ASYMPTOTIC CONDITIONS AND INFRARED DIVERGENCES
IN QUANTUM ELECTRODYNAMICS

P. P, Kulish and L. D. Faddeev

A definftion which is free of infrared divergences {s proposed for the 5 matrix of & relativ-
istic theory of interacting charged particies. - This ig achieved by a modificution of the
asymptotic condition and the introduction of a new space of asymptotic states. This state
differs from the Fok space, but i separable and relativistically and gauge invariant. The
mass operator has no nonvanishing discrete eigenvalues.

In the present paper, we shall discuss some aspects of the scaltering problem in the relativistic
quantum theory of interacting charged particles and photons. The main result is the description of a space
of asymptotic states for such a system and the definition of an S matrix that is free of infrarcd divergences.®

The infrared catastrophe has freguently been discussed, the first occasion being the classical paper
of Bloch and Nordsieck in 1937 {1]. The physical reasons for infrared divergences are well understood
and they do not lead to any phrsical problems. However, the generally accepted formal treatment of the
infrared catastrophe i{s not, in our view, completely satisfaciory.

In textbooks on quantum electrodynamics, the reader must wrestle with infrared divergences and
sum the probabilities of a transition from a given initial state to all final states, which include not only
detectable particles but also an arbitrary number of "soft” photons (see [2}}. An important role in the
justification of this approach is played by the asymptotic formulas for the scattering amplitudes in the case
whew the artificially introduced photon mass tends to zero. The general form of these formulas was de-
rived in the papers of Yennie et al. (3].

In the classical method just described, the cross sections and not the matrix elements are-regarded
as the primary objects. The Initial and {inal states are treated as asymmetric and an S matrix is not de-
fined at all. One is naturally led to ask whether these features are unavoidable and due to the physical
nature of the problem or whether there exists an alternative approach to Infrared singularities In which an
S matrix can be defined. In the present paper, we attack the problem in this manner and propose a version
of the asymptotic condition which is specially suited to a relativistic system of charged particies and makes
possible a correct definition of an S matrix.

Our point of departure is Chung's important paper {4]. Chung surmised how one can choose states
contalning a charged particle and a superposition of an infinite number of photons in such a way that the
matrix elements of the Feynman—Dyson S matrix between these states are finite and nonzero. Chung's
generalization of the construction of these states for the case of several charged particles is too unsophis-
ticated; In particular, it ignores the infinite Coulomb phase.

Kibble {5] made some important advances on Chung's work. He introduced a very large space of
asymptotic states and showed that the Feynman-—-Dyson § matrix can be correctly defined in this state as
a unitary operator. Kibble's space 18 nonseparable and contains states with aninfinite number of soft photons,
One can distinguish separable subspaces of Kibble's space which are mapped into one another by the 8

*The results of this pzper were briefly reviewed by the authors at the Sclentific Session of the Nuclear
Physics Division of the Academy of Sclences of the USSR in May, 1969, in Leningrad.
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matrix. However, there is no stable separable subspace that i8 mapped inio {tself. This is connected with
the infinite Coulomb phase contained in the $ matrix. Kibble's analytic apparatus is based on the asymp-~
totic formulas for the many-particle Green's function near the mass shell for the charged particles.® Thus,
Kibble's definitions are based on the complete solution of the dynamical probiem and are therefore very

cumbersome,

Our approach differs from these approaches in whnt we modify not only the space of asymplotic siales
but also the very definition of the scattering operator. This ¢nables us to compensate the Coulomb phase
automatically and our space of asymptotic states 1s separable and is no richer in states than the Fok space.
The complete procedure is suggested by the nonrelativistie theory of scattering by a long-range potential
and hag a simple physical interpretation. We are not forced to solve the complete equations of quantum
electrodynamics in order to implement our program. Thus, we derive Chung's formulas without laborious
calculations and obtain their correct generalization in the case of an arbitrary number of charged particles
and photons in the initial and final states.

From the methodological point of view, the main result of our paper is a relativistically and gauge
invariant definition of the S matrix and the space of asymptotic states of the charged particles.

In the present paper, we lake ‘he example of Coulomb scattering to explainthe main idea of our ap~
proach. The nub of the idea is that in the definition of the wave operators we do not take exp{-ﬂ{ot} but
a more suitable operator Uyg(t) as the operator of the asymptotic dynamics. The choice of this operator
is based on a natural physical condition, namely, the wave packets Uas{t)¥ at large [t] must correspond
to the classical motion of widely separated charged particles. The actual choice of Uag(t) for quantum
clectrodynamics is d.scussed in Sections 2 and 3. In the next section, we introduce and discuss a space
of states, different from toFok's space,for charged particles and photons. In Section 5, we explain why
this space can be used raturally as the space of asymptotic states and we give the final definition of the
5 matrix and compare our results with those of Chung.

The autbors are grateful to V. G. Gorshkov and V. N, Popov for numerous discussions of the prob-
lems of infrared divergences.

1. Nonrelativistic Coulomb Scattering

The scattering of a nonrelativistic particle by a Coulomb potential may serve to illustrate the main
idea of our approach. The Himiltonian of the system has the form

I S A

where m is the mass of the particles and g is the product of the charges of the particle and the scattering
center. The asymptotic behavior of the potential V() in the interaction representation can be easily cal-
culated. One must note that

r‘(t) = -'%-‘ 4= ;' ’P(', 3 P"
i.e., as {t| ~ « )

=8 o

Vo= gy +0():

The first term of this asymptotic expression cannot be integrated with respect to the time in the neighbor-

hood of infinity and its contribution to the dynamics cannot be neglected, even for [t| — «. In other words
the asymptotic dynamics is not described by Hy but by the explicitly time~dependent operator t

v mg
Hu(®) = Hok Vaslt) = Mo +—rir +
The wave packets {(r, t} satisfy the asymptotic Schrodinger oquation
é
P ¥in ) = Haalt) Lo, 2), -

* Such formulas have a long history. A generating functional for the Green's functions which takes into
account this asymptotic behavior rigorously was obtained by Fradkin {6].

tHere, we bave used the fact that the expression for Vag(t) I8 the same in both the Schrodinger and the
interaction representation.
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and can be represented in the form
i 8 ]
$(, 1) = Wge(ﬁ) axp{—- l%t-—»é%‘-’signﬂu %%eﬂvvdp. 7 )

Of course, the choice of the solution in this form corresponds to a definite chofce of the "inital condi-
tions® for Eq. (1}. These conditions arc determined by the foliewing considerations. The variation with
time of the distribution of coordinates and momenta in the packet (2) for |t| — = is governed by the cqua-
tions of classical mechanics. The constant ty ig not significant in this connection.

To justify this statement, consider, for example, the asymplotic expression for the expectation values
of the coordinates and the moments
RO = (rp(8), $())20d<p()) = (PO(1). ¥().
Obviously, the sccond quantity does riot depend on the time

G0 =Sple®) s = 5,

and the first has the foliowing asymptotic behavior for {t] — w1

<€(:))z—<£3 t—gm <%>signl!nlfj+0(i).
which can be readily obtained, for example, by the method of stationary phase.

These considerations show how natural the choice of the asymptotic wave packets in the form (2} is
from the physical point of view. Moreover, it hasbcenlknovwn since Dollard's paper {7) that this choice of
the packets leads to the correct definition of the wave operators and the well-known expression for the 8
matrix., Written out more fully, the packet (2} has the form

$ () = Uy (8} § = eitiv exp {-—- if!—‘!ignt In it_i_} ¥,
2 [

and there exists the strong iimits {7}

Uy = lim 81,40,
o2
the S matrix
S =U,U.

giving the well-known expressions for the differential cross sections for scatiering by a Coulomb polen-
tial. The choice of the parameter .ty does not affect the expressions. In contrast, the usual definitions of
the wave operators of the formal scattering theory, in which H; is taken as the asymptotic operator, are
fncorrect and perturbation theory for the usual S matrix leads to the well-known infrared catastrophe.

This example shows that the choice of the Hamiltonian of the asymplotic dynamics must be dictated
by the physical nature of the problem and that it is a mistake to apply blindly the usual pro~criptions of
the formal theory of scattering and assume that the asymptotic dynamics is always definc by the operator
Hy. This prescription can be implemented formally by choosing the, in general, nontrivial and time-de-
pendent interaction operator Vug(t), which coincldes with the highest terms in the asymptotic expression
for the operator V(t) in the i_ptcraction representation. Once the operator H,g(t) has been ! cund, the solu-
tions of the asymptotic Schrodinger equation must be singled out by Minitial conditions® that ensure that
the resulting wave packet behaves classically as [t] — «. in the following section, we shall apply these
arguments to relativistic quantum electrodynamics.

2. Construction of Vgyg{t) in Quantum Elecirodynamics

To be specific, we shall consider spinor electrodynamics describing a system of Interacting elec~
‘rons, positrons, and photons. We shall use the traditional notation ¥ and ¢ for the operators of the elec-
tron-positron field and A, for the operators of the electromagnetic field. We also take by *(p), bi{p}, d{'(p).
di(p}, au"(k), aukii=1,2u4=0,1,2 3, as the operators of creation and annihilation, respectively, of
clectrons, positrons, and photons. We shall adopt an explicitly covariant formalism and assume an in-
definite metric in the photon Hilbert space. Finally, we shall assume that I = ¢ = 1 and that all veciors
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are contravariant, i.c., the choice of a vector subscript or suporscript wili be dictated purely by con-
venience. Thus, akt = ay, ayby - agby—ab = ab.

The flcld operators vo ¥, and A, can be expreased in terms of the creation and annihilation opera-
tors as follows:

i ¢/m\rgs "oy
\r(t)"(g;;cS\;;) ;(b.(ﬁ)w.(v)c"'+dn€?;v-(9)¢"" dp,
- q m A\ . - _ige -
\HX)-“-('E:?"--(E) Z(bu(p)wl(p)e +du(p) va(p) ¢) dp, | 6]
1 . dk
Apl0) = G (O ™ + @, ) ) e

where wy(p) and v, (p) are the corresponding spinor amplitudes,
In order to obtain an expression for the interaction operator

V=010 Aum)dn = — {3 01000 : 4 (1) @

in the interaction representation, it is sufficient to substitute the explicit formulas (3) into ) and furnish
the operators of creation :md anhihilation with appropriate time factors, for examgle, elkety GQ and

iPﬂ’bn(p). = 1k], = p? + m?. The resulting expression for V(t) is an integral over the momenta P G,
and k of the fermions and photons, which are related by the equation p + k = q.

Our immediate task is to investigate the asymptotic behavior of this expression for [t} — =, in this
limit, all the terms In the expression can be split into two groups. The terms of the first group contain two
creation operators or two annihilation operators of charged particles. The argument of the exponential func-
tion characterizing the time dependeace of these terms is proportional to the expression lp’ + mz)’/2 + {{p
- Ky - ~)'/~ + ko, which is separated from zero for all pand k. Such terms therefore decrease suffi-
ciently rapidly as {t| — . The termsof the sccond group have an argument of the exponential {function
proportional to (p’ + m? )1/2__“9 K? -+ mz)x/‘ + Y%, which vanishes for k =~ 0 for all p. It is clear that it
is these terms of the sccond group that determine the desired asymptotic behavior of the operator V{t) and
that the terms of thc first group may be neglected.

The next simplification is inscd on the fact that the principal contribution to the remaining integrals
in the limit {t| —~ = comes from the neighborhood of small momenta k. In the corresponding integrands
we may therefore set k = 0 in all the slowly varying functions, i.e., in the operators of creation and anni-
hilation b, and dj and the coefficients composed of spinors. In addition, the expressions for the latter
simplify considerably because of the orthogonality conditions Jor solutions of the Dirac equation. As a
result, we obtain a simple expression for the principal term V(t) of the asymptotic expression for the
operator V(t) as [t - =,

We shall now write down explicitly the Schrodinger representation for V,g(t), which coincides with
V(t) in the interaction representation. Like the total interaction, we represent the operator V;s(t) as an
integral of the product of a current-type operator and a vector potential

_ i
Vaelt) = s § 220 Do (=00 + 0, () (5)
where
B, 4
Ja(k, ¢) = _,g,,,;,, ‘(b ';f'
and

PP) = 3 (53 (p) bu () — d2(p)da () = p_(P) — P, (B).

The corresponding expression in the interaction representation differs only by the substitution kp — —kp
in the integral determining the asymptotic current.
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We note that the expression for the asymptotic current does not contain spinors and that the contri-
bution from the charged particles {s given only by a distribution of charges over momenta. In this sense,
the expression is universal: we would obtain a similar formula {n the case of charged particies with ar-
bitrary spin, the corresponding density o{p) being 2 sum over the charged particles in the sysicm.

The operator of tho asymptotic current J,gH(k, § has a simple physical meaning. A staic of charged
particles with given momenta

¥ (pl'h wses Pufa ‘qlih A q;n‘ﬂ) = b:I (Pt) vas b:; (pn) di: (Qx) b d:_ (@m) i0> (6}
is an eigenstate for this operator; the corresponding cigenvalue

N A R A N AU B WR NI

i=1 =3
where

il 1) = £ exp{ i;': a}.

is the classical current of point charges moving along straight lines with momenta pi, g i=1,...,m
j=1,...,m. Inthis sense, the operator of the asymptotic interaction is 2 natural relativistic general-
ization of the nonrelativistic asymptotic potential of the foregoing section. As in Section 2, we proposea
to define the asymptotic dynamics of the system by means of the operator

Ho(y = H, + V.. (1),

where H, is thc energy operator of the free fermicns and photons, Our next task is to soive the Schrodinger
equation with this operator.

3. Description of the Asymptiotic Dynoamics

The mathematical structurc of the gperator Vag(t) is similar to that of the well-lmown Hamiltonian
for the interaction of bosons with fixed fermions. As a result, the solution of the cquation

é ..
i U@y =H.,() U o, (0

which must be satisfied by the operator U,5(t) describing the asymptotic dynamics, canbe found explicitly.
In solving this cquation, we shall devote our main attention to the choice of appropriate initial - onditions,
The point is that V4(t) contains the operators a,, *(k) and a, (k) linearly and therefore does not commute
with the exaet momentum of the system. This circumstance in no way invalidates our progr'zm since we:
only intend to use this oj«rator asymptotically for large [t], i.e., when only small momenta k make a con-
tribution to the integral and the lack of commutativity is not so dr'lstic. However, we must not forget this
fact in choosing the boundary conditions; in particular, the expression for Usg(t) must not contain a con-
tribution from injegrals of V,sit) with respect to finite t. We shall see that this condition essentially de-
termines Uyg(t) uniquely.

Experience of such problems suggests that it is advisable to seek the soluticn of Eq. {7} in the form
U, {t) = e™*"Z (L},
The equation for Z(t) s
4
L 2 = Vi) 2, &
where

B’L({) = gl Vn(t}w >ge

The expncit expression for the operator vi ag(t) differs from formula (5) only by the prescace of the factors
elkot and e-lket of a’(k) and a,(K).
4

The operator Vas(t) possesses the following important property. The commutator

(Vie(t), Vis(ta)) = @ (83, &)
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commutes with v}.‘am for all t, t;, 4. This property enabies one to disentangle the T-product expiicitiy
and, by the same token, to find the general solution of By, (&)

Z{t) = T exp {.— tévi.(t)df},

namely,
¢ 2

Z(l)zelp{—-!SVE,(t)d!-—~§—§dt§le(W. ) } (9%

In the last two formulas, there is a degree of freedom in the choice of the lower it of integration. This
comes about directly as a result of the aforementioned problem of the cholce of the initial condition. The
requirement formulated in that connection admits only a single method of calculation of the integrais in

{9), namely, one must assume that
&

i
Only in this case are the forbidden terms that do nol :ommute asymptotically with the momentum absent.

Having settled this 'point, we can easily obtain the explicit form of the desired operator Z(t). It is
copvenient to express it in the form

Z{t) = exp {R{t)} exp {1® (1)},

where
i 4 dk
RmsngS%(“;(k)f"’"-—ap(k)e""')p(p)dl'(_zk_ﬁ"" (10
and
¢ N B 1]
() = ‘&;’S-?(P)?(q‘)-«pq):_mui';, ?’gntln 7 dp dq. iy

The evaluation of the integrals leading to Eq. (11) is dealt with in the Appendix.

It is natural to call & the phase operator. This can be justified by comparing formula (11) with the
formula for the nonrelativistic Coulomb phase in Section 1

§()= ﬂsigng]n .ii'.
P f

and recalling that v(p, @) = (1 —[m*/(pq)?)*/? plays the role of the relative velocity for particles with velo-
cities p/p, and q/q,. It is then scen that formula (11) gives a natural relativistic generalization of the
Coulomb phase. The first factor in Z(t) is of purely relativistic origin. We shall discuss its properties.
and its role in the asymptotic condition in the foliowing section.

Thus, the final expression for the operator of the asymptotic dynamics has the form®

Uity = exp {—ill .t} exp {iD(t)} cxp {R(8)},
where the operators R{t) and #(t) are defined by formulas (10) and {11), respectively. We note that these
operators commute. Proceeding with the generalization of the nonrelativistic formulas of Section 1, we
must define the S matrix as the limit of the operator

S(t, ;) = U, (t) exp {— il — t:)}Un(ts)
as t;—~ = and t, — —«=, The expregsion on the right-hand side differe fram the Dyson S matrix for finite
times

Solty, £2) = exp {tH1.) exp {—iH (1, — 8.)) exp {—il8:)

by the outer factors of the type exp{R(t) + i&(t)}. In the following sections we shall attempt to show that

* Dollard's paper {7] is not the only investigation in which anasymptotic condition is modified by replacing
exp{-1Ht} by an operator of the form exp{-1iH} Z(t) in the definition of the wave operators. A similar
approach was also used In (8, 9, 10, 11]. However, in contrast to the operators uscd in all these investi~
gations, our operator Z(t) does not commute with H,. '
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the definition of the scattering operator based on the expression for S{t;, ;) is more correct than the gen-
erally accepted limit of the operator Sp(t;, t;) as ¢; = w and t;~= ==,

4. Space of Asymptotic States

The greater part of this section will be devoled to an investigation of the properties of the operator
Wit} ~ exp{R(l}}, which occurs in the exprassion {or the operator of the asymptotic dynamics in Section 3.
In the first place, we shall bo Interested in its cffect on arbitrary state vectors. Our problem {3 greatly
simplificd by the fact that W(t) preserves the number, momenta, and spins of the charged particles. Put-
ting it more preciscly, the "infinitesimal® subspaces formed by vectors of the form

- n(pl’h . P.lnquh !qn -’@ ‘y”

where ¥p m (33, . . . lqyi;, . . . ) is the charged-particle state introduced in (6) and ¥y is an arbitrary
photon state. reduce the operator W{t). In each such subspace, W(t} is defined by it3 action on thy whlch
in its turn, is defined by the operator

Wa, m(8) = exp {(21).,.§(Ig w1 a7 (k) — /2 (... 1Kk, 8) @, (kD) (mzii }
where
® &py 2 .
. _ -E— l;;i q‘ ﬁ—,-;—.f
e Gk 1) _Z e L aE "

An expression of the type exp{linear form in a and a“‘}, which we have just encountered, i3 an oid
friend of all field theoreticians. Let us briefly recall the well-known properties of such expressions, taking

as an example the operator
W= exp{g (70 — )}

defined in terms of a discrete sect of boson operators a; and a'{ and numerical coefficients oy, af i1=1,2,
... HWis reduced to normal form, we obtaia

. { ’ .
W = exp {— 5 ) e l’} exp {— mc"} exp afa.} . (12
LY o) re (- Tacfen(
Clearly, this expression is meaningless if 2 lajP = «=. Putting it more correctly, W is not defined in
]

the Fok space in this ¢ase. However, this docs not prevent it from being a perfectly sensible unitary
operator in a larger space, such as the compiete infinite tensor product (in the sense of von Neumann {12])
of the spaces ¥. of individual oscillators.

The diffcrence between these two spaces can be best illustrated in the occupation number represen-
tation {13]. An arbitrary state vector in this representation is a functional { = f({n}) on the space of in-
finite scauences of integers

{n} == (m,ny,..., 0,0,

where ng numbers the states of the i-th oscillator. The Fok sbace ¥, is formed by functionals that sre
nonvanishing only on sequences for which 2 nj < . The set of such sequences is countable, i.e., H, is
]

separable. In contrast, the set of all sequences is continuous, i.e., the space ¥ of all functionals for which

Virump< e

tn
is nonseparable. This space is isomorphic with the aforementioned infinite tensor product of von Neumann:

53‘\-}?@5@".

-The actlon of the operators af and ay in 3 is defined by exactly the same formulas as in the Fok space,
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For &ample,
a:f(n‘, seey Rgy pu.} ] y;'—;i(nh vrag By = ﬁ, ..-)-

It is clear that J¢, is invariant under tho action of af and ay. However, this is not necessarily true
for arbitrary functions of aj and ay. For example, the operator W ig unitary in the space X for any cholce

of the numbers ay. However, if 2; layl? = », it maps every vector belonging to the Fok subspace out of

the latter. It is therefore natural to consider the Fok space J¢,, the image of the Fok space ¥, undor W:
Hia) = Wiai¥s.

Here, we use a more detailed notation Wy, for W. Clearly, #., is a separable subspace of 3 which is as
rich in elements as the Fok space 3,.

There exist entire classes of numerical sequences {a} to which there correspond one and the same
subspace ¥(,. The simple formula

.“’('N wml = eXp "L (p:ﬂ't - 31“:) %; W{c—f-h {13
\ 2

in which the sequence {&~8} is composed of the numbers @y~ By, showsthatthe spaces ¥, and H#,,; coin-
cide if

Yia—-pi<o Y ituagi< (14
[ []
since, in this case, the operator on the right-hand side of (13) is unitary in %, and

Hiar = Wiy WinW o Hy = Wi He = Hp.

Our assertions and formulas can be trivially generalized to the case of subscripts i of arbitrary
nature. In particular, they are applicable to our operator W(t), or rzther to the corresponding subopera-
tors Wp m(t). In this caSe, the role of the numbers aj is played by the function f“ ( . Ik, t) and the role

of the sum V {ajf? by the integral

Vo el 02 (eI, t)% (15)

{there is no summation over n and m). This integral diverges at the lower limit,* so that the operators
Wy, m(t) are not defined in the Fok space for photons and, by the same token, W(t) is not defined in the
Fok space 3, for photons and charged particles. However, it can be defined as a unitary operator in the
nonsep~_able space

K e Xro 2 xﬁ

where ¥, is the Fok space for charged particles, and ¥, is the nonseparable von Neumann space for
photons. The Fok space ¥, is a subspace of #.

In ¥, we consider the separable subspace
H,, = W (1),
calling it the space of asymptotic states for reasons that willﬂbecome apparent in the next section. Alter-
natively, the space ., can be defined by the formula
2B, = exp {— R,} 3y,

in which the formally antisymmetric operator Rf is defined by a formula of the type
& . dk
R = (TE)‘-/‘,S(ip(k. pe; (k) — 1, (k. p) ﬂ»(*))?(?)dp(w .

*Of cnurse, this integral also diverges at the upper limit. The theory of renormalization must, of course,
be invoked to tackie this ultraviolet dfvergence. In the spirit of this theory, we shall assume that, where-
ever necessary, cutoff factors have been introduced so that, for example, exp{mt} is definod as a unitary
opirator in the Fok space. The infrared divergences of the integral (15) still remain, since they are not
eliminated by renormalizations,
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and the form factor fuﬂc. p) may be an arbitrary function {or which the integrals

» ¢

S(/,(k.p)——gk’—‘-e‘h’)(ﬁ(k,p)—%g"ﬁ')%. (16)
. gn iZe gu —e] dk

ffn pfee — g oS an

converge for all p and q. For if this is the case, conditions of the typs (14) hold for pairs of operators
Wi m(t) and (exp{—Rf})n’m for all n and m, i.e., the images of the Fok space under the {sometric action
of the operators W+ and exp{—Rg} in ¥ coincide.*

We shall now show that the space 3¢, has the following properties:

1} it does not depehd on ¢;

2} It is relativistically and gauge invariants

3) it contains a Loreatz and gauge Invariant subspace 4, with nonnegative metric.

The first property is obvious, since the time does not occur at all in the alternative definition of #.,.
The second property can be more precisely formulated as follows: the space X, reduces the representa-
tion of the Poincaré group @, A — U{e, A) and the group of gauge transformations A(k) — UQ) defined natu-
rally in the whcle 3. To prove this, we note that the operators auﬂ‘) and p{p) transform under this re-
presentation of the Poincaré group in accordance with the following formulas:

VkU(a, A)au (k) U* (8, A) = Y{AR)o(A~),"a.(AR) e,
aU(a, A)p(p)U*(a, A)={Ap)s p(Ap).
It follows that U(a, A)W' (t)U*(a, A) is an operator of the type exp{—~R¢}, where the function

iE-’n“t -

: = P =
et p= e h =

satisfies conditions of the type (16) and (17). Thus, _
Ule, MY Hoy = Ua, AYW* (1) 38, = U(a, \YWH{)U*{a, A}, = K.,
Moreover, only the photon operators are affected by a gauge transformation

Uhya,(kyU* (M) = a (k) + ka(k),
so that the operators W*(t) and UG)W*(t)U*(2) differ only by a factor of the form

had .-!l ..l"
""”{(z:*i-*-g‘“")f B ormen m(p)dp(—z%f—).—,,}.

which commutes with W*(tj and Is properly deflned on the Fok space. Therefore, 3., -is also invariant
under the action of the operators of U(A}.

The subspace ,, with nonnegative metric is formed by vectors ¥ satisfying the additional condition

koW =0,

whose relativistic and gauge invariance {s manifest, The existence of such a subspace 36 ,.of the Fok space
#, and the fact that its metric is nonnegative are well known. We shall show that among the operators

of the type cxp{—~Rg} there exist operators that commute with the additional condition. The image of #&»
in ¥,, under the action of such operators on #, glves us the space J¢_,.

In order to satisfy the aforementioned commutation condition, the function fulk, p} must be trang-
verse, l.e., satisfy the condition kyfu(k, p) = 0. At the first glance, the condition of transversality con-
tradicts the requirement that fu¢k, p} have a nontransverse singalarity of the type pu/pk for small k. How-
ever, we are rescued by the existence of a light-like vector cp(k) such that

keymi; e,=G,

* A space similar to x,, was introduced by Blanchard [14] in connection with an investigation of a non-
relativistic Pauli~Fierz model.
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whose components are conveniently taken to be
{ { k
ey (k) = ey * 5“‘-"2‘-:"—“-‘;- .
The transverse form factor ,;(k, p) can be taken ‘o be the expression
otk = (52 =)o . . (18

where ¢(k, p) = 1 inthe nelghborhood of k = 0. Conditions of the type (14} are satisfled if f,(k, p) is chosen
in this manner.

We shall mention that the subspace &y, like¥,,, Is not yet a physical state space. The group of
gauge transformations operates in ).’ nontrivially. The physical state vectors are in a one-to-one cor-
respondence with the classes of vectors in ¥, forming cyclic subspaces under the gauge group. Themetric
in the space of such classes ., ,. I8 positive definite (see [15]). '

This completes the proef of the properties of #,,. In the following and final section we shall discuss
the role of this space in the scattering theory of a system of charged particles.

5. Definition of the S Matrix

We are now in a better position to say exactly what we mean by the scattering operator. Consider
the operator

So(ti, 1) = exp{— i®(1)}So(2,, 1) exp{i®D(D)},
which differs from the Dyson S matrix for finiie times by the "phase” factors exp{ ti®(t)}. In the product
S(ty, tj = WH{t)5o (0, ) W(t)
the cofactors realize the following sequenée of mappings:

w T we
His- e Hp—>H g — Has
(see footnote p. 750), so that S(t;, t,) is defined as an operator ing%.. The S matrix

fywo |
f,e-

also acts in ¥... In this sense, it is natural to call ¥.,, the space of asymptotic states.

The importance of the operators W' (t,) and W(t,) in the definition of the S matrix is that they force
us to introduce and exploit the space ¥,, of asymptotic states. In the actual calculations of the matrix
elements of the limit operator S between the states of ¥#.., one ean forget the operators W*(t;) and W(t).
For the formal transition to the limit in the coefficient functions of the operators R(t)

Jim - i}k' exp {l'kp .’%} =+ ind(kp) =0
shows that these opecrators disappear in the limit [t| — = and, hence, the operators W(t) are transformed
into identity operators. The role of the operators exp{ +i®(t)} consists of eliminating the infinite phase
factors which would arise if we calculated the matrix elements of the Feynman S matrix between the states
of ¥... It Is precisely the inclusion of these phase operators in the definition of the S matrix that enables
us to get by with a single separable space for the initial and final states,

The S matrix is relativistically and gauge invariant. For the operators WH{t;) and W(ty) cifectively
disappear in the limits t; ~ = and t, — — = and the phase operators acquire an_explicitly covariant form
and do not contain photon operators. If S {s written formally in the form

§ = exp{— i® (o)} S, exp{i®(co}},

where Sg is the Feynman S matrix, the individual cofactors on the right-had side are explicitly invariant.
This formula can be given a meaning if one bears in mind the passage to the limit from a theory with a
finite interaction radius. Let us ascribe a mass A to the photon and let Sp_) be the corresponding Feynman
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S matrix. Then
8= y 2 exp {iO(A}} Spaoxp D (M)},

where
e .
o) = — 3;;8 In M.{————~—-7(m).P_f miyh - P (P)p (@) : dpdge

Tne action of the operator exp{i®(A)} on a state of the form (6) reduces to multiplication by the phase factor

& .
exp {- g i “-2;; T P )+ VT {90 3~ v (B, ) }

The cancellation of such factors with diverging phases in the Feynman § matrix Sp 3, is known in both the
nonrelativistic case [16] as well as in the case of quantum electrodynamics {3, 17]. It should be noted that
we have obtained an expression for the phase factors without solving the complete dynamical problem.

Thus, our proposed alteration of the asymptotic condition in the relativistic theory of interacting
chnarged particles leads to a modification of the space of asymptotic states and ibe definition of an § matrix,
Besides the charged particles, the asymptotic states must contain an infinite number of photons, whoss
low-frequency spectrum {s determined by the state of the charges. The redefinition of the S matrix re-~
duces to the separation of the operator "phase® factors. The first property has a relativistic ckaracter;

. the second is already required in the caseof nonrelativistic scattering by a Coulomb potential,

The arguments that led us to our-basic assumption are not proofs. For example, we have not veri-
fied the existence of a limit in the definition (19} of the S matrix. At the present level of our mathematical
understanding of relativistic field theory, "proof® almost of necessity means "verify for perturhation the-
ory.” Thus, we should at least verify that the matrix clements <¥|S]¥'> of the S matrix betwcen arbitrary
states ¥ and ¥' in ¥, do not contain infrared divergences in all orders of the expansion in e’. Sucha
program can only be implemented by laborious calculations. Fortunately, Chung has already carried out
an appreciable part of these calculations. Let us thercfore compare his and our assumptions,

Chung considered in detail the scattering of a particle by an external field. In this case, there is
a single charge in the initial state and inthe final state; the phase operator vanishes on such states, i.e.,
the S matrix on these states coincides with the Feynman S matrix. In accordance with our assumption,
we must consider the matrix elemunt of this S matrix between states of the form

Wi (p) = exp{— R }5:2(p) |0,

where { is the form factor (18). The stutes considered by Chung can, with 5 slightly different notation, be
expressed in the form

. ,
e (p) = D1e, p)b (103 = Nhexp [, (3 2 p) el 0 ] 6 90103,
fiar}

where £;(19, n = 1, 2, are transverse polarization vectors (¢§ =0, €Tk = 0) and the form factor FP(k, p)
has the form

L]
Fo(kp) = S vk p)
with the same cutoff factor ¢k, p) as f.(k, p), and N i8 a diverging normalizing factor

N = oxp{ i S8 17 e

Chung showed that the matrix element <\i'ch(p)lsf Wch@')> has no infrared divergences in all orders of
perturbation theory. We shall show that our states ¥aa(p) are equivalent to Chung's states ¥, {p}, f.e.,
his assertion also holds for our states,

The state ¥,5(p) can be expressed in the form

e ® ol dk + 7
Wa {p) = exp {WSU»("- p)ay, (k) — fu(k, p)a, (k) W} b (p}{0),
since the state by*(p)|0> is an eigenstate of the operator p ().
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The operation of a gauge transformation UQA) on ¥,,{(p} roduces to the substitution

o Ck, P = fu (ko pY + A (R) "’fp {k, p).
We can choose A such that fo(k. p} = 0 for small k. Since fy is transverse, the form factor i'“ is also trans-
verse and 1s therefore a linear combination of e} @ and c’ :

fo (K, p) = c* (k, p)e}. (k) -+ c* (K, pye} (K),
where

e (k. p) = furp=fyet = ”;' Lo gk, p) = F* (k, p),

since k; and ¢y are orthogonal to c}}, n =1, 2, Thus, the state ¥,5{p) Is equivalent to 3 state of the form
> n n_e ne ‘
Tty oxpfo AN P (. 30 (0 = 7 (h, ), (0 gy VOOV

This state {s identical with a Chung state, as is easily seen by reducing the operator occurring in its Je-
finition to a normal form in accordance with a formula of the type (12) and then omitting the factor con-
taining photon annihilation operators.

Similarly, one can verify the equivalence of the states proposed by Chung for systems of several charged
particles and the corresponding asymptotic states constructed in accordance with our prescription. How-
ever, in this case, one must remember that the phase operator is nontrivial. Some calculations taking
this fact into account have been made by Storrow [18]. Chung did not make a special study of states that,
apart from charged particles, also contain hard photons. An uncritical generalization of his suggestions
to this case can lead to incorrect assumptions. For example, the states

Yalp, k) = D(a,*, p)b*(p)a.* (k) |0
and

Y. (p, k)= esp{—R,}b*(p)a." (k) |0}

are not equivalent, since one cannot neyglect the photon annihilation operators In the reduction of the states
¥,3(P, K In accordance with the above method. One can show that the matrix clements of the S matrix
between states of the second kind vanish as the phetor momentum decreases but that states of the first kind
lead to matrix elements thai diverge as k — 0. Thus, it is the second definition, a special case of our
general definition of asymptotic states, which is correct.

In conclusion, we should like to point cut that the space .. docs not contain single-particle states
of charged particles. - Putting it more precisely, the representation of the Poincaré group a, A — Ufa, A)
acting in the physical Hilbert . pace ¥.. ;. does not contain discrete irrcducsble terms with nonvanishing
mass. In other words, one can say that the relativistic concept of a charged particle does not exist. This
is a well-known assertion (see [19]) and our paper proves that it is a natural assertion from the point of
view of scattering theory. It would be interesting if one could find a relativistically invariant cemplete
set of commuting operators in ¥., which could be used to define a natural basis of asymptotic states.

APPENDIX
In this appendix, we wish to calculate the asymptotic behavior at large [t} of the integral
" | w.
S jarfeivae. Vi,

which defines the phase operator #(t). Using the explicit expression for V““(t), we rewrlte this integral
ip the form

E%;Sdpdq ﬁP(P)P(q)SdtS S—-—-sm /ic( Ly {;n)).

We note that

e(P)p(a)=:0(P)p(g): + 8(p — @) [p- (P} + 0-(p)].
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£o that the integral splits up into two terms. The second of these is proporticnal to t and contributes to
the renormalization of the mass of the charged particles. Let us consider in more detail the first term,
for which we integrate successively over k, 8, and 7. We have

dk q P\ 1w/l & P ¢

—— I Y JUNE oa 21 [ e G e g jE{T =3}

Szk'ain<k(g‘f P"}) (‘% Pe )) ¢

The argument of the é-function has one root 8 smailer in modulus than 7; the difference of the roots is
proportional to ((p?-m*)!/2, Thus, integrating over s, we obtain the expression

e pdq___._.__...pq. b odx
8 Sd FaF — iy PP 2(Q): Sé_ti"
which defines the phase operator (11).

LITERATURE CITED

i P. Bloch and A, Nordsieck, Phys. Rev., 52, 54 (1937},
2 A, I, Akhiezer and V. B. Berestetskii, Q'\Immm Electrodynamics [in Russian], Nauka {1969}.
3. D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (New York}, 13, 379 (1961}.
4. V. Chung, Phys. Rev., 140B, 1110 (1965). _'
5. T. Kibble, Phys. Rev., 173, 1527; 174, 1882; 175, 1624 (1968).
6. E. S. Fradkin, Tr. FIAN, 28, 7 (1965). "“
7
8

J. Dollard, J. Math, Phys., 5, 729 (1964).

.

. L. A, Sakhnovich, Tr. Mosk. Matem. Gb-va, 19, 211 (1968).
9. F. A, Berczin, The Mecthod of Second Qua.ntiz?z_ﬁon. New York (1966).
10. V. S, Buslaev and V. B. Matveev, Teor. Matem, Fiz., 2, 367 {1970).
11. W. Amrein, Ph. Martin, and B. Misra, Preprint Univergity of Geneva (1969).
12. J. von Neumann, Comp. Math., 6, 1 (1339).
13. A. Wightman and S. Schweber, Phys. Rev., 98, 812 (1955).
14. Ph, Blanchard, Comm. Math. Phys., 15, 156 (1969).
15. I Sigal, Mathematical Problems of Relativistic Physics {Rusclan translation), Mir (1569).
16. V. G. Gorshkov, Zh. Eksp. Teor. Fiz., 40, 1481 (1961}, ‘
17. 8. Weinberg, Phys. Rev., 140, 516 (19653_:—
18. J. K. Storrow, Nuovo Cimento, 51, 15 (1968).
19. B. Schroer, Fortschr. Physik, i1, 1 (1963).

787



