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LISREL Analysis of Twin Data with Structured 
Means 

C. V. Dolan, 1 P. C. M. Molenaar, 1 and D. I. Boomsma 2 

A method is introduced to test the hypothes& that both the phenotypic 
means and the phenotypic covariances can be modeled with the same 
common genetic and environmental factors. LISREL can be used to im- 
plement the method. An illustration is given with simulated twin data. 
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INTRODUCTION 

Behavioral genetic research generally focuses on the contribution of he- 
redity and the environment to individual differences. It has been main- 
tained that this approach is onesided because it precludes causal modeling 
of phenotypic means. Notably, McCall (1981) has argued that the struc- 
tural models of both the mean and the covariance are equally interesting 
and, in fact, complementary pieces of information in understanding the 
ontogenesis of a behavioral trait. 

For instance, the structure of the means is relevant in the comparison 
of age cohort samples with regard to the effects of environment and he- 
redity (Scarr-Salapatek, 1976). The finding that heredity makes a large 
contribution to the variance does not necessarily have a bearing on an 
observed difference in means between cohorts. It is not possible to in- 
terpret such a finding in terms of genetical and environmental effects 
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without further knowledge of the relationship between the structures of 
covariance and means. 

Causal models have been used to study the covariance structure and 
the structure of the mean simultaneously (e.g., S6rbom, 1982; McArdle 
and Epstein, 1987). Such models have been applied to the analysis of twin 
data by McArdle (1986) within his reticular action model (RAM) (McArdle 
and McDonald, 1984). In this approach, McArdle does not estimate the 
means of the genetical and environmental factors (second-order factors 
in the multivariate application of the RAM), but of a first-order psycho- 
metric factor. The structure of the observed means is therefore not related 
directly to the biometrical factors. 

In this paper, we suggest a method which involves assessing the 
influence of the biometrical factors upon the observed means within the 
context of the covariance analysis of twin data suggested by Martin and 
Eaves (1977). The objective of this method is to test explicitly the hy- 
pothesis that the structures of the phenotypic means and covariances can 
be modeled by the same common environmental and genetical factors. 
When this is found to be the case, it implies that the same genetic and 
environmental effects account for both the individual differences and the 
phenotypic means. 

The method, which can be carried out with the program LISREL VI 
(J6reskog and S6rbom, 1986), involves comparing the overall goodness 
of fit obtained from the analysis of covariance with the goodness of fit 
obtained from the simultaneous analysis of phenotypic means and co- 
variance. It does, however, require a minimum number of observed vari- 
ables equaling one plus the number of factors in the twin model of which 
means are estimated. 

An illustration is given with simulated data. 

LISREL ANALYSIS OF TWIN DATA 

The factor analytic approach to the genetical analysis of covariance 
structure has been explained by Martin and Eaves (1977) and the imple- 
mentation of the LISREL program to this end has been discussed else- 
where (Boomsma and Molenaar, 1986; see also this issue). These subjects 
are, therefore, dealt with briefly. 

The analysis of the monozygotic (MZ) and dizygotic (DZ) covariance 
structures amounts to a confirmatory factor analysis in which the ade- 
quacy of a model, which contains environmental and genetic factors, as 
an explanation of the observed covariance structure is tested. In the mul- 
tivariate case, the variables that are observed in Twin 1 and Twin 2 of 
the MZ and DZ samples are constrained to load on the common genetic 



Dolan, Molenaar, and Boornsma 53 

and environmental factors associated with each twin. Specific environ- 
mental and genetical factors can be introduced to accommodate the vari- 
ance that is not explained by the communal part of the model. The ge- 
netical relatedness is expressed in the fixed correlation of the factors: the 
additive genetic factors in the MZ group correlate perfectly; those in the 
DZ group have an expected correlation of .5. The loadings of the observed 
variables on the factors are constrained to be equal between Twin 1 and 
Twin 2 and across zygosities. These loadings are generally estimated by 
maximum likelihood. The model for the covariance structure can be ex- 
pressed as follows in the LISREL notation: 

~ i  = AglriA ', i = mz, dz. (1) 

If n is the number of observed variables and p is the number of factors, 
lambda is a (n x p) matrix containing the loadings of observed variables 
on latent factors and psi is a (p x p) correlation matrix of the latent 
factors. 

The objective of analyzing twin data with LISREL is to find a model 
which fits the data and subsequently to assess the contributions of the 
factors to the observed variances. The overall fit of the model is tested 
by chi-square and the significance of individual parameter estimates is 
judged against their standard errors or by dropping them from the model 
(see Neale e t  a l . ,  1989). 

In this approach, the expected values of the factors are assumed to 
equal zero (e.g., Boomsma and Molenaar, 1986) and the expected values 
of the observed variables are removed by summarizing the data in co- 
variance matrices. 

LISREL ANALYSIS OF THE STRUCTURE OF MEANS 

It is possible to include the means of both the observed and the latent 
variables in the analysis of twin data to test the dependence of the struc- 
tures of means and covariance. This can be achieved by allowing certain 
factors to influence other factors selectively. In LISREL this involves 
utilizing the beta matrix. The LISREL model then becomes 

~ i  = A(I - B)-laI,2"i(I  --  B ' ) - I A ' ,  i = mz, dz. (2) 

The data are summarized in augmented moment (AM) matrices, instead 
of covariance matrices. The AM matrix is the matrix of raw moments 
(i.e., calculated without mean correction) after a dummy variable which 
equals one has been added to each case. In the present application, a case 
is a twin pair. The dummy variable, which is added to both the MZ and 
the DZ samples, ensures that the last, n + lth, row of the input matrices 
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contains the observed means of Twin 1 and Twin 2. The last, n + lth, 
element in this row contains the average cross product of the dummy 
variable with itself, i.e., one. LISREL has facilities for computing the 
AM matrices from either raw data or summary statistics. 

The model that is tested in the present application contains the com- 
mon factors of the covariance model, e.g., an individual environmental 
factor (E), an additive genetic factor (G), and an additional factor (D) to 
accommodate the dummy variable (the number of factors is now p + 1). 
Unique factors may be introduced to accommodate specific variances but 
they are assumed not to contribute to the phenotypic means. The observed 
variables are constrained to load on the environmental and genetic factors 
as outlined above. The dummy variable is fixed to load on the additional 
factor, D, with a loading equal to 1.0. The beta matrix is used to estimate 
the influence of the additional factor on the common genetic and envi- 
ronmental factors by freeing the relevant elements of this matrix. 

An illustrative path diagram of this model is given in Fig. 1. Ex- 
pressing the model for Fig. 1 more elaborately clarifies how the observed 
means and covariances are modeled simultaneously. Figure 2 contains 

) 

Fig. 1. An  E,G twin model  with s tructured means .  The observed variables (T 's)  are con- 
s t ra ined to load upon  the additive genetic (G) and environmenta l  factors (E). Uni t  is the 
d u m m y  variable and D is the additional factor. The e ' s  are m e a s u r e m e n t  errors or  unique  
env i ronmenta l  imquences.  Alpha is the correlation between the additive genetic factors.  For  
M Z s  a = 1.0; for DZs  a = .5. The beta  coefficients are es t imates  of  the biometrical  factor 
m e a n s  which  determine the observed means  through the factor loadings. 
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Fig. 2. The  parti t ioned matr ices  of  Eq. (2). All matr ices  are decomposed  in a manne r  similar 
to the  A matr ix ,  i.e., into four indexed submatrices. Alpha in the 'Is matr ix represents the 
correlat ion between the additive genetic factors of  Twin 1 and Twin 2. 

the matrices of  Eq. (2) in their full form. Each matrix is partitioned into 
submatrices that accommodate the covariances structure, the means 
structure, and the presence of the dummy variable. Expressed in terms 
of the partitioned matrices the right-hand side of Eq. (2) can be written 
a s  
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Z 

[ A~l~11A'11 + A11(I - B)~1(I  - B')i~1A'11 A l l ( I  - B)i211 

(I - B')i~lA'11 1 ] " 

(3) 

Here ,  A~lqsllA'11 + Al1(I - B)i-21(I - B')/~lA'11 represents the matrix 
of  moments  of  the observed variables, and AH(I - B)/~ ~ is a vector  of  
observed  means. Comparing Eq. (3) to S, the sample AM matrix in Fig. 
2 reveals how the raw moments are expressed in terms of  the model 's  
parameters .  Note  that the average cross product  between two variables 
equals the sum of the covariance of  the variables and the product  of  their 
mean values. 

When common factors account for both the covariance and the means 
structure,  the estimates of  the elements in beta can be interpreted as the 
expected  values of  the common factors, that is, 

E[E] = 13eE[D] : ~e, (4) 

E[G] = [3gE[D] = [3g, 

where  E[D] denotes the expected value of the additional factor  and 13g 
and 13e are the loadings of  the biometrical factors on the additional factors. 
The expected values of  the common factor reduce to the beta weights 
because the expected value of the additional factor equals one. 

The expected values of the observed variables are then 

E[T] = he[3e + hg[3g. (5) 

The hypothesis  that the common biometrical factors (E and G) account  
for  the structures of both means and covariances can be tested by fitting 
the model both with and without the structured means. When this is the 
case, the parameter  estimates in lambda obtained from the analysis of  
covar iance matrices should equal those obtained from the analysis of 
augmented moment  matrices, and the overall fit (as indicated by the chi- 
square statistic) should be approximately as good as the overall fit ob- 
tained from the analyses of covariance matrices. 

A significant decline in the chi-square when the means are introduced 
into the analysis indicates that the common factors that account  for the 
covar iance cannot account  for the mean structure. 

The introduction of structured means into the analysis of  twin data 
as suggested here requires a minimum number of observed variables. The 
number  must exceed the number of common factors by one in order  to 
ensure the identification of  the factor means. In other words,  the number  
of  equations associating the observed means with the common factor 
means must exceed the number of  factor means that are estimated. 
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Table I. True Parameter Values 

57 

G E e Phenotypic mean 

Phenotype 1 2.50 7.10 1.0 76.40 
Phenotype 2 4.25 2.90 1.0 47.35 
Phenotype 3 3.10 5.20 1.0 62.30 

E[G] = 5.0 E[E] = 9.0 

The suggested procedure, then, is to find a model that fits one's data 
by analyzing the covariance matrices and, subsequently, fit the model 
plus the means Structure to the AM matrices. If the chi-square indicates 
that the latter model still fits, the common genetic and environmental 
factors that contribute to the individual differences also contribute to the 
phenotypic means. 

An illustration of this method is given with simulated data. 

ILLUSTRATION 

For 250 MZ and DZ twin pairs three-variate phenotypes were gen- 
erated with the IMSL subroutine GGNSM (IMSL, Inc., 1979) according 
to the E, G (individual environment and additive genetic effects) model 
depicted in Fig. 1. As the means of both E and G will be estimated, a 
minimum of three observed variables is required. The parameter values 
are given in Table I along with the expected values of the factors and the 
phenotypes. The 6 x 6 covariance matrices and the 7 x 7 AM matrices 
were calculated for the MZ and DZ twins. The results the analysis of the 
covariance structure are given in Table II. The true parameters are re- 
covered nicely: the model, judging by the chi-square, fits like a glove. 

Table II. Analysis of Covariance Structure 

Parameter estimate (SE in parentheses) 

G E e 

Phenotype 1 2.307 (.262) 7.061 (.168) 1.041 (.128) 
Phenotype 2 4.t97 (.156) 2.897 (.100) .958 (.048) 
Phenotype 3 2.932 (.204) 5.197 (.130) .955 (.059) 

E[G] = .0 E[E] = .0 

X233 = 16.18 p = .99 
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Table III. Analysis of AM Matrices: Identical Structures of Covariances and Means 

Parameter estimate (SE in parentheses) 
Estimated 

G E e phenotypic mean 

Phenotype 1 2.303 (.261) 7.048 (.166) 1.041 (.118) 76.26 
Phenotype 2 4.191 (,155) 2.892 (.099) .956 (.048) 47.30 
Phenotype 3 2.927 (.203) 5.189 (.128) .953 (.054) 62.22 

E[G] = 4.93 (.232) E[E] = 9.20 (.281) 

• = 18.73 p = .99 

Subsequently, the AM matrices were used as input. It is perhaps 
worthwhile to dwell on the actual implementation of the program. First, 
on the DATA card in LISREL the fact that AM matrices are to be ana- 
lyzed is specified by the statement MA = AM. The number of input 
variables is given as the number of real observed variables, so here we 
have NI = 6. LISREL will compute the AM matrices from the raw data 
or from any summary of the data as long as the covariances and means 
can be derived. On the MODEL card, the number of variables should 
now include the dummy unit variable, so NY = 7. The number of factors 
is simply the number of factors in the covariance structure model plus 
the additional factor, D, for the dummy variable, i.e., NE = 10 + 1. LY 
contains the factor loadings where it is important that the unit dummy 
variable loads exclusively on the additional factor, D, with a fixed loading 
of 1.0. BE contains the regressions of the biometrical factors upon the 
factor D. Finally, PS is the correlation matrix of the factors. The loadings 
of the observed variables on the factors are constrained to be equal across 
the DZ and MZ groups, as are the loadings of the environmental and 
genetic factors on the additional factor [see Appendix (Fig. A1) for the 
LISREL setup]. 

The results of the analysis of the model incorporating the structures 
of both the means and the variance are given in Table III. The parameter 
estimates of the factor loadings are almost identical to those obtained 
from the analysis of covariance matrices (Table II) and are close to the 
true values. The expected values of the common biometrical factors are 
simply the parameter estimates of the freed beta elements. These, too, 
do not diverge greatly from the true values. Judging the chi-square by the 
one obtained from the analysis of covariance matrices, it would be safe 
to conclude that the structures of the phenotypic means and covariances 
can be accounted for by the same common biometrical factors. It should 
be pointed out that the average cross product of the dummy variable with 
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itself in the input AM matrices cannot be taken as an independent statistic 
and therefore does not contribute to the degrees of freedom. Because this 
is not recognized by the LISREL program as it is used here, it is necessary 
to subtract one degree of freedom for each group from the degrees of 
freedom given in the LISREL output and calculate anew the probability 
level of the obtained chi-square. 

A second data set was generated according to the model in Fig. I but 
with independent structures of means and covariances. The covariances 
structure was analyzed first. Here the fit was good, with a X233 of 41.97 
(p = .135). Subsequently, the model involving the structures of both the 
means and the covariances was tested. The fit of the model was found to 
be extremely poor (X243 = 1823.32, p = .00), indicating that the common 
factors cannot account for the structure of the observed means. 

DISCUSSION 

The objective of the method discussed in this paper is to test the 
hypothesis that both the phenotypic means and the phenotypic covariance 
can be modeled by the same common biometrical factors. Implementation 
of the method requires a minimum number of observed variables that 
depends on the number of common factors in the model for the covariance 
structure. The minimum number of observed variables must equal the 
number of factors in the communal part of the model plus one. As each 
observed mean is expressed as the weighted contributions of the means 
of the common biometrical factors [see Eq. (5)], a condition for the iden- 
tification of the observed means is that the number of observed variables 
exceeds the number of these factors. Note that a similar situation is found 
in most textbooks where the identification of the population mean of a 
trait is achieved by fixing the expected value of the environmental factor 
to equal zero (Falconer, 1960, p. 112). 

The investigation into the relationship between the structure of the 
means and that of the covariances could easily be extended to involve 
the comparison of different samples of twins such as  male and female 
twins or the same sample at different points in time. This would involve 
following the procedure that is used in fitting a sex-limitation model (e.g., 
see Eaves et  al . ,  1978), that is, comparing a model in which the factor 
loadings (both lambdas and betas) are constrained to be equal across sexes 
with the model in which they are free to differ. 

In conclusion, the method discussed in this paper has the potential 
to provide a fuller picture of the influence of heredity and environment 
on behavior. 
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Fig. A1. 

A P P E N D I X  

three  variate  mz twins  - model  E,G - identical  s t ruc tu res  means  covar .  

da ng=2 ni=6 no=250 m a = a m  

la 
# 

' t l  1' ' t12 '  ' t13 '  ' t21 '  't22' ' t2Y 

c n l  

55.4460 

29.8899 26.1734 

42.5224 26.7325 35.6698 

5.0615 9.9431 6.7500 59.0315 

9.8208 17.4062 12.3588 32.0683 27.8959 

6.9368 12.4777 8.7804 46.5600 29.1923 39.4146 

m e  

(6f7.4) 

76.499 47.506 62.393 76.149 47.331 62.133 

mo ny=7 nx=0  ne=l  1 nk=0 ly=fu , f r  ps=sy , f i  te=ze be=fu , f i  

pa ly 

1 1 1 0 0  

1 1 0 1 0  

1 1 0 0 1  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 1  

eq ly ( l ,3 )  1y(4,8) 

eq ly ( l ,2 )  ly(4,7) 

eq l y ( l , I )  1y(4,6) 

eq ly(2,1 ) ly(5,6) 

1y(2,2) Iy(5,7) 

Iy(2,4) 1y(5,9) 

ly(3,1) 1y(6,6) 

1y(3,2) 1y(6,7) 

Appendix.  L I S R E L  input to test  the equivalence of  means  and covar iances  
s t ructures .  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

1 1 1 0 0 0  

1 1 0 1 0 0  

1 t 0 0 1 0  
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fi ly(7,1 1) 
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fr be ( l , 11 )  be(2,11)  be(6,11) be(7,11) 

eq b e ( l , l l )  be(6,11)  

eq be(2,  I I ) be(7, I I ) 

sl 5.0 all 

OLI se rS ns 

th ree  var ia te  dz  twins  - model  E I ,G  - identical  s t ruc tu res  m e a n s  covar.  

da no=250 m a = a m  

c m  

53.5842 

28.8904 26.9180 

41.1134 26.6056 34.7054 

2.4443 5.8008 3.2128 57.1301 

5.9953 10.4549 7.2673 29.8899 27.0452 

3.2634 6.8865 4.2622 43.7938 27.1483 36.4573 

m e  

(6f7.4) 

76.100 47.080 62.094 76.331 47.350 62.312 

mo ly=in ps=sy , f i  te=in  be=in 

m a p s  

1 

Fig. A1. (Continued) 
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Fig. AI ,  (Continued) 
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