
Journal of Pharmacokinetics and Biopharmaceutics, Vol. 6, No. 1, 1978 

SCIENTIFIC COMMENTARY 

A Comparison of Numerical Integrating Algorithms 
by Trapezoidal, Lagrange, and Spline Approximation 

K. C. Y e h  I and K. C. Kwan  1 

Received June 9, 1977--Final August 23, 1977 

In the trapezoidal method, linear interpolation between data points tends to overestimate or 
underestimate the area, depending on the concavity o[ the curve. In some instances, area 
estimates can be obtained by linear interpolation of logarithmically tranfformed data. Two 
alternative algorithms based on known interpolating [unctions have been implemented for area 
calculations. In the Lagrange method, the linear interpolations are replaced by cubic polyno/nial 
interpolations. In the spline method, the cubic [unctions are further modified so that the fitted 
curves are completely smooth. This report describes their computing procedures with numerical 
examples. 

KEY WORDS: numerical integrating algorithms; trapezoidal approximation; Lagrange 
method; spline method. 

I N T R O D U C T I O N  

It is customary in biopharmaceutics to use a trapezoidal method to 
calculate areas under the concentrat ion-t ime curve. The populari ty of this 
method may be attributed to its simplicity both  in concept and in execution 
(1,2). However ,  in cases where changes in curvature between data points 
are excessive or there are long intervals between data points, large 
algorithm errors are known to occur. 

To circumvent the curvature problem, two alternative algorithms 
based on interpolating polynomials have been devised and implemented 
for area calculations in these laboratories. These polynomials are known as 
spline functions (3,4) and Lagrange interpolating functions (5). The 
purpose of this report  is to describe computat ional  procedures of these two 
methods,  to compare  their solutions along with those obtained by the 
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linear and log trapezoidal methods, and to discuss the relative merit of the 
methods. 

NUMERICAL METHODS 

The purpose of a numerical method is to obtain practical solutions 
which otherwise would have been difficult or impossible to achieve. 
Because of two contributing factors, the solutions are seldom error free. 
First, experimental errors in the data are inevitable. These are called input 
errors. Second, additional errors are incurred when data are processed to 
produce numerical solutions. These are called algorithm errors. There are 
two types of algorithm errors (6). The truncation error is the difference 
between the true functional value and that calculated by numerical 
approximation. The round off error results from the fact that only a finite 
number of digits can actually be retained after each computational step, 
and any excess digits are lost. 

In biopharmaceutics, experimental data such as plasma concentrations 
are usually recorded at discrete time points. The purpose of using an 
approximating function in the present case is to connect all data points so 
that reliable values of areas can be calculated by integration. Although the 
selection of a particular procedure is somewhat subjective, two basic 
factors are usually considered: speed and accuracy. When calculations are 
to be performed manually, easy and simple methods are clearly preferable. 
However,  with the advent of high-speed electronic computers, accuracy 
becomes the major consideration since computational steps can be pro- 
grammed and executed swiftly. Thus a method that increases the accuracy 
of solutions by minimizing algorithm errors should be attempted whenever 
the procedure is compatible with the limitations of available facilities. 

Because of their convenient mathematical properties, polynomials are 
the most widely used among various curve-fitting approaches. The four 
procedures described below represent the application of polynomials to 
area calculations. 

Linear Trapezoidal Method 

The linear trapezoidal method is the best known numerical integrating 
method. The functional value y between two adjacent points (ti-1, Yi-1) 
and (ti, Yi) is approximated by a straight line: 

y = a + bt (1) 
where 

a = ( t i Y i - 1  - -  y i t i - 1 ) / h i  

b - - ( y i - y i - 1 ) / h i  
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and 

hi  = ti - t i -1  

Integrating equation 1 from t;-1 to ti gives the incremental area in that 
interval: 

I 
t i 

[AUC]~ 1 = y d t  = �89  + yi-1) (2) 
i - - 1  

To obtain the cumulative area over the interval [h, In], where n is the 
number of data points, the above procedure is repeated for each i, where 
i = 2, 3 , . . . ,  n. The cumulative area then becomes 

t - -  t 2 t 3 t [AUClt~ - [AUC]t 1 + [ A U C ] t 2 + ' ' '  + [AUClt:_ 1 (3) 

It is apparent that linear interpolation between data points will tend to 
underestimate the area when data form a convex curve and to overestimate 
when the curve is concave. Further, the greater the hl, the greater would be 
the error. The magnitude of error would also depend on the oscillatory 
nature of the curve, or the lack thereof,  between data points. 

Log Trapezoidal Method 

A direct modification of the linear trapezoidal method is the so-called 
log trapezoidal method. In this modified version, the y values are assumed 
to vary linearly within each sampling interval on a semilogarithmic scale: 

In (y) = In (Yi-1)+ ( t -  ti 1)" In ( y i / y i - 1 ) / h i  

On integration, one obtains 

(4) 

[AUC]ttI_I = h i (y i -  yi-1)/In (yi/yi-1) (5) 

In pharmacokinetics, equation 5 is most appropriate when applied to 
data which appear to decline exponentially. Under  such condition, the 
error produced is independent of hi. However,  the method may produce 
large errors when used in an ascending curve, near a peak, or in a steeply 
descending polyexponential curve. Furthermore,  the method cannot be 
used if either concentration is zero or if the two values are equal. When 
they occur, equation 2 can be used as an alternative approach. Despite 
these limitations, the log trapezoidal method can be used advantageously 
in specific situations or in combination with a second method to yield 
optimal solutions. 
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Lagrange Method 

In the Lagrange method, the linear function of equation 1 is replaced 
by a cubic polynomial: 

y = ai + bit + ci te q- dlt  3 (6) 

To interpolate between t~_x - t -< t~, the equation is fitted to the nearest 
four data points (ti-2, y~-e), (t~_~, Yi-1), (ti, y~), and (t~+l, yi+a). The function 
is thus forced to pass through all four points. The shape of the fitted curve 
in the middle interval may not always be linear, but may be parabolic, or 
sigmoidal with one inflection point. The four coefficients, a~, bi, c~, and d~, 
can be obtained by using the Lagrange multiplier formula (5), or by solving 
the following system of equations: 

t,+1 t2+1 ti3+1_1 di Yi+ 

(7) 

Once the coefficients are obtained, the incremental area on the inter- 
val [ti-1, tl] is calculated by integrating equation 6: 

t. 1 e 3 1 4 4 + sb i ( t i  2 1 3 - - ti ) ( 8 )  [AUC],',_ 1 =aih~ t ~ - l ) + ~ c i ( t ~  t i _ a ) + z d i ( t ~  - 

As an example, Fig. 1 shows the cubic polynomial 

y = 1 + 7 . 5 t -  5.5t2+ t 3 (9) 

passing through (0,1), (1,4), (2,2), and (3,1). The area over the interval 
[1,2] by equation 8 is 3.17, whereas that by the trapezoidal method is 3.0 
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Fig. 1. A cubic polynomial fitted to four data points. 



A Comparison ot Numerical Integrating Algorithms 83 

In order to use equation 6, the data must be theoretically smooth over 
the interval [ti-2, t~+l]. Under this condition, the cubic polynomial will 
usually give a better approximation than a single straight line in the middle 
interval [ti-1, ti] because the two contiguous points also contribute to 
defining the functional behavior over this subinterval. Functional approx- 
imations over the intervals [ti-2, ti-1] and [ti, ti+l] tend to be less reliable in 
that shaping constraints are one-sided. 

Equation 7 can be applied serially for each i, where i = 3, 4 . . . . .  n - 1, 
but not for the two end intervals, It1, t2] and [tn-1, tn]. To fit these two 
intervals, the nearest three points are used and fitted with a parabola: 

y = ai  q- bit + cit  2 (10) 

The three coefficients are calculated by solving a system of three 
simultaneous linear equations, analogous to equation 7, and the cor- 
responding areas are obtained by integrating equation 10. 

The cumulative area over the entire interval [q, t,] is computed by 
summation,  using equation 3. 

Areas calculated by the integration of parabolic equations (equation 
10) are subject to greater error than those calculated by the integration of 
cubic equations (equation 6). In part, this is because approximations are 
usually better near the middle segment than at the two ends. Since equa- 
tion 10 is quadratic, it may yield a minimum or a maximum that "should" 
not have been there. Unwanted oscillations may also occur with cubic 
equations. Therefore, it is desirable to monitor the interpolated curve over 
the entire interval. The monitoring can be accomplished by sampling a set 
of interpolated values within each interval [t~-~, t~]. In so doing, the suit- 
ability of the fitted curve can be evaluated intuitively in relation to the 
prevailing understanding or assumptions concerning the underlying kinetic 
mechanism, 

Thus in the Lagrange method the n experimental points are linked by 
n-1 smooth curves, with each data point forming the knot of the chain(The 
fitted curve is piecewise smooth; i.e., it is differentiable within each interval 
[t~_~, t~], but not at the data points. In other words, each knot forms a 
singular point and has no definitive first derivative because the two tangent 
lines of adjacent cubic functions at t~ may not coincide. This is similar to the 
trapezoidal method wherein the fitted curve is piecewise linear. However, 
the curve connected by serial cubic polynomials will look more curvilinear 
and natural than the polygonal curve formed by the linear trapezoidal 
method. 

The use of serial low-degree (cubic) polynomials, each of which is 
fitted to a local region, is preferable to the use of a single high-degree 
polynomial. While a polynomial of degree n-1 or less can be expected to 
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pass through n points, excessive oscillations on the fitted curve would be 
inevitable. On the other hand, the linear interpolations of either of the 
trapezoidal methods are overly simplistic, even though the problem of 
spurious oscillations is completely avoided. In a practical sense, the 
Lagrange method can be considered a compromise between the two 
extremes. 

Spline Method 

General spline functions are defined as piecewise polynomials of 
degree k. The  pieces are connected at each of the several knots such that 
the fitted curve and its first k-1 derivatives are continuously differentiable 
over the interval [h, tn] (3). 

In this method, the knots are taken to be the data points themselves 
and k is defined to be 3. Thus the procedure of interpolation by cubic 
splines is similar to the Lagrange method except for the additional con- 
straint of differentiability at each data point. 

Description of spline functions can be found in many sources (3,4,7). 
The derivation presented below follows closely that of Dunfield and Read 
(8). 

Consider equation 6, which is a cubic function. Differentiating it twice 
gives the following linear expression: 

= 2Ci + 6dlt (11) 

Equation 11 shows that )" is linear over each interval It;-1, ti]. Rewri- 
ting it in the following form 

Yi-1 ( t , -  t ) + ~  ( t -  ti-D (12) 

the equation can be integrated to yield 

-2 _]_ Yi . -2 _~_ 
--Yi-l (t i - t )  ~ i { t - t i - 1 )  $1 ( 1 3 )  s 2hi 

)ii-l" t]3+ ~i ( t- tg-1)3+slt+s2 (14) 
y = ~ {ti - , 6h~ 

where sl and s2 are integration constants. Evaluating equation 14 at t~_~ 
and b, respectively, gives 

Yi-1 (hi)3 + Site-1 + s2 (15) Yi-1 = "~i  

Ji 
Yi = ~ i  (hi)3 + Slti +$2 (16) 
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from which the two constants can be solved: 

1 , h;  
81 = h i  ( y  --  y i - 1 ) - - 6  ( j J i - ) J i - 1 )  (17) 

1 hi .. 
s 2  = ( t , y i - 1  - (tiyi-  - f i t i - 1 )  (18) 

All quantities in equation 14 are known except ~i-1 and J~i, the second 
derivatives at each data point. These unknown values are determined as 
follows. 

Evaluating equation 13 at ti-1 from the right interval [ti-~, ti] and from 
the left interval [ti-2, ti-1] gives the following two equations, respectively: 

- Y i - l h ~  ( y i  - y i - 1 )  ( ~ i  - :91-1) 
3)i-1 ~ - -  h i - -  (19) 2 hi 6 

iJi-lhi-1 (Y i -1 -  Yl-2) ( Y i - 1 -  Yi-2) 
.9i-~ - - +  hi-1 - -  (20) 

2 hi-1 6 

where hi-1 = ti-1 - ti-2. 
Combining Equations 19 and 20 gives a single expression after rear- 

rangement: 

hi-1 1 hi (yi - yi-1) ( y i - l -  yl-2) (21) 
-6 Yi-2+3(hi-1- hi-1)~i-~ +-~Yi hi hi-1 

Thus n-2 equations can be generated from equation 21 where i = 
3, 4 . . . . .  n. Two extra equations are required to solve for n unknowns. 
They can be obtained by specifying two additional conditions. In the 
present case, these are f2 = ~)'3, and ~'~-1 = ~'n. These third derivatives are 
obtained by differentiating equation 11 at i = 2, 3, n-l ,  and n: 

Y'2 = (Y2 --  fi)/h2 (22) 

Y'3 =- (Y3 --  y 2 ) / h 3  ( 2 3 )  

})'n-1 = (j~n-1 --  yn-2)/hn-1 ( 2 4 )  

f .  = ( f .  - ~-O/h .  (25) 

Combining equations 22 and 23, and equations 24 and 25, respec- 
tively, gives 

1 

i (__i +L 
-hn_ ~n_2-\hn_ a h.]~._ 1 h j~ .=0 (27) 
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With the addition of the last two equations, the n unknown :fi values 
are determined by solving equations 21, 26 and 27 simultaneously. The 
incremental area over each interval [ti-a, ti] is calculated by integrating 
equation 14: 

3 
hi .. 

[AUf] t ' i_ l  ~-- ~ (Yi "nt- ffi-1) "q- hi[1Sl(tl 4- t,-1) + s2] (28) 

As before, the cumulative area over the interval [h, t,] is obtained by 
summation, using equation 3. 

The functional behaviors of the fitted curve in each interval [t--a, t~] 
are determined not only by the nearest two or four data points but also by 
all others. Evidently, data in the immediate neighborhood are the most 
influential. 

Because of these additional constraints, the fitted curve and its first 
derivatives are completely smooth. This is in contrast to the other methods 
wherein the fitted curve is only piecewise smooth. Since the spline function 
is composed of serial cubic polynomials, the actual values of the inter- 
polated curve should also be sampled to monitor the functional behavior of 
the fitted curve. This is especially critical when data are scattered or 
sampling intervals are large. Under these conditions, the cubic equations 
may produce extraneous inflection points and cause serious under- or 
overestimations of areas. 

In practice, equations 26 and 27 are applicable to general types of 
kinetic data. In specific situations where additional information is avail- 
able, there may be other functions (e.g., exponential) that are more 
representative of the data. When used appropriately, such modifications 
should increase the accuracy of the solutions. 

SIMULATIONS AND RESULTS 

A series of computations were performed using each of the above 
procedures. These exercises were designed to examine the validity of the 
algorithms as well as to compare the reliability of the solutions under 
simulated conditions. The following examples may serve to provide some 
perspective on the relative merits of the four methods in specific circum- 
stances. 

E x a m p l e  1. The data were assumed to be linear over the interval 
[h, tn]. The results, shown in Table I, indicate that all three methods gave 
exact and identical solutions. In this example, the linear trapezoidal 
method should yield the correct answer since assumption of linearity 
between points is identical to the nature of data. Moreover, the obser- 
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Table I. Estimation of Areas Under Three Straight Lines 

87 

Simulated Yl 

i t Case 1 Case 2 Case 3 

1 0 0 8.0 4.0 
2 0.2 0.2 7.8 4.0 
3 1.0 1.0 7.0 4.0 
4 3.0 3.0 5.0 4.0 
5 4.0 4.0 4.0 4.0 
6 5.5 5.5 2.5 4.0 
7 8.0 8.0 0 4.0 

[AUC]o 8 by 
Linear trapezoidal method 32.0 32,0 32.0 
Lagrange method 32.0 32.0 32.0 
Spline method 32.0 32.0 32.0 

va t ion  that  both  the Lagrange  and  the spline methods  also p roduced  
correct  solut ions indicates that  all po lynomia ls  had degenera ted  to l inear  
funct ions  and  that  undue  oscil lations had not  b e e n  produced.  

E x a m p l e  2. D a t a  displayed in Tab le  II r epresen t  sampled  values on  a 

monoexponen t i a l l y  decaying curve: 

y = 16 exp ( -  OAt) (29) 

O n  a semilogar i thmic  plot,  equa t ion  29 forms a straight line. The  

theoret ical  area values were ob ta ined  by using the log t rapezoidal  m e t h o d  

(equat ion 5). 

Table II, Incremental Areas and the Corresponding Algorithm Errors for Example 2 

Area on subinterval [t~-l, ti] a'b 

Linear 
ti Y/ Theoretical trapezoidal Lagrange Spline 

0 16.0000 . . . .  
0.2 14.7699 3.0753 3.0770(0.05) 3.0754 (0 .00)  3.0754 (0.00) 
0.5 13 .0997  4.1754 4.1804 (0.12) 4.1754 (-0.00) 4.1754 (-0.00) 
1,0 10 .7251  5.9364 5.9562(0.33) 5.9363 (-0.00) 5.9364 (0.00) 
2.0 7.1893 8.8396 8.9572 (1.33) 8.8374 (-0.02) 8.8392 (-0.01) 
3.0 4.8191 5.9254 6.0042 (1.33) 5.9231 (-0.04) 5.9250 (-0.01) 
4.0 3.2303 3.9719 4.0247 (1.33) 3.9695 (-0.06) 3.9725 (0.02) 
6.0 1 . 4 5 1 5  4.4471 4.6818 (5.28) 4.4256 (-0.48) 4.4340 (-0.30) 
9.0 0.4372 2.5358 2.8330 (11.72) 2.3368 (-7.85) 2,6346 (3.90) 

Values shown are rounded off for display. 
b Values in parentheses are percent algorithm errors. 
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It is evident from Table II that the linear trapezoidal method consis- 
tently produced large, positive errors, while the Lagrange method yielded 
relatively small negative ones. In contrast, output errors produced by the 
spline method were generally smaller and were more randomly distributed. 
However, both the Lagrange and the spline methods produced pro- 
portionately large error for the last increment because the sampling inter- 
val is large and there are no later data to tie the cubic function. In this 
example, the log trapezoidal method is obviously the best since its solutions 
are identical to the theoretical values. 

Example 3. Simulated plasma concentrations were generated based 
on an oral two-compartment open model with elimination occurring from 
the central compartment (Scheme I): 

ka 
G > B - ' ~ E  

T 

Scheme I 

Differential equations corresponding to the model are as follows: 

0 = -kaG (30) 

G=l koG-k~2G +l k21T-Ic~oG 

~" = k12 V C p  - k2l T 

= klo VCp 

(31) 

(32) 

(33) 

where G, B, T, and E are drug amounts in the absorption compartment, 
the central compartment (including blood), the peripheral compartment, 
and the elimination compartment (sum of biotransformation and 
excretion), respectively; Cp is the plasma concentrations; V is the appar- 
ent volume of distribution of the central compartment; and 
k12, k21, and kl0 are first-order rate constants for the designated pro- 
cesses. To simulate the possibility that absorption efficiency may be related 
to transient location of absorption sites, the absorption parameter ka was 
assumed to be time dependent. After several experimentations, the 
following empirical equation was employed: 

ka = Aa exp [ -  (A2t-A3)  2] +A4x/} (34) 

where An, A2, A3, and A 4  are constants. 
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Table III. Time-Dependent Variables Generated by the Runge-Kutta 
Procedure a'b 

i tl (hr) G (mg) ka (hr -1) C o (ixg/ml) 

1 0 75,0 0.3092 0 
2 0.25 64.6909 0,8288 1.1616 
3 0.5 48.8621 1.4496 2.7103 
4 1.0 15,2885 3.1992 5,1988 
5 1.5 2.1823 4.3524 4,9576 
6 2.0 0,2677 3.7487 3,8694 
7 3.0 0.0308 0.9961 2.3532 
8 4.0 0,0153 0.6140 1.4732 
9 6.0 0.0039 0.7425 0.5847 

10 9.0 0.0003 0.9093 0.1464 
11 12.0 0.0 1,0473 0.0366 
12 16.0 0.0 1,2093 0.0058 

~Parameter used: dose = 75 mg; V = 8 liters, klz = 0.4 hr -1, k z l  = 

1.Shr -~, k_13o=0.6hr -1, A l = 4 . 0 h r  - l ,  A a = l . 0 h r  -1, A 3 = 1 . 6 ,  
A 4 = 0.3 hr -  /z. 

~The G.E. time-sharing numerical integration program 
RKPBI/KKPB2 (10) was employed. Step size was set to vary with 
sampling interval and equaled 0.0625 h~. 
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Fig, 2. Time course of simulated plasma levels. 
Circles represent sampled values. 
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In the present context, such an assumption also defies a closed-form 
solution to the rate equations. Therefore, solutions of differential equa- 
tions were obtained by the fourth-order Runge-Kutta procedure (9). 
Actual values of model parameters and the generated time-dependent 
quantities are shown in Table III. The time course of the plasma concen- 
trations is illustrated in Fig. 2. 

Using the 12 values of Cp "sampled" at times indicated in the table, 
areas under the curve were calculated by each of the four methods. Table 
IV lists the incremental and the total areas. In order to eliminate the large 
end error discussed in the previous example, plasma levels during the last 
interval were assumed to decline monoexponentially, and equation 5 was 
used to calculate the last increment in all computations. This was adapted 
as a standard procedure since, in actual practice, sampling of plasma 
concentrations usually terminates in the log linear phase. Thus, in the 
spline method, the following equation was used in place of equation 27, 
which fulfills the continuity and smoothness of requirements at the (n-1)th 
point: 

hn-1 hn-1 Yn--1. 
Yn-2 +""2"-- j Jn - - l . ~  = "--~n In (yn/y.-x) 6 

(y,-1 - Y,-2) 
hn-1 

(35) 

Comparisons of the algorithm errors are given in Fig. 3. These values 
were obtained by comparing the numerically calculated incremental areas 
with the corresponding theoretical areas. It is apparent that the largest 
errors were produced by the linear trapezoidal method. In particular, 
there were large negative deviations around the peak and large positive 
deviations elsewhere. While significant error reductions were ob- 
served with both the Lagrange and the spline methods, the smallest 
absolute errors were produced by the latter. It should be noted that 
the log trapezoidal method produced the best area estimates after the 
fourth hour. Figure 2 shows that the curve practically declines log- 
linearly after 4 hr. Since the log trapezoidal method can best approxi- 
mate the nature of the data, it should be superior to any of the other 
three empirical methods. One could use a combination procedure of 
applying the spline method for t - 4  hr and the log trapezoidal method 
for t >4  hr. The last column of Table IV shows the excellent result by 
such a combination. 

Example 4. Twelve sets of data were generated by introducing simu- 
lated random experimental errors, corresponding to a coefficient of varia- 
tion of 10%, into the sampled Cp values shown in Table III. These values 
were then rounded off to retain only two decimal places, as shown in Table 
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+5 l SPLINE METHOD 

/ 
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Fig. 3. Algorithm errors produced by the 
four numerical methods. Errors for the last 
increment (hll) were obtained by using 
equation 5. 

Table V. Twelve Sets of Simulated Plasma Concentrations (~g/ml) Containing 
Random Errors 

Sampling time (hr) 
Test 
set 0 0.25 0.5 1 1.5 2 3 4 6 9 12 16 

1 0 1.09 3.19 5.34 5.33 3.96 2.32 1.47 0.51 0.15 0.04 0.01 
2 0 1.17 3.20 5.13 4.38 3.19 2.31 1.18 0.57 0.17 0.04 0.01 
3 0 1.07 2.87 5.49 5.44 4.06 1.97 1 .31  0.44 0.15 0.04 0.01 
4 0 1.08 2.27 6.08 5.35 4.56 2.53 1.26 0.57 0.12 0.04 0.01 
5 0 1.20 2.94 5.00 4.15 3.93 2.77 1.79 0.59 0.16 0.04 0.01 
6 0 1.02 2.45 5.17 4.41 3.70 2.38 1.36 0.62 0.15 0.03 0.01 
7 0 1.17 2.08 4.63 4.27 3.83 2.63 1.40 0.52 0.15 0.04 0.01 
8 0 1.30 2.99 4.58 5.02 3.39 2.18 1.63 0.63 0.16 0.03 0.01 
9 0 1 .21  3.05 5.67 5.74 4.06 2.01 1.29 0.54 0.16 0.04 0.01 

10 0 1.30 2.82 5.13 4.77 3.87 2.20 1.54 0.63 0.16 0.04 0.01 
11 0 1.31 2.82 5.78 5.31 4.46 2.69 1.65 0.55 0.15 0.04 0.01 
12 0 1.27 2.91 5.13 4.98 4.51 2.52 1.52 0.54 0.13 0.04 0.01 
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V. Cumulative areas and the corresponding output errors were calculated 
using the three empirical procedures identical to those of Example 3. 2 

Two important observations are found in the results given in Table VI. 
First, almost without exception, areas calculated by the spline method were 
higher than those of the Lagrange method and lower than those of the 
trapezoidal method. Second, the output errors of each data set were similar 
in magnitude and in sign regardless of the algorithm, and the average 
cumulative areas were comparable to those calculated from error-free Cp 
values (Table IV). 

With regard to the first observation, an inspection of the results shows 
that, for a given set of data, output errors by each of the three methods are 
either all positive or all negative. Among those with negative errors, 
invariably the smallest deviations were produced by the trapezoidal 
method. Since the loci of points are predominantly concave upward, posi- 
tive biases associated with the trapezoid method (+1.7%) tend to 
compensate best the negative effect of input errors. The reason that 
Lagrange interpolations consistently produced the smallest deviations 
among those with positive errors may be in part related to the negative bias 
associated with the Lagrange method ( -0 .6%)  in the present example. 

With regard to the second observation, simulated errors in each data 
set were not completely balanced. As a result, a given set would be 
composed of either more positively deviated values and fewer negatively 
deviated values or vice versa. These errors would inevitably contribute to 
the output errors, regardless of the algorithm used. It is also obvious that 
the exact allocation of the random errors would also affect the actual 
output values. However, with increasing number of data set, the mean 
areas and output errors should converge, in a stochastic manner, to cor- 
responding limiting values that are characteristic of the algorithm. The 
magnitude of standard deviation, on the other hand, should reflect the 
scattering of data only. Comparing Tables IV and VI, these appear to be 
the case, 

Monitoring of the interpolated curves revealed no unusual oscillations 
in any of the 12 data sets. An examination of such behavior is given in the 
next example. 

Example 5. Table VII is based on the data tabulated in Table III with 
three modifications. First, the data point at 9 hr is deleted as might occur 
when a sample is missed. Second, the data are rounded off to two decimal 
places only. Third, the data point at 4 hr is given a positive deviation (1.59 
instead of 1.47 ~g/ml). Columns 3-5 include the linear trapezoidal, log 

2Two Fortran subroutines implementing the Lagrange and spline methods are available on 
request. 
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Table VII. Summary of Example 5 a 

95 

Combined 
spline 

Linear Log and log 
t (hr) Cp (~xg/ml) trapezoidal trapezoidal Spline trapezoidal 

0.25 1.16(-0.1) 0.1450 (8.2) 0.1450 (8.2) 0.1324(-1.2) 0.1324(-1.2) 
0.5 2.71(-0.0)  0.4825 (0.6) 0.4557(-4.9) 0.4801 (0.1) 0.4801 (0.1) 
1 5.20 (0.0) 1.9750 (-5.0)  1.9072 (-8.3)  2.0634 (-0.8)  2.0634 (-0.8)  
1.5 4.96 ( 0 , 1 ) 2 . 5 4 0 0 ( - 3 . 3 )  2.5395(-3.3) 2.6302 (0.2) 2.6302 (0.2) 
2 3.87 (0.0) 2,2075 (0.1) 2.1962 (-0.4)  2.2083 (0.2) 2.2083 (0.2) 
3 2.35 (-0.1)  3.1100 (2.4) 3.0471 (0.4) 3.0227 (-0.4)  3.0227 ( -0 .4)  
4 1.59 (7.9) 1.9700 (4.9) 1.9453 (3.6) 1.9339 (3.0) 1.9339 (3.0) 
6 0 .58(-0.8)  2.1700 (12.9) 2.0031 (4.2) 2.0930 (8.9) 2.0031 (4.2) 
9 N.S." . . . .  

12 0.04 (9.3) 1.8600 (56.7) 1.2116 (2.1) 0.7812(-34.2) 1.2116 (2.1) 
16 0.01 (72.4) 0.0866 (29.6) 0.0866 (29.6) 0.0866 (29.6) 0.0866 (29.6) 

Total 16.5466 (6.0) 15.5373 (-0.5)  15.4317 ( -1 .2)  15.7723 (1.0) 

aValues in parentheses are percent errors. 
bNo sample. 

o 

0.01 , , , , , , , 

0 2 4 6 8 IO 12 14. 16 
TIME, HOURS 

Fig. 4. Example showing the production of 
spurious oscillation between 6 and 12 hr. 
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trapezoidal, and the spline areas, respectively. Note the large negative 
error of the spline area for the interval between 6 and 12 hr and the 
relatively small error with the log trapezoidal area. Column 6 is a combined 
method wherein the values at t_<4 hr are calculated using the spline 
procedure (column 5), while subsequent ones are calculated by the log 
trapezoidal method. The results are excellent as seen when one examines 
the percent error of each incremental area and the cumulative error listed 
at the bottom of the column. Thus, for best results, data should be 
examined on a semilogarithmic scale so as to detect the onset of terminal 
log-linear phase. The spline method may be used for the early and middle 
segments of the curve, while the log trapezoidal method may be used 
during monoexponential decline. 

The cause of large negative deviation by the spline method is illus- 
trated in Fig. 4 for this example. It is apparent that the large minimum 
produced at 10 hr is extraneous. As stated earlier, such occasional oscil- 
lation can occur when cubic polynomials are used. Possible ways to avoid 
this problem through splines are being investigated. 

DISCUSSION 

Four numerical integration methods have been described for area 
calculations. These methods are empirical, do not require equally spaced 
data points, and with the exception of the log trapezoidal method make no 
assumptions regarding the underlying mechanism of the data. Of the four, 
it is apparent that either the Lagrange or the spline method is probably less 
biased than either of the trapezoidal methods. This may be attributed to 
the greater flexibility of cubic polynomials in approximating various local 
behaviors often seen in actual data. However, such flexibility can 
occasionally produce unwanted oscillations, as exemplified in Fig. 4. The 
major advantage of the spline function over the Lagrange polynomials is 
the complete smoothness of the fitted curve. If data are functionally 
smooth and error free, it is apparent that the spline function will be the best 
approximation to the system. 

Theoretically, the existence of experimental errors, no matter how 
small, will render the data discontinuous. Since errors are experimentally 
inevitable, the superiority afforded by the spline function may become less 
certain, and this uncertainty may increase with increasing noise in the data. 
For any given data set, any of the four methods may be superior to the 
others. However, because of its small inherent algorithm errors, areas 
calculated by the spline method should on the average be less distorted and 
more suitable for further data analysis (11), particularly when combined 
with the log trapezoidal method. 
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The Legrange method, on the other hand, has the advantage of being 
computationally less complex, yet comparable in accuracy. With the spline 
method, parameters required for area calculations are obtainable only by 
solving a set of n simultaneous equations. Depending on the magnitude of 
n, such operations may require the aid of large computers. With the 
Lagrange method, the number of equations is reduced to four or three and 
can usually be solved with less sophisticated facilities such as pro- 
grammable electronic calculators (12). 

In using either the Lagrange or the spline method, it is required that 
the data be functionally smooth over the interval [tl, tn]. In cases where 
data are only piecewise smooth, the procedure must be applied to indivi- 
dual segments that meet this requirement.  For example, at the termination 
of a constant intravenous infusion, there will be an abrupt change in plasma 
concentrations, forming two distinctly smooth segments: one during 
infusion and the other after infusion. 

Since both the spline and the Lagrange methods may occasionally 
produce spurious and unrealistic oscillations, they should not be used 
blindly. In practice, the tendency of such occurrences increases with 
increasing noise levels in the data. Inserting hypothetical values will in 
general have a stabilizing influence, but will introduce bias. 

While the two trapezoidal methods are less accurate, they may be the 
logical choice in some cases because of their simplicity. They are also 
particularly suitable when area estimates are the end product and are to be 
compared among data which have similar shapes and sampling schemes. 
The log trapezoidal method is especially useful for data in exponential 
decline. 
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