
is the increased probability of a second intervention, and not the actual 
type of  intervention. The remainder of the results in this analysis parallel 
those for the basic model, i.e., DOC does better than UDIS in reducing the 
number of offenses, and the estimated suppression effect is much lower 
than Murray and Cox's finding. 

Another possible extension results from relaxing the assumption that 
the arrest rate A is a constant from individual to individual and allowing 
X to be a radom variable. Hwang (1984) reports some preliminary studies 
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UDIS DOC COM AIR 

Postintervention 

MLEs 
~.~ 1.29 1.05 1.16 1.16 
~.* 1.28 0.99 1.03 1.11 
/3* 6.56 x 10 2 1.48 • 10-1 1.78 x 10-1 1.09 • 10-1 
/3* 1.26 x 10 -s  7.11 • 10  - 9  5.16 • 10 -1~ 1.23 • 10 -1~ 

Preintervention 

p2= 10 -2 

A1 2.05 2.06 2.63 2.08 
A2 1.41 1.41 1.70 1.42 
/~ 1.54 1.72 1.60 1.64 

/92 = 10-7 

A1 2.02 2.03 2.58 2.04 
),2 1.40 1.41 1.70 1.42 
/r 1.71 2.03 1.88 1.88 

in which A has a gamma distribution; the estimated suppression effect under 
this model is also much lower than Murray and Cox's result. 

5. CONCLUSIONS 

In this paper, we considered the problem of estimating the effect of  
correctional programs on juvenile delinquents. We noted that the con- 
troversy of  whether the observed suppression effect is due to the correctional 
program or to a selection artifact is a result of  the fact that the general 
terms in our model are not identifiable. As we mentioned in Section 2, 
without the identifiability, we can construct models that attribute the 
observed suppression effect either to the correctional program or to the 
selection artifact. 

Table VII. Estimated Suppression Effect for Index and Nonindex Model 

UDIS DOC COM AIR 

P2 = 10-2 
Index crime 0.37 0.49 0.56 0.44 
Nonindex crime 9.5 x 10 -2 0.30 0.40 0.23 

p2=10 -7 

Index crime 0.36 0.48 0.55 0.43 
Nonindex crime 9.1 • 10 -2 0.30 0.39 0.22 
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The other important issue we considered here concerns the fact that 
the observed data (e.g., the observations in the AIR sample) are not a simple 
random sample (SRS), i.e., we expect that those juveniles who have been 
sent to an intervention program will commit more crimes than those who 
never have been institutionalized. Since we have observed only the juveniles 
who have been sent to intervention, standard methods of analysis, including 
regression approaches (which assume the data set is a SRS), do not appear 
to be reasonable. Instead, we adopted a model-based approach that 
explicitly considers this selection feature. 

To counter the identifiability problem, we constructed a series of 
identifiable models based on some simple but reasonable general rules. The 
suppression effect was studied using these identifiable models. To counter 
the biased-sample problem, we used the conditional probability (condition- 
ing on the fact that all the subjects have been sent to intervention) to derive 
the likelihood function. The conditional probability used in the likelihood 
function can adjust for the biased-sample problem in the selection artifact. 
Other possible selection biases, e.g., that some judges might be more punitive 
than the others, are not included in the current model. Actually, without 
further information in the data set we can only assume these are random 
effects and eliminate them from our analysis. In doing so, we remove most, 
but not all, of  the selection artifact by the conditional probability procedure 
that was used in the likelihood function. 

At this stage, our model is still quite crude. The analyses to date are 
not strong enough to prove or disprove the contention that the observed 
suppression effect is due entirely to selection artifact or to correctional 
program but they do suggest that the observed suppression effect might be 
a joint effect of the two factors. The analyses also show that the DOC 
programs outperform the UDIS programs in reducing the crime rate. 
Moreover, the analyses indicate that an important factor in reducing juvenile 
crime may be the increased probability of the second intervention, not the 
actual type of intervention. This result suggests that if the correctional 
program increases the probability of a second intervention, then the observed 
suppression effect should be even larger than what we have observed. 
Actually, the same result implies that if the probability of the first interven- 
tion increases, then the overall crime rate among the juveniles might drop 
to a much lower level than what was observed. 

Thus far, we have only the advantages of using the model-based 
approach. But this approach is not without problems. As the model gets 
more complicated, we must estimate more parameters and derive more 
complicated likelihood functions. First, there is no guarantee that extensions 
to our models will be analytically tractable. Second, the need to estimate 
more parameters usually means less precision in the analysis. Nonetheless, 
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we f ind t h e  a n a l y s e s  to  d a t e  i n f o r m a t i v e ,  as t h e y  m a k e  exp l i c i t  a s s u m p t i o n s  

t h a t  a re  h i d d e n  in t he  m o r e  i n f o r m a l  a p p r o a c h e s  a d o p t e d  by  o thers .  

R E F E R E N C E S  

Blumstein, A. (1974). Seriousness weights in an index of crime. Am. Soc. Rev. 39: 854-864. 
Boland, B., and Wilson, J. Q. (1978). Age, crime, and punishment. Public Interest 24: 22-34. 
Cox, D. R., and Hinkley, D. V. (1974). Theoretical Statistics, Chapman and Hall, London. 
Cox, D. R., and Isham, V. (1980). Point Processes, Chapman and Hall, London. 
Cox, D. R., and Snell, E. J. (1981). Applied Statistics--Principles and Examples, Chapman and 

Hall, London. 
Erickson, M. L., and Jensen, G. F. (1977). Delinquency is still group behavior! Toward 

revitalizing the group premise in the sociology of deviance. J. Crim. Law Criminol. 68: 
262-273. 

Holden, R. T. (1983). Failure Time Models for Criminal Recidivism, Department of Sociology, 
Yale University, New Haven, Conn. 

Huntington, R. J., and Naus, J. T. (1975). A simpler expression for k-th nearest neighbor 
coincidence probabilities. Ann. Prob. 5: 894-896. 

Hwang, S. (1984). Modeling the Suppression Effect of Correctional Programs on Juvenile Delin- 
quency, Ph.D. thesis, Department of Statistics, Carnegie Mellon University, Pittsburgh, Pa. 

Karlin, S., and Taylor, H. M. (1975). A First Course in Stochastic Process, Academic Press, 
New York, San Francisco, London. 

Maltz, M. D., and Pollock, S. M. (1980). Artificial inflation of a delinquency rate by a selection 
artifact. Operat. Res. 28: 547-599. 

Maltz, M. D., Gordon, A. C., and McDowall, R. (1980). An artifact in pretest-posttest designs: 
How it can mistakenly make delinquency programs look effective. Eval. Rev. 4: 225-240. 

Martin, S. E., Sechrest, L. B., and Redner, R. (1981). New Directions in the Rehabilitation of 
Criminal Offenders, National Academy Press, Washington, D.C. 

Martinson, R. (1974). "What works? Questions and answers about prison reform. Public Interest 
35: 22-53. 

McCleary, R., Gordon, A. C., McDowell, D., and Maltz, M. D. (1979). How a regression 
artifact can make any delinquency program look effective. In Sechrest, L. (ed.), Evaluation 
Studies Review Annual, 4, Sage, Beverly Hills, Calif. 

Murray, C. A., and Cox, L. A., Jr. (1979). Beyond Probation, 94, Sage Library of Social 
Research, Sage, Beverly Hills, Calif. 

Murray, C. A., Thomson, D., and Israel, C. B. (1978). UDIS: Deinstitutionalizing the Chronic 
Juvenile Offender, American Institutes for Research, Washington, D.C. 

Sellin, T., and Wolfgang, M. E. (1964). The Measurement of Delinquency, Wiley and Sons, 
New York. 

Tierney, L. ( 1983 ). A selection artifact in delinquency data revisited. Operat. Res. 31 ( 5 ): 852- 865. 
Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. Proc. Natl. 

Acad. Sci. 72: 20-22. 
Wolfgang, M. E., Figlio, R. M., and Sellin, T. (1972). Delinquency in a Birth Cohort, University 

of Chicago Press, Chicago. 


