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IN Q U A N T U M  E L E C T R O D Y N A M I C ~  

P.  P.  K u l i s h  and  L. D. F a d d e e v  

D ~ V E R G E N C ~ $  

A definition which is f ree  of in f ra red  d ivergences  is  proposed for  the S mat r ix  of s r e iaUv-  
ls t ic  theory of in teract ing charged p a r t i c l e s .  This  Is achieved by a modification of the 
asympto t ic  condition and the introduction of a new simce of asymptot ic  s ta tes .  This  stat~ 
di f fers  f rom the Fok space,  but is sepa rab le  and re la t lv is t ica l ly  and gauge Invariant.  The 
m a s s  opera to r  has no nonvanishing d i sc re te  e igenwlue , .  

In the presen t  paper ,  we shall  d iscuss  some aspec ts  of the sca~e r lng  problem in the relati~dsti~ 
quantum theory  of in teract ing charged par t ic les  and photons. The main resu l t  is the descr ipt ion of a space 
of asympto t ic  s ta tes  for  such a s y s t em  and the definition of ,an S mat r ix  that is f ree  of Inf rared  divergences.* 

The inf ra red  ca tas t rophe  has frequently been discussed,  the f i r s t  occasion being the c lass ica l  paper  
of Bloch ,mad NordMeck in 1937 [1~. The physical r easons  for  inf rared  divergence S a r e  well o.nder~tood 
and they do not lead to ,any pF:ysical p roblems.  However, the general ly  accepted fo rmal  t rea tment  of Lhe 
In f ra red  ca tas t rophe  Is not, in our view, completely  s a t i s f a ~ o r y .  

In textbooks on quantum elec t rodynamtcs ,  the r e a d e r  must  wres t l e  with Inf rared  divergcnc~.~. .and 
sum the probabi l i t ies  of a t ransi t ion f rom a ~.~ven initial s ta te  to all final s la tes ,  which include ~ot only 
detectable  par t ic les  but a lso  an a r b i t r a r y  number of "soft" photons (see f2}). An im0ortant  role  in the 
just if ication of this approach is played by ~ e  asympto t ic  formulas  for  the ~catterlng ampli tudes in the case  
~vht., the ar t i f ic ia l ly  introduced photon m a s s  tends to zero.  The gerteral form of these formulas  was de~ 
r ived in ~he ~x'~pers of Yennie c t a l .  [3]. 

In the class ' ,eal  method jus[ descri~)cd, the c ro s s  sections ~nd not the mat r ix  eIcm~'.~ts a ro - regarded  
as the p r i m a r y  objects~ The initial and'final s ta tes  a re  t reated as a s y m m e t r i c  and an S w~atrix is not de -  
fined at all. One is natural ly led to ask  whether these  fea tures  a r e  unavoidable and due to the physical  
na ture  of the problem or  whether  there  exis ts  nn altermative approach to I rdrared s ingular i t ies  in wFgch an 
S ma t r i x  can be defined, in the p resen t  paper,  we at tack the problem in this manner  and propose a version 
of the asymptot ic  condition which is  special ly  suited to a re la t iv is t ic  sys t em of charged par t ic les  and makes  
poss ib le  a c o r r e c t  definition of aa  S mat r ix .  

Our point of depar tu re  is Chung's  important  paper  [4]. Chung su rmised  how one can choose s ta tes  
containing a charged lxarticle and a superposi t ion of an infinite rmmber of photons In such a way ~ a t  the 
m a t r i x  e lements  of the F c y n m a n - D y s o n  S mat r ix  between these s la tes  a r e  finite and nonzero.  Chung~a 
genera l iza t ion of the construction of these  s ta tes  for  the case  of seve ra l  charged par t ic les  is  too unsophis-  
t icated; in par t icu lar ,  it ignores  the infinite Coulomb phase. 

Kibble [5] made some important  advances on Chung's  work. ite introduced a ve ry  l a rge  space 
asympto t i c  s ta tes  and showed that the F e y n m a n - D y s o n  S mat r ix  can be co r rec t ly  defined in this s ~ t e  as 
a uni tary  opera to r .  Klbble 's  space  is  nonseparable  and contains s ta tes  with an lnf ini tenumber  of soft photons. 
One can distinguish separab le  subspaces  of Kibble 's  space which a r e  mapped Into one another  by the S 

* The r e s u l t s  of th~.~ ~ p e r  were  b r ie f ly  reviewed by the authors  at the Scientific Session of the Nuclear 
Phys ics  Division of the Academy of Sciences of the USSR in May ,  1969, in Leningrad. 

Leningrad Branch, V. A. Steklov Mathematics  Institute,  Academy of Sciences of the U,S~.  Trm~s- 
fated f rom Teore t icheskaya  I Matemat icheskaya  Fizik~, Vol. 4, No. 2, pp. 153-t70,  August, 1970. Orig- 
inal a r t i c l e  submit ted March 23, 1970. 

0 1971 r B~eaB, 6 dt~iJiO~ o[ P l e ~  l'~,bti.Sint r 227 re ,z  i~tA S~ .~ ,  ~ w  ~o~k, 
N. F. IDOll. All r~hts re,erred. TAia article co~o! be reproduced for o~y purpose w~soever  w~tAomt 
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matrix,  lIowever, there  Is no stable separable  subspaee f l in t  is mapped into itself.  This  is connected with 
the in f~ i t e  Coulomb phase contained in the S matr ix.  Kibbio's analytic ap~'~ratus is based on the asymp-  
totic formulas  for  the many-par t ic le  Green ' s  function nenl" the m~ss shell for  the charged part icles .* Thus, 
Kibble's definitions a re  based on the complete solution of the dynamlcal problem and a re  there fore  very  
cumbersome.  

Our approach differs  f rom these approaches in what wc modify not only the space of asymt~totic s tates  
but also the very  definition of the scat ter ing opera tor .  "l'hiN enables us to compensate  the Coulomb phas~ 
automatical ly and our space of asymptot ic  s tates  is 8cp~arablo and is no r i cher  in s ta tes  than the Fok sp~ee, 
The complete procedure  is suggested by the nonrel,~tivisi|v theory of scat ter ing by a long-range potential 
.and has a s imple physical in terpreta t ion.  We a re  not forced to solve the complete equations of quantum 
e lcc t rodynamies  in o rde r  to implement  our  program.  Thu~, we der ive  Chung's formulas  without laborious 
c~lculations and obtain their  co r r ec t  general izat ion in the ca~e of an a rb i t r a ry  number  of charged par t ic les  
and photons in the initial and  final s ta tes .  

F rom the mcthodolobdcaI point of view, the main resul t  of our paper is a re la t iv i s t | t a l ly  and gauge 
invariant  definition of the S mat r ix  and t~e space of asymptot ic  skates of the charged part ic les .  

M the present  paper,  we Lake ".he example of Coulomb scat ter ing to explain the main idea of our ap-  
proach. The hub of the idea is that tn the definition of the wave opera tors  we do not take exp{-iH0t  ~ but 
a more  suitable opera tor  Uas{t ) as the opera tor  of the asymptotic  dynamics. The choice of this opera tor  
is based on a natural  physical condition, namely,  the wave Imckets Uas(t)q at l a rge  itl must correspond 
to the c lass ical  motion of widely separated charged par t ic les .  "l"he actual choice of Uas(t ) for  quantum 
e lec t rodynamics  is d~scussed in Sections 2 and 3. In the next section, w e  introduce and discuss a space 
of s tates ,  different  f r o m  toFok ' s  space0for clxarged ~ r t i c l e s  and photons. In Section 5, we explain why 
this space c.'m be used ra tura l ly  as the space of asymptot ic  ~tates and we give the final definition of the 
S matr ix  and compare  our resu l t s  with those of Chung. 

The authors  a re  grateful  to  V. G. Gorshkov ,and V. N. Popov for numerous discussions of the prob-  
lems  of in f ra red  d ivergences .  

1 .  N o n r e l a t i v i s t i e  C o u l o m b  S c . a t t e r ! n g  

The sca t te r ing  of a nonrela t iv is t ic  l~article by a Coulomb potential may se rve  t o  i l lustrate  the main 
idea of our approach. The H.amiltonian of the sys tem has the form 

~t g =, I1o ~- V, 
n --- + - 7 

where m is the mass  of the p a r t | t i c s  and g is the product of the charges of the par t ic le  and the scat ter ing 
center .  The asymptot ic  behavior  of the potential V(t) in the int~:raction representa t ion can be easily cal-  
culated. One must  note that 

v{t} = p l - - - i T .  

The f i rs t  t e rm of this asymptot ic  express ion  cannot be intev,q'ated with respec t  t o t h e  t ime in the neighbor-  
hood of.infinity and its contribution to the dynamics cannot be neglected, even for  ~tl -- % In other  words 
the asymptot ic  dynamics  is  not descr ibed  by II 0 but by the explicitly t ime-dependent opera tor  t 

mg 
n , . { t )  = I ! .  + = :1~ 

Thewave  packets ~ (r, t) sat isfy the asymptotic SchrSdinger equation 

d 

*Such formulas  have a long his tory .  A generating functionM for  the Green ' s  functions which takes into 
account this asymptot ic  behavior  r igorously  was obtained by Fradkin [6]. 
t l lere ,  we have used the fact that the express ion for Vas(t ) is the same in both the Schr~linger  and the 
interact ion representa t ion.  
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and can be represented  in the form 

Of course ,  the choice of the solution in this form corresponds  be a defintt~ choice of the "irdtial condi- 
t ions" for Eq. (1). These  conditions a re  dctermlnod by the following considerations.  The variation with 
t ime of the distribution of coordinates and momenta in the packet (2) for  It] -- ~" is governed by ihe equti- 
tions of c lass ical  mechanics.  The constant t o Is not 31gnificant in this connection. 

To justify this statement,  consider ,  for  example,  the asymptotic  expression for the expectation values 
of the coordinates and the momenta 

6'(0> = (re(t). ,~t))~nd<~(t)> = (~(0, *(-~)). 
Obviously, the second quantity does not depend on the t ime 

(0) = ~ p ~, (p) l '~P = 

and the f i r s t  has the following asymptot ic  behavior for  It;  --  

which can be readi ly  obtained, for  example,  by the method of sLatiotx-~ry phase. 

These considerat ions show how natural  the choice of the asymptotic  wave packets in *.he form (2) is  
f rom the physical point of view. Moreover ,  it  hasbeenkno~ ' ,  ~ince Dollard's' paper [7] that *.his choice of 
the packets leads to the co r r ec t  definition of. the wave opera to rs  and the well-known express ion for  the $ 
matr ix.  Writ ten out more  fully, the packet (2) has the form 

* (t) ~ U,,(') , = e"u'~ exp {-- i--mpf-~-,|gu t lrt ~-~ } , .  

and there  exists  the strong l imits  [7] 

the S matrix 

U• --- lim #ntUs~{0 . 

$ =  U**U_ 

giving the well-known express ions  for the differential  c ros s  sections for scattering by a Coulomb poten- 
tial. The choice of the pa ramete r  t o does not affect the express ions .  In contrast ,  the usual definitions of 
the wave opera tors  of the formal  scat ter ing theory,  In which H~ is taken as the asymptotic opera tor ,  a re  
incor rec t  and perturbation theory for the usual S matr ix  leads to the w e l l - k ~ o ~  Infrared caLastrophe. 

This  example shows that the choice of the ltamiltonian of the asymptotic dynamics must be dictated 
by the physical nature of the problem and that it is a mistake to apply blindly the usual p~'.,.,'-crlpflons of 
the formal  theory of scat ter ing and assume that the asymptotic  dynamics is always define,, ~ i~y the opera tor  
H 0. This prescr ipt ion can be Implemented formally by choosing the, in general,  nontrtvi,~l and t ime-de-  
pendent interaction opera tor  Vas(t), which coincides with the highest t e rms  in the asympb~t iccxpress lon 
for the opera tor  V(t) in the interact ion representat ion.  Once the operator  lias(t } has bec~ f~,u~d, the solu- 
tions of the asymptotic  Schrodingcr equation must be singled out by "initial conditions" that ensure  that 
the result ing wave packet behaves c lass ica l ly  as ] tj --- ~. In the following section, we shall apply these 
arguments  to re la t iv is t ic  quantum elect rodynamtcs .  

2.  C o n s t r u c t i o n  o f  V a s { t  ) in  Q u a n t u m  E l e c t r o d y n a m i c s  
- -  ' . . . . . .  , � 9  , , �9 _ , , , i 

To be specific,  we shall consider  spinor clectrodynamiCs descr ibing a sys tem of interact ing e | c c -  
irons~ positrons,  and photons. We shall use the traditional notation ~ .and ~ for the opera tors  of the e lec-  
t r o n - p o s i t r o n  field and A;A for  the opera to rs  of the e lectromagnet ic  field. We also take bi§ bi{p) , dl+{p), 
dl(p) , a ~ k ) ,  a~(k); I = 1, 2; # = 0, IV 2, 3, as the opera tors  of creat ion and annihilation, rcspccLlvely, of 
e lec t rons ,  positrons,  and photons. We shall adoi~t an explicitly covariant  formal ism and assume an in-  
definite metr ic  in the photon IIl lbert  space.  Finally, we shall a s sume  that ti -- e = 1 and that aU vec tors  
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a r e  contravar iant ,  I .e. .  the choice of a vector  subscr ip t  or  super sc r ip t  will be dictated purely by con-  
venience. Thu~, a# .~ a~. a . bp~  a0bo-ab ~ ab. 

The field opera to r s  r ~, and A~ can be expressed  in te rm~ o~ the crea t ion  and annihilation ope ra -  
to r s  as  followm 

| e / m  \%r.~ 

~k @r �9 

where Wn(P) and vn(P) are the corresponding splnor amplitudes. 

In order to obtain an expression for the interaction operator 

in the interact ion reprcsenta t ion ,  It is sufficient to substitute the cxpUclt fo rmulas  (3) into (4) and furnish 
the o p e r a t o r s  of creat ion and anhibAlation with appropr ia te  thne  fac tors ,  for example ,  eIk0~a~(~ and 
eip01b~(p), k0 :- Ik[, p~ = p~ * m 2. The rcsuI t ing express ion for V(t) is an integral  over  the momenta  p, q, 
and k of the fermJons  and photons, which a r e  re la ted  by the equation p + k = q. 

Our i m m e d i a t e t a s k i s  to invest igate the asymptot ic  behas.Ior of this express ion  for  i tl ~ ~. In this 
l imit ,  all  the t e r m s  in the express ion can be spli t  into two ~roups. The t e r m s  of the f i r s t  ~roup contain two 
creat ion ope ra to r s  or  two annihilation opera to r s  of char~,cd ~ r t i c l e s .  The argument  of the exponential func- 
tion charac te r iz ing  the t ime dependence of these t e r m s  is proportion3i to the express ion  ~1~ * mZ) I]2 + {(p 
- k ~) - m") t/~ ~ kr which is separa ted  f rom zero  for all p and k. Such t e r m s  there fore  dec rease  suffi-  
ciently rapidly as ttl ~ ~. The t e r m s  of the second group .have an argument  of the exponential function 
proport ional  to (p" - m~)~/z-((p �9 k) ~ �9 m~)~/: ~ ko, which vanishes for k -- 0 for all p. It is  c l ea r  th:tt R 
is these t e r m s  of the second ~ro,~p that de termine  the des i red  asymptot ic  behavior  of the opera tor  V(t) and 
that the t e r m s  of the f i rs t  group may be neglected. 

The next simplif icat ion is b.~sed on the fact that the principal contribution to the remaining integrals  
in the l imit  Itj ~ ~. comes  f rom the neighborhood of small  momenta k. In the corresponding integrands 
we may the re fo re  se t  k : 0 in all the slowly varying Iunctions, i . e . ,  in the opera to r s  of creat ion and anni-  
hilation b n and d n and the coefficients composed of spinors .  In addition, the express ions  for the la t te r  
s implify considerably  because  of the orthogonality conditions for solut ions of the Dirac  equation. As a 
resul t ,  we obL~in a s imple  express ion f~r the principal t e rm V(t) of the asymptot ic  express ion for the 
opera tor  V{t) as  [t j  -* -.. 

We shail now wri te  down explicitly the Schr~)dingcr rcpresenta t ion for  Vas{t), which coincides with 
V{t) in the interact ion representa t ion.  Like the total interaction, we r ep resen t  the opera to r  Vas(t) as  an 
integral  of the product  of a cu r ren t - type  opera to r  ,and a vector  potential 

V..(,) = ~ S J~.(k. t) (a." (-- k) -k a~(k)) ( ~ .  (5) 

where 

and 

J: . ( i , .  0 = - ,  ~ .~e  p, p(p) ~-- 

p (p) ~ ~ (b~ (p) b. (p) -- d~ (p) ~. (p)) --- p. (p) -- p. (p). 

The cor responding  express ion  in the interaction representa t ion  differs  only by the substitution kp - -  - k p  
in the integral  de te rmin ing  the asymptot ic  current. 
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We note that the expression for the asymptotic current does not contain spinors lind that Lh~ contri- 
bution from the charged particles is given only by a distribution of charges over momenta. In this sense, 
the expression is unlvcr~rth we would obtain a similar formula in the case of charged particles with ar- 
bitrary spin, the corresponding density p(p) being a sum over  th~ charged par t ic les  in the system. 

The operator of the asymptotic current Jas~{k., t) has a simple physical mcanlng. A state of charged 
particles with given momenta 

b ~ b" " " 

,is an e!genstate for  this opera tor ;  the corresponding eigcnvalue 

where  

J ~ ( k ' ~ j P ) = e P ~ e x p l |  ~P 1 

is the classical  cur ren t  of point charges  moving ,~long s t ra ight  lines with momenta ~ qj, i : 1, o . . ~ ~ 
j = 1, . . . ,  m. In this sense,  the opera tor  of the asymptotic  interaction ~s a natural  re la t iv is t ic  genera l -  
ization of the nonrelat ivis t ic  asymptotic  potcnti.~l of the foregoing section. As i~ Section 2, we propos~ 
to define the asymptot ic  dynamics of the system by means o~ the overa tor  

~..(t) = / ~ .  + v..(t),  

where H 0 is the anergy opera tor  of the f ree  fermi~:,~ ,~nd photons. Our ~ex~ task is to solve the Schr~l lnger  
equation with this opera tor .  

3. D e s c r i p t i o n  o f  t h e  A s y m p t o t i c  D y n a m i c s  

The rnnathernatienl structure of the ~,crator Vas(t ) is similar to that of the well-knov,'n H,~miltonlan 
for the interaction of bosons with fixed ferrnions. As a result, the solution of the oquatiol~ 

i ~ -  U (#) = H,,(t) U (0. {T# 

which must be satisfied by the opera tor  Uas{t ) describing the asymptotic dynamics,  can be found expllcitly. 
In sol~'ing this equation, we shall devote our main attention to the choice of appropriate initial c~.~dltl~ns. 
The point is that Vas(t) contains the opera tors  a;~'{10 and a#(k) l inear ly  and therefore  does not commute 
with the e~act momentum of the system. This circurnstance in no way invalidates our program,  since w e  
only intend to use this o~ : r a to r  asymptotically for large ltl,  i .e. ,  when only small  rnomer~tn k make a con- 
tribution to the integral .and the lack of cornmutntivity is not so drast ic .  However, we mu~t ,~,,~t forget  this 
fact in choosing the boundary conditions; in I '~rticular, the express ion for  Uas(t) must not coz~t,~in a c~xt-- 
tribution f rom inJ, eg'rals of V'as(t ) with respec t  to finite t. We shall see that this condition essential ly de-  
termines  Uas(t ) uniquel~ 

F~xperlence of such problems suggests that it is advisable to seek the solution of Eq. (7) in the form 

The equa t ionror  Z(~ i s  

V . ( O  = e , ' " , ' z ( t ) .  

where 

: ~ - -  z ( 0  -- v ! . (0  z {0 .  

vL (t) =. ,.,ha v,.(~) ~,~.~. 

The explicit  express ion  for  the opera tor  VIas(t ) dif fers  f rom formula (5) only by the presence  of the factora 
t and e;l t or o;00 aj, . 

The opera tor  VIs(t) p o s s e s s ~  the following important  property.  The commutator  

[ v ~  (t,). vL (I,)I = Q (~I, t~ 
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commutes with VIas(t) for all t, t~, ~. This property enables one to dlsemtang~e the T-product  explicit ly 
and. by the same token, to find the general ~oluflon of Eq. (8) 

Z(t)-T..p I-- ,  IV~..(,),.}, 

n a m e l y .  

e ~ v 

In the last  two formulas,  there  is a degree of freedom in the choice of the lower l~'~t of integration. This  
comes about direct ly as a resul t  d the aforementioned p r ~ l e m  of the choice of the initial condition. Tho 
requirement formulated in that connection admits only a single method of calculation of the Integrals in 
19), namely, one must assume that 

I o , ~  ffi ~-..~,. 

Only in this case a re  the forbidden te rms  that do no~ :ommute asymptotlcsl ly with the momentum absent.  

Having settled this point, we can easily obtain ~ e  explicit  form of the desi red operator  Zlt). It Is 
convenient to express  tt  in the form 

where 

and 

Z(t) ~- exp {R(t)} exp {/~)([)}. 

R(t) =----t-e ( ~ -  " '~ '  - '~'  a~ (~). . j  ~ (a~(k), p. --a~(k)e P. ) p ( p ) d p ( ~  

as h - - - a n d t  e -  - 

Umes 

(Io) 

The evaluation of the integrals leading to F~l. (II) is dealt with in ~e Appendix. 

It is natural to call 4, the phase operator. This can be justified by comparing formula (11) with the 
formula for the nonrdatlvlstic Coulomb phase in Section I 

and recall ing that v(p, q) = (1 -Im4/(pq)ZDI/~ plays the role of the relat ive velocity for  part icles with velo-  
cities p/po and ofq 0. It Is then seen that formula (II) gtves a natural relat ivis t ic  generalization of the 
Coulomb phase. The first factor in Z(t) is of purely relativistic origin. We shall discuss its properties 
and its role in the asymptotic condition in the following section. 

Thus, the final expression for the operator of the asymptotic dynamics has the form* 

U..(t) = exp {--~U,:} e~ {~(t)} e~p {a(t)}. 

where tee operators  R(t) and ~ t )  a re  defined by formulas {10) and (11), respect ively.  We note that ~ e s e  
operators  commute. Proceeding with the generaliz~ation of the nonrelat ivist ie  formulas  of Section I ,  we 
must define the S matr ix  as the l imit  of the operator  

S(t.. t.) = Uo/(t .)  esp {--LH(t. -- ts)}Uw(t.) 

The expression on the rlght-hand side d i ~ - q  f~'nm the Dyson S matr ix  for  finite 

s o ( r , ,  t,) = ~.xp {:H#,}  e z ~  { - i l l ( : ,  - -  t , ) }  , x p  { - ~ l H , t , |  

by the outer factors  of the type exp{R(t) § 14~t)}. In the following sections we shall at tempt to show that 

"Dol lard 's  paper [7] is not the only investigation in which an asymptotic condition is modified by replacing 
exp{-iH0t ) by an operator  of the form exp~-lti0t } Z(t) in the definition of the wave operators .  A s imi la r  
approach was also used in [8, 9, 10, 11 i lIowever, in contrast  to the opera tors  used in all these investJ- 
gations, our opera tor  Z(t) does not commute with H 0. 
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the definition of the sca t t e r ing  ope ra to r  based on the express ion  for S{tt, ~ is  more  co r r ec t  than flue gen-  
e ra l ly  accepted  l imi t  of the opera to r  SD(tt, t~) as  t t ,~ and t~-~ ,* 

4 .  R p a c e  o f  A s y m p t o t i c  S t a t e s  

The g r ea t e r  par t  of this section will be devoeed to an investigation of the p roper t i e s  of~ho o p e r a n t  
W(t} "- exp{R{t)}, which occurs  |n the express ion ~or the opera to r  of the asymptot ic  dynamlc8 In Section 3. 
In the f i r s t  place, we shall  be in teres ted  in its effect on a r b i t r a r y  s tate  vectors .  Our problem is great ly  
s impl i f ied by the ~aet that W ( t ) p r e s e r v e s  the number ,  momenta ,  and spins of the charged par t ic les .  Put-  
ring it m o r e  prec ise ly ,  the ~lnftnlteslmal ~ subspaccs  formed by vec tors  of the fo rm 

~t , . . . {p ,# ,  . . . . .  l:,.,.~q,~, . . . . .  ~ J . ) |  ~,,, 

where ~n ,m {PiSt, �9 - �9 Iqtli, �9 �9 �9 ) is  the e.hargcd-part tcle s ta te  introduced in {6) and ~y  is  an a r b i t r a r y  
photon s tate ,  r educe  the opera to r  W(t). In each such subspaee,  W(t) is  defined by lt~ action on 4k~, which,  
in i ts  turn,  is defined by the opera to r  

where  

i~P~t ~ .,~ ~---~ 

An express ion  of the type exp {l inear  fo rm in a and a § which we have just encountered, is an old 
fr iend of all field theoret ie ians .  Let us br ief ly  recal l  the well-known proper t ies  of such express ions ,  Laldng 
as an example  the ope ra to r  

W = e x p l ~  (a,'a, " , a , ' ) ~  , 

& 

defined in t e r m s  of a d i s c r e t e  se t  of hoses  opera tors  a i and a~ and numertc,'~l coefficients e l ,  r ; I = 1, 2, 
. . .  If  W is  reduced to normal  form,  we ~btatn 

Clear ly ,  this express ion  is mear~ingless if ~ f a l ~  = o,. Putting it more  correc t ly ,  W is not defined in 
d 

the Fok s ~ c e  in this case .  However,  this does not prevent  it f rom being a perfect ly scas ib le  uni tary 
ope ra to r  in a l a r g e r  space,  such as the complete lnfirdte t ensor  product (in the sense  of yon Neumann {12]) 
of Me slxaces ~ .  of individual osc i l la tors .  

The dif ference between these two spaces  can be bes t  lllustratcxi in the occupation number  r e p r e s e n -  
tation [131. An a r b i t r a r y  s ta te  vec tor  In this representa t ion  is a functional [ = f({n}) or~ the space of In-  
finite sc0uenees  of in tegers  

{ , , }  = ( , , , n ,  . . . . .  n . . . . .  ) ,  

where n I numbers  the s ta tes  of the i - th  osci l la tor .  The Fok space  Ji*,0 is formed by funetiona[s that are  

nonvanlshing only on sequences  for which ~ n! < .o. The se t  of such sequences ' i s  countable, i ,e. ,  ~0 Is  

separab le .  In contrast ,  the se t  of all  sequences is  continuous, i .e . ,  the space ,~ of all f tmctloaals for  which 

~_..8 II({M} ~ <  ** 

Js nonseparable .  This  space  is  i somorphic  with the aforementioned infinite tensor  product of  vQn Neumsnn. 

The action of the opera to r s  a t and ai in ~ is defined by exact ly the s ame  formulas  as  in the Fok space.  



For a;:~raple, 

at/(", . . . . .  " ,  . . . .  ) .  g E ' , I ( , , ~  . . . . .  , ~ -  ~ . . . .  ). 

It is clear that ~, is Invarlant under the action of a~ and a I. However, thJ~ ~ no~ necessarily ~rue 
for arbltrnry functions of al ~ and a I. For example, the o[n, rator W i~ unitary in the space J$ for any choice 

of the numbers ai. liowever, if Z [ai[~ = "* it maps every vector belonging to the Fok subspace oul of 
| 

the latter, at is therefore natural to consider the Fok space ~r,, the image of the Fok space$8r W: 

~'{.) - W ( , ) ~ , .  

Ilere,  we use a more  detailed notation W(,} for W. Clearly,  ,?~'~,) is a separable subspace of 9it which is as 
r ich in e lements  as  the Fok spa.ce ~f,. 

The re  exist  ent i re  c lasses  of numerical  sequences {~} to which there  correspond one and the s~me 
subspace 9te(,~. The simple formula 

I t ~ - -  {13~ 
(a-~l, 

in which the sequence { o r -8 ]  is composed of the ~---,'nbers c t i -~i ,  shows that the spaces ,~(,,~ and JS,,  coin- 
cide if  

~I~-P.I'< ~o, ~_.,~ilm,~,~,;i < ~,, (14) 

since, in this case, the opera tor  on the right-hand side of (13) is u_,,_itary in ,.,~e, and 

Our asser t ions  and formulas can be tr ivial ly generalized to the case of subscripts  i of a rb i t r a ry  
nature.  In part icular ,  they a re  applicable to our opera tor  W(t), or  ra ther  to the corresponding subopcra-  
tors  Wn,m(t). In this ca~e, the role of the numbers c~ i is played by the function ~~ (. . . Ik, t) and the ro le  

of the sum ~-" [ai]~ by the integral  
L _  

(there Is no summation over n and m). This integral diverges at the lower l im i t , "  so that the operators 
Wn,m(t) ~re not defined in the Fok space for photons and, by the same token, W(t) is not defined in the 
Fok space ~ ,  for  photons and charged particles.  Ilowever, it can be defined as a unitary opera tor  in the 
nonsep' . table space 

where ~,~ is the Fok space for charged part icles ,  and Y,  is the nonscparable yon Neumann space for  
photons. The Fok space ,Pl~t is a subspaee of ~Lr 

In 9i e, we consider  the separable subspaee 

calling it the space of asymptotic states for reasons that will become apparent in the next section. Alter- 
natively, the space ~--o. can be defined by the formula 

, ~ .  = e x p  {- R,},~,. 

in which the formally ant lsymmetr ie  operator  Rf is defined by a formula of the type 

e~ k ~k R, {~i(/~( . p)a~,(k)--/'~(k.p)a,,(k))p(p)dp(T~rg. 
*Of cr,,trse, this integral also diverges at the upper limit. The theory of renormalizat ion must,  of endorse, 
be invoked to tackle this ultraviolet  dfyergenee. In the spiri t  of this theory,  we shall assume that, where-  
ever  ne~-essary, cutoff factors  have been introduced so that, for  example, exp{iHt} is defined as a unitary 
opera tor  In the Fok space. The infrared divergences of the integral {15} still remain,  since they a re  not 
eliminated by renormalizat lons .  
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and the form factor f~(k~ p) may be an arbitrary function for which the integrals 

J[ 

converge for all p and q. For If thls is the case, conditions of the type (14) hold for pelrs of operator) 
W. + ,~(t) and {exp{-Rf})..~ for all n and m, i.e., the images of the Fok space trader the Isometric action 
of't~'e operators W § and"~x"p{-Rf} in ~ coincide.* 

We shall now show that the space Jg., has the following properties. 

I) it does not depend on t; 

2) it is relativistically and gauge Inwrlant; 

3) it contains a Lorentz and gauge invariant subspace ~f~ ~ith nonnegstlve metric. 

The first property is obvious, since the time does not occur at all in the aiternatlve definition of~@,,. 
The second property can be more precisely formulated as follows: the space ~., reduces the represcnta- 
tlon of the Polncar~ group a, A ~ U(a, A) and the group of gauge transformations )~(k} -* UCA) defined natu- 
rally in the whcle YS. To prove this, we note that the operators a~(k) and p(p) tr,~nsform under this re- 
presentation of the Polncar~ group in accordance with the followlng formulas: 

~.U (a, A)a,(k)U+(a, A) •, "f (Ikk).(A")Ja.( Ak)e -~u', 

p.U(a. A)p(p)U+(a. A)-----(Ap), p(Ap). 

It follows that U(a, A)W+(t)U+(a. A) is an operator of the type exp{-Rf}, where the function 

�9 (:~p)., 

satisflcs conditions of the type (16) and (17). Thus, 

u(o,A)~.. = if(a. A)w~(.O~, -_ u(a. A)W*(t)U*(~. A)~, = ~ . ~  

Moreover .  only the photon opera tors  a re  affected by a gauge t ransformat ion 

so that the operators W+(t) and UCA)W+(t)U*CA) differ o~ly by a factor of the form 

which commutes with W+(t) .~nd is properly defined on the Fok space. Therefore, ~,, -is also invarlant 
under the action of the operators of UCA). 

The subspace J~ with nonnegatlve mctrle Is formed by vectors + satisfylng the addJLtional condition 

k.aoV -- O, 

whose re la t ivis t ic  and gauge lnvarlance is manifest.  The existence of such a subspace ~ o f  the Fok spac~ 
~t~, and the fact that its met r i c  is nonnegative a re  well known. We shall show that among the opera tors  
of the type e•  there  exist  opera tors  tb.~t commute with the additional condit ion,  The image of ~ 
in r under the action of such opera to rs  on ~e.~ gives us the space ~ .  

In o rde r  to satisfy the aforementioned commu~t lon  condition, the function f~(k~ p) must bc tr~,ns- 
vc r se ,  i .e. ,  sat isfy the condition k~f~{k, p) ~- O. At the f i r s t  glance, the co~ditlon of t ransversa l i ty  con- 
t r n ~ c t s  the requi rement  that f#Ck, p) have a nont ransverse  slngdlarl ty of the type p~/pk for small k. How- 
ever .  we a r e  rescued  b y t h e  existence of a l ight-like vector  c~(k) such that 

k,e, - ~; e,c. - 0, 

* A space similar to ~o. was introduced by Blanchard [14] in connection with an investigation of a non- 
relativistic Paull- Fierz model. 
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whose  components  are  conveniently taken to be 

c . (k)= ,~- ,  e =  ~ t , o  

The transv6r~e form factor  ~[p(k, p) can be taken '.o be the cxpress len  

('. ) l~(k, p ) =  -~ f  --e~ ~(k. p?. (18) ~ 

where ~(k, p) = 1 lnthenelghborhood of k = 0. Cendlt/ons of the type (14) a re  s a , s f i e d  if fu(k, p) Is chosen 
in this manner.  

We shall mention that the subspace,T{~, l i k e ~ ,  is not yet  a physical s tate  space.  The group of 
gauge t ransformat ions operates  in ~ . . /non t r iv ia l ly .  The physical s tate  vectors  a re  in a one- to-one  c o r -  
respondence with the c lasses  of vectors  in ~.~. forming cyclic subspaces under the gauge group. The me t r i c  
in the space of such c lasses  3is,,. ~, is positive definite (see [15]). 

This completes the proof of the proper t ies  of 3tr In the following and final section we shall discuss  
the r o l e  of this space in the scat ter ing theory of a sys tem of charged par t ic les .  

5. D e f i n i t i o n  o f  t h e  S M a t r i x  

We a re  now in a be t te r  position to say exactly what we mean by the scat ter ing opera tor .  Consider  
the opera tor  

.~(t,.  t,) =- exp{--iq)(t)}So(t, t:) exp{i~(t)), 

which differs  from the Dyson S mat r ix  for  f tmte t imes  by the "phase ,  fac tors  exp{ ,i4,{t)}. I n t h e  product  

s (t,, ~, )  .~ w*(:,)~off,, t,)wff,) 
the cofactors  rea l ize  the following scqucnC~ of mappings: 

w ~" w *  

(see footnote p. 750),-so that S(t;, t2} is defined as an opera tor  in~L,. The S mat r ix  

S = lira S(tt, t , )  (19) 

also acts in ~ e .  In this sense,  it is natural  to ca l l / r  the space of asymptotic  s tates .  

The importance of the opera tors  W~(t~) and W(t2) in the definition of the S matr ix  is that they force  
us to introduce and exploit the space ~ .  of asymptot ic  states.  In the actual calculations of the mat r ix  
elements of the limi~ opei 'ator S between the s ta tes  of.7r one can forget  the opera tors  W*(tj) and W(tT). 
For  the formal  transit ion to the limit in the coefficient functions of the opera tors  R(t) 

l i n ~ - l - e x p { i l ~ ' p ~ } = : - i n ~ ( k p ) . ~ . O  
~+:.~ pk '"" 

shows that these opera tors  disappear  in the limit Itj ~ ~ and, hence, the oper,~tors W(t) a re  t r ans formed  
into identity opera tors .  The ro le  of the opera to rs  exp { , i~(t)} consists  of eliminating the infinite phase 
factors  which would a r i s e i f  we calculated the mat r ix  elements  of the Feynman S mat r ix  between the s ta tes  
of 7r It Is p rec ise ly  the inclusion of these phase opera to rs  in the definition of the S matr ix  that enables 
us to  get by with a single separable space for  the initial and final s ta tes .  

The S mat r ix  is  re la t ivis t ical ly  and gauge invariant.  For  the opera tors  W+(ti) and W(t2) effect ively 
disappear  in the l imits  t I ~ ~ and t 2 --* - ~  and the phase opera tors  acquire  an.explicit ly eovarlant  fo rm 
and do not contain photon opera tors .  If S Is writ ten formally in the form 

$ -- exp(-- l(I)(oo))S~,exp[l~(ao)). 

where S F is the Feynman S matr ix,  the individual cofactors  on the right-ha~:d side a r e  explicit ly invariant.  
This  formula can be given a meaning if one bears  in mind the passage to the l imit  f rom a theory with a 
finite interact ion radius.  Let us ascr ibe  a mass  ~ to the photon and let  SFA be the corresponding Feynman 
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S matrix. Then 

whorz 

7.'~e acUon of the opera tor  exP{iO{A) } on ~ slate  of the form (6} reduces  to multiplication by the phase factor  

exP {~ l ~-~ |n Xt~ ~ (e-t (P~' P~) + v'~ (qt' q~) -- v'~ (Pi' q$ )) 

The  cancellat ion of such fac tors  with diverging phases in the Fcym-nan S matr ix  SF, ~ is known in both the 
nonre la t iv is t ic  case  [16] as  well as in the case  of quantum elec t redyaamics  [3, 17]. It should be no~ed that 
we have obtained an express ion  for  the phase fac tors  without solving the complete dynamical problem. 

Thus,  our  proposed a l tera t ion of  the asymptotic condition in the re la t iv is t ic  theory of interact ing 
r par t i c les  leads to a modification of the space of asymptotic s tates  a~,d fi, e definition of an S matr ix.  
Besides  the charged par t ic les ,  the asymptot ic  s la tes  must contain an infinite number of photons, whos6 
low-f requency spectr tuu is determinc~i by the slate  of the charges.  The redefinition of the S mat r ix  r e -  
duces to the separat ion of the opera tor  "phase" fac tors .  The f i r s t  property has a re la t ivis t ic  charac te r ;  
the second is  a l ready  requi red  in the caseo fnonre l a t iv l s t l c  scat ter ing by a Coulomb potent ia l  

The  arguments  that led us to our  basic  assumption a re  not proofs.  For  example, we have not v e r i -  
fl~.xl the exis tence  of a l imit  ha the definition (19) of the S matr ix.  At the present  level  of our mathematical  
understanding of re la t iv is t ic  field theory,  -proof  ~ almost  of necess i ty  means "verify for  perturbation the-  
o ry . "  Thus,  we should at leas t  ver i fy  that the mat r ix  e lements  <~I,] S[~I,'> of the S matr ix  between a rb i t r a ry  
s ta tes  ,I, and ,~' in ~ do not conL'dn inf rared  d ivergences  ha all o rde r s  of the expansion in e z. Such a 
p rogram cm, only be implemented by lat~orious calculations.  Fortunately,  Chung has already c~'~'rlcd ou~ 
an appreciable  par t  of these calculat ions.  Let us the re fore  compare  his and our  assumptions.  

Chung considered in detail  the scatterhag of a par t ic le  by an ex'.ernal field. In this case ,  there  is 
a single charge  in the initial s ~ t e  ami in the  final state;  the phase opera tor  vanishes on such states ,  i .e . ,  
the S ma t r ix  on these  s la tes  coincides with the l~c,b~nman S matrix.. In accordance with our  assumption, 
we must  cons ider  the mat r ix  e lement  of this S mat r ix  between states of the form 

~ h e r e  f is the form factor  (18). 
exp re s sed  in the form 

'i'..O,) = +zp{- n,}~,+fp) lO>. 

The. s ta tes  considered by Chtmg can, with a slightly different  notation, be 

t 

r~-;t 

where  ~ ( M ,  n = I ,  2, a r e  t ra ixsverse polarizat ion vec tors  (e~ = 0, cnk = 0) and the form fac tor  Fn(k, p) 
has the form 

with the same cutoff fac tor  ~(k, p) as fp{k, p), and N is a diverging normalizing factor  

- k  dk 

Chung showed that the mat r ix  e lement  <t, ch(P)~S l #ch(P')> has no infrared divergences in ai1 o rd e r s  
per turbat ion  t h e o r y .  We shall  show that our  s ta tes  t, as(p) a re  equivalent to Chung's s tates  t, ch(p) , La.~ 
his a s se r t ion  also holds for our s ta tes .  

The state ~'as(P) can be expressed in the form 

t �9 d k  

since the state blr [0> is an eigenstate of the operator p(p}. 
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The operation of a gauge t ransformat ion Ut~) on t,a~(p) reduce~ to ~.he mLbsU~tion 

/ ,  (~,, p) - . / ,  ( t .  p~ + t ,~  (k) ~ f~,tk, p). 

We can choose X such that f~(k, p) = 0 for 8mall k. Since fu is t r ansve r se ,  the fo rm factor  f~ l~ also ~ a n ~ -  
verse  and is  therefore a l inear  combination of r and e ~ : -  

where 

~t 

~t * ~t t t  (~, p) =/,~,,,=/~, = , (k, p) = P (t, p), 

s ince  k~ and c~ are orthogonal to ~ .  n = 1, 2. Thus, the s ta te  ~I, as(p) i s  r  to a s ta te  of the form 

�9 e " " "  p)~:a.(k))~}b~,p)}O,. �9 . (p)  = e x p { ~ ( F  (k,p),.a~(k)--F"(k, 

This state is identical with a Chung state,  as is e~stly seen by reducing the opera tor  occur r ing  in i ts ae-  
finition to a normal  form in accordance with a formula  of the type (12) and then omitting the fac to ;  con-  
tairdng photon .annihilation opera tors .  

Similarly,  one can ver i fy  the equivalence of the ~tates proposed by Chung for  s y s t e m s  of several  charged 
l~articles and the corresponding as2~maptotic s tates  constructed in accorda~nce wifli our prescr ipt ion,  llow- 
ever ,  in this case,  one must r e m e m b e r  that the phase opera tor  is nontrivial.  Some calculations-taking 
this fact into account have been made by Storrow [18|. Chung did not make a special  study of s tates  {hat, 
apart  f rom charged lxarticles, also contain hard photons. An uncri t ical  general izat ion of his suggesiions 
to this case  can lead to incor rec t  assumptions.  For  example,  the s ta tes  

Y',.(v, k) ~ o(~,*, p ) b : O , ) a . ' ( ~ )  jo> 
and 

'v.; (p. k) = e~p{--R,}b.* (p)a,+ ~k~ I0> 
are  not equivalent, since one cannot ~ 'g lec t  the photon annihilation opera~,~rs in th~ reduction of the s ta tes  
'l, aslp, k) In accordance ~-ith the ab~Jve method. One ~an show that the matr ix  e lements  of the S matr ix  
between states  of the second kind vanish as the photon momentum decr~-ases but that sL'ltes of lhe f i rs t  kind 
lead to matr ix  elements thas diverge as k ~ 0. Thus,  H is t he  second definition, a special case  of our  
general  definition of asymptotic  s tates ,  which is  co r rec t .  

In conclusion, we should like to point out that the space X-,, do~.s not conta in  s i n # e - p a r t i c l e  s lates  
of charged par t ic les .  Putting it more  precise ly ,  the representat ion of the Poincar6 group a, A -- U(a, A) 
acting in the physical l t i lbert  ~ pace .~r ~ does not Contain d i sc re te  i r reducib le  t e rms  ~'ith nonvanlsl'dng 
mass.  In other  words,  one can say that the re la t ivis t ic  concept of a charged Ixarticle does not exist.  This  
is a wcIl-k~o~a~ asser t ion  (see [t91) and our paper proves that it is a natural asser t ion  from the point of 
view of scat ter ing theory.  It would be interest ing if one could find a re la t ivis t ical ly  lnvariant  complete 
set of c0mmuting, opera tors  in Y?., which could be used to define a natural basis  of asympto t ic  s lates .  

A P P E N D I X  

In this appendix, we wish to calculate the asymptotic  behavior  at la rge  ~t] of the }ntegr~ 

+ ~ = i d+ i ds lvL (,), tt~ (,),. 

which defines the  phase opera tor  4~t). Using the explicit  express ion for  VIs<t)p we rewr i te  this $ntegrtd 
in the form 

We note that 

P(P)P(q)---~ : p('p} p(q); + 6(p --  q) [ p , ( p ) +  p_(p)]. 
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eo that the integral splits up into two terms. The second of these is proportional lo i and contributes io 
the renormaltzation of the mass o[ the charged particles. Let as cormider la more detail the first  term, 
for which we integrate successlvely over k, s, and ~. We h~vv 

q P , f ) , ( , - - , } .  

The argument of the 6-function has one root s smaller In modulus than 7; the difference of the roots is 
proportional to ((pq)~-m4) t/2. Thus, integrating over s, we obtain the expression 

aT 

which defines the phase operator (IIL 
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