
Behavior Genetics, Vol. 19, No. 1, 1989 

Testing Structural Equation Models for Twin Data 
Using LISREL 
A. C.  Heath,  1 M.  C. Neale,  1 J. K. Hewitt ,  x L. J. Eaves ,  1 and 
D.  W .  Fulker  2 

Simple genetic models can befitted to twin data using software packages 
such as LISREL (J6reskog and S6rbom, 1986a). After discussion of  data 
preparation and routine checks on possible violation of  assumptions of  
the twin method, we illustrate univariate, bivariate, and multivariate ge- 
netic models which can be tested in cross-sectional twin data using 
LISREL.  These include models for cohort or cohabitation effects, ge- 
notype x sex interaction, and certain types of  genotype • environment 
interaction and genotype-environment correlation. 
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INTRODUCTION 

During exploratory analyses of twin data, simple genetic and environ- 
mental models can be tested using a regression approach (e.g., DeFries 
and Fulker, 1985). The regression approach breaks down, however, once 
we wish to incorporate multiple (possibly reciprocally interacting) de- 
pendent variables, or multiple family relationships, in the models. Soft- 
ware packages for structural equation modeling such as LISREL (J/Sres- 
kog and S6rbom, 1986a) make it possible to fit such models to summary 
covariance or correlation matrices by maximum-likelihood or other meth- 
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ods. Such programs provide a chi-square test of the goodness of fit of a 
model and give estimates of the model parameters and their standard 
errors. In this paper we give a basic overview of the stages of model fitting 
and the types of models that can be tested with twin data and show how 
model fitting can be performed using LISREL (J6reskog and S6rbom, 
1986a). A subsequent paper gives a brief overview of hypothesis testing 
using LISREL (Neale et al., 1989b). 

TESTING THE "EQUAL-ENVIRONMENTS" ASSUMPTION 

Prior to model fitting, a number of routine checks of possible vio- 
lations of the assumptions of the twin method should be performed. Es- 
timates of genetic and environmental parameters from twin data will be 
valid only if the trait-relevant environments of monozygotic twin pairs 
are no more highly correlated than the trait-relevant environments of di- 
zygotic twin pairs, except in so far as the environments are actively cre- 
ated by the twins themselves (e.g., Eaves et al., 1977; Plomin et al., 1977; 
Scarr and McCartney, 1983; Martin et al., 1986). Monozygotic twins may 
have experienced more similar environments as children in many respects 
(e.g., dress, sharing the same friends), but this greater similarity of ex- 
perience is important only if these environmental features are predictive 
of the trait under study. The greater environmental similarity of mon- 
ozygotic than dizygotic twin pairs may arise because twins actively create 
or select their own environments (one form of genotype-environment 
correlation; see below), and the type of environment created is influenced 
by traits which are in part genetically determined. It is only when mon- 
ozygotic twin pairs are passive recipients of more similar environmental 
treatments than are dizygotic twin pairs that potential problems arise. 

A simple regression analysis will detect significant associations with 
the trait under study of "passive" environmental variables (i.e., envi- 
ronmental treatments of which twin pairs are passive recipients). If there 
is a higher correlation between monozygotic twin pairs than between di- 
zygotic twin pairs for such passive environmental variables, failure to 
adjust for their effects will inflate estimates of genetic variance. Significant 
effects of variables such as age, for which monozygotic and dizygotic 
twin pairs are equally correlated, will inflate the estimate of shared en- 
vironmental variance. In either case, the effects of the environmental 
variables may be adjusted for by including them as covariates in a genetic 
analysis (Neale and Martin, 1989). With most variables (e.g., for such 
epidemiological risk factors as smoking, drinking, exercise, etc.), there 
are no a priori grounds for assuming that twins are passive recipients of 
an environmental feature or risk factor. For such cases a bivariate genetic 



Twin Data Analysis Using LISREL 11 

analysis will be needed to determine the direction of causation (see Bi- 
variate Models, Causal Pathways, and Genotype-Environment Corre- 
lation, below) and adjust for the effects of the epidemiological risk factor 
where appropriate. 

It is not feasible to assess all the possible trait-relevant passive en- 
vironmental features for which monozygotic twins may be more highly 
correlated than dizygotic twins. A test for the absence of such effects is 
still feasible. We would expect greater concordance for such environ- 
mental features in twin pairs who are still living in the same household 
than in twin pairs who are living apart (e.g., Heath et  al. ,  1988a) and, 
perhaps, also greater concordance in twin pairs who have frequent social 
contact than in twin pairs who rarely have social contact (e.g., Kaprio e t  
al . ,  1987). Thus if twin similarity does no t  vary as a function of cohabi- 
tation or amount of social contact, this implies that such effects are un- 
important. We compute for each twin pair, separately for each mono- 
zygotic twin group, an estimate of the within-pair variance [(T1 - T2) 2, 
where T1 is the score of the first twin and T2 the score of the second 
twin from the pair] and test whether this decreases with increasing amount 
of social contact. 

If a significant association is found between twin similarity and amount 
of social contact, several possible explanations must be considered. If 
there are mean differences in trait level between pairs having different 
amounts of social contact, the association may be an artifact arising be- 
cause of heteroscedasticity, i.e., differences in error variance at different 
points on the scale of measurement. In such a case, data transformation 
(see below) should reduce or eliminate the association. It may be that 
more dissimilar pairs choose not to live together or choose to have less 
social contact. Finally, it is also possible that pairs who have more fre- 
quent social contact experience more similar environments. Monozygotic 
twins do report more frequent social contact with their cotwin than di- 
zygotic twins (e.g., Kendler e t  al. ,  1986). Thus this third explanation 
would indeed suggest that the environments of monozygotic twin pairs 
are more highly correlated than the environments of dizygotic twin pairs. 
Whether more similar twin pairs choose to have more frequent social 
contact, or more frequent social contact leads to greater similarity, cannot 
in general be resolved without prospective data (e.g., Kessler and Green- 
berg, 1981). if  it is indeed the case that differences in frequency of social 
contact cause differences in level of similarity, then these effects must 
be corrected for in the genetic analysis. A simple way of modeling co- 
habitation effects is presented below (see Genotype x Sex/Cohort/En- 
vironment Interaction). Hopper and Matthews (1983; Hopper and Cul- 
ross, 1983) and Lange (1986) discuss more sophisticated models for 
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cohabitation effects, but these require fitting models to raw data and, so, 
cannot be used with LISREL. 

NONRANDOM ASCERTAINMENT 

Nonrandom sampling can also cause serious problems in twin data 
(Martin and Wilson, 1982; Lykken et al., 1987; Neale et al., 1989a). Once 
again the critical question is whether a twin sample can be regarded as 
representative of the general population with respect to the variables 
under study. A sample which underrepresents twins from the lower so- 
cioeconomic strata may be entirely suitable for studying dermatoglyphic 
traits (e.g., Holt, 1968) or personality traits (e.g., Eysenck and Eysenck, 
1975), traits which vary little as a function of social class, but may give 
misleading results for an analysis of genetic and environmental factors in 
occupational achievement. Nonrandom sampling is likely to be a partic- 
ularly important problem in volunteer twin studies (Lykken et al., 1978, 
1987). 

Fortunately, twin data provide a means of detecting the effects of 
nonrandom sampling, a test which is not available in samples of unrelated 
individuals. For many variables, including cognitive ability measures and 
clinical end points (e.g., Cox et al., 1977), individuals falling below a 
certain cutoff point on a trait have a reduced or zero probability of vol- 
unteering to participate in a study. Nonparticipation by either twin will 
exclude a twin pair from the sample. Thus for those traits for which mon- 
ozygotic twins are more highly correlated than dizygotic twin pairs, there 
will be greater loss of dizygotic than monozygotic pairs from the sample. 
It has been shown that under these conditions such truncate sampling will 
lead to differential attenuation of the monozygotic and dizygotic twin 
correlations, with the latter correlation being more highly attenuated than 
the former (Neale et al., 1989a). Failure to take account of the nonrandom 
sampling will thus lead to biased estimates of genetic and environmental 
parameters. However, the nonrandom sampling will also produce differ- 
ences in mean (and variance) as a function of zygosity (Lykken et al., 
1987), differences which would not be predicted under any simple genetic 
model. Furthermore, there will be mean and variance differences between 
twins from pairs concordant for response and twins from pairs discordant 
for participation in the study. Correction for the effects of nonrandom 
sampling is possible but cannot be achieved using LISREL or similar 
software. Significant mean differences as a function of zygosity, or be- 
tween twins from complete and incomplete pairs, are thus a strong in- 
dication against proceeding to the model-fitting stage, until the possible 
consequences of nonrandom sampling have been investigated. 
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DATA TRANSFORMATION 

Both in regression analyses and in model-fitting analyses, parameter 
estimates are very sensitive to violation of the assumption of homosce- 
dastic error variances (e.g., Eaves et  al. ,  1977). For most behavioral mea- 
sures, a systematic relationship between mean and variance is found when 
untransformed scores are used. For measures of alcohol consumption, 
for example, it is found that error variance is greater for those reporting 
higher mean levels of consumption (Jardine and Martin, 1984). Such het- 
eroscedasticity can be detected as a significant polynomial regression of 
intrapair variance on pair mean in monozygotic twin pairs. Usually it can 
be removed by a simple data transformation which will be suggested by 
the properties of the measurement scale (Bartlett, 1947). Transformation 
of raw data can be easily effected using PRELIS, a preprocessor for 
LISREL (J6reskog and S6rbom, 1986b). 

DATA SUMMARY 

Early papers on model-fitting analyses of twin data (e.g., Eaves, 1977; 
Martin and Eaves, 1977) used mean squares and products, derived from 
an analysis of variance, as a data summary for each twin group. Such 
summary statistics can be used with LISREL (e.g., Fulker et  al . ,  1983; 
Boomsma et  al. ,  1986; Molenaar and Boomsma, 1987). Their use is in- 
appropriate, however, if we wish to test hypotheses about genotype x 
sex interaction (e.g., Eaves, 1977) or genotype x environment interaction 
(e.g., Eaves, 1982), where error variances may be expected to vary as a 
function of sex or environmental exposure, or if we wish to include data 
on the parents of twins (e.g., Eaves et  al. ,  1978) or the spouses of twins 
(e.g., Eaves, 1979; Heath and Eaves, 1985) or other relatives. For gen- 
erality, therefore, we focus on the analysis of covariance matrices, which 
either may be computed using another statistical package, or may be 
computed from raw data by LISREL or its preprocessor, PRELIS (J6- 
reskog and S6rbom, 1986a,b). 

If variables are not measured on a continuous scale but consist of 
two or more categories (i.e., are dichotomous or polychotomous, e.g., 
because they consist of responses to individual items in a questionnaire), 
methods used with continuous data cannot be applied. If such data are 
at least ordinal, it is still possible to estimate polychoric correlations [be- 
tween two polychotomous variables (e.g., Olsson, 1979)] or polyserial 
correlations [between a polychotomous and a continuous variable (e.g., 
Olsson et  al. ,  1982)] using mainframe versions of LISREL or microcom- 
puter versions of PRELIS. Estimation of polychoric or polyserial cor- 
relations implies the assumptions that the discontinuous response distri- 
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bution observed for each polychotomous variable is determined by an 
underlying continuous normal distribution with thresholds superimposed 
and that the joint distribution of the underlying latent variables (polychoric 
correlation) or the underlying latent variable and the observed variable 
(polyserial correlation) is bivariate normal. The polychoric correlation 
estimates the correlation between the underlying, normally distributed 
la tent  variables, not the observed discontinuous variables. Likewise, the 
polyserial correlation estimates the correlation between the latent variable 
underlying the polychotomous variable and the continuously distributed 
observed variable. If the data are at least trichotomous, PRELIS provides 
a chi-square goodness-of-fit test of this distributional assumption. Pro- 
vided that chi-square values are nonsignificant, matrices of polychoric, 
polyserial, and product-moment correlations can be used for data sum- 
mary. Models can then be fitted to these correlation matrices using 
LISREL. Since these matrices are often nonpositive definite, model fit- 
ting to these matrices by maximum likelihood is not possible. Models are 
usually fitted by unweighted least squares (J6reskog and Srrbom, 1986a). 
Weighted least-squares estimation, using estimates of the variances and 
covariances of the correlations as weights, has been described by Browne 
(1984) and is expected to be included as an option in LISREL VII 06- 
reskog and Srrbom, 1986b). An alternative approach, in which nonpo- 
sitive definite matrices are robustified so that the maximum-likelihood 
procedure can be used, has also been described (Boomsma et al., 1989a; 
Martin and Boomsma, 1989). 

In the analysis of family-structured data, the family (e.g., twin pair, 
twin pair plus parents, twin pair plus spouses), rather than the individual 
respondent, becomes the basic unit or "case"  for data analysis. Thus if 
there are k observations per respondent and m individuals per family, 
there will be k • m variables per case. In what follows we order the data 
so that the first k variables for each family are observations on the first 
twin, the second k variables are observations on the second twin, and so 
on. Data on twins from unlike-sex pairs must be reordered so that the 
first k variables are observations on, say, the male twin, and the next k 
variables observations on the female twin (so that variances and covar- 
iances are computed about the sex-appropriate means). In testing for ge- 
notype x environment interaction involving a dichotomous exposure 
variable (e.g., Eaves, 1982; Heath et aI., 1988a), zygosity groups are 
subdivided into concordant exposed, discordant, and concordant non- 
exposed groups. Twins from discordant pairs must be reordered so that 
the first twin is always, say, the exposed twin, and the cotwin the non- 
exposed twin. Twin pairs may be further subdivided on the basis of sex, 
in which case unlike-sex discordant pairs must be divided into two groups 
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according to whether the male or female twin is exposed. Summary co- 
variance and correlation matrices are computed separately for each twin 
group. If raw data are used as input, LISREL expects one case (i.e., 
family) per record of data and requires that the data be presorted into 
twin groups, but PRELIS does not have these restrictions. 

THE BASIC LISREL MODEL 

The use of LISREL is facilitated by at least a working knowledge of 
path analysis (e.g., Wright, 1968). In a path diagram (Wright, 1968, p. 
299), 

every included variable, measured or hypothetical, is represented by arrows as 
either completely determined by certain others, which may in turn be represented 
as similarly determined, or as an ultimate variable. Each ultimate factor in the 
diagram must be connected by lines with arrowheads at both ends with each of the 
other ultimate factors to indicate possible correlations through still more remote, 
unrepresented factors except in cases in which it can safely be assumed that there 
is no correlation. 

Figure 1 illustrates in the form of a path diagram the full model used by 
LISREL. (For most genetic applications only a subset of the variables in 
the LISREL model is used.) Variables V1 . . . V5 are latent "ultimate" 
or independent variables (termed KSI variables by LISREL), of which 
variables V2, V3, and V4 are represented by two-headed arrows as being 
correlated. Variables W1 and W2 are latent dependent variables (termed 

V1 V 2  V 3  V 4  V 5  K S I - v a r i a b l e s  

X1 X 2 Z ~ x ~  l / S  - ~ x ~  X n  X - v a r i a b l e s  

W l  e W 2  E T A - v a r i a b l e s  

Y1  Y 2  Y m  Y - v a r i a b l e s  

Z 1 Z 2  Z m  

Fig. 1. The basic LISREL model. VI . . . V5 denote latent ultimate variables, which are 
indexed by observed variables X 1 . . .  X n ;  W1 and W2 are latent dependent variables, which 
are indexed by observed variables Y1 . . . Y m .  U1 . . . U n  a n d  Z1  . . . Z m  are residual 
variables influencing X1 . . . X n  a n d  Y1 . . . Yrn.  
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ETA variables by LISREL) which are completely determined by the ef- 
fects of the latent ultimate variables plus the reciprocal effects of W1 on 
W2, and vice versa. A model of this type might be used to represent, for 
example, the effects of latent personality factors on two subtypes of al- 
cohol abuse (e.g., Cloninger, 1987). 

LISREL distinguishes between the "structural model," which spec- 
ifies the relationships between ultimate and dependent variables (includ- 
ing the effects of dependent variables on other dependent variables), and 
the "measurement" model relating the ultimate and dependent variables 
to the corresponding observed variables (termed x variables and y vari- 
ables, respectively, by LISREL). In the simplest genetic applications 
there will be a one-to-one correspondence, and an identity relationship, 
between the latent dependent variables (phenotypes) and observed vari- 
ables. The diagram in Fig. 1, however, represents a more complicated 
model. Observed variables X1, X 2 . . .  Xn are completely determined by 
the latent independent variables V2, V3, and V4 plus variable-specific 
residual effects (U1, U 2 . . .  Un). Observed variables Y1, Y 2 . . .  Yrn are 
completely determined by the latent dependent variables W1 and W2 plus 
variable-specific residual effects (Z1, Z 2 . . .  Zm). The diagram thus rep- 
resents a second-order factor model, where the two first-order factors, 
W1 and W2 (e.g., alcohol abuse factors), indexed by measurements Y1 
�9 . . Ym, are determined by three second-order factors V2, V3, and V4 
(e.g., latent personality factors), indexed by measurements X1 . . . Xn, 
plus residual effects (V1, V5). 

Table I summarizes the parameter matrices used by LISREL. In most 
genetic applications only a small number of these will be needed (given 
in the upper section of Table I). The reader is referred to J6reskog and 
SOrbom (1986a) for a formal specification of the LISREL model�9 It should 
be noted that, whereas the matrices beta, gamma, lambda-X, and lambda- 
Y give estimates of path coefficients, the matrices theta-delta and theta- 
epsilon are used to specify residual variances in the observed x variables 
and y variables, respectively. This is an unfortunate inconsistency be- 
cause it means that LISREL can sometimes give impossible negative 
estimates for these residual variances. 

REPRESENTING GENETIC MODELS IN LISREL 

Figures 2a and b illustrate a simple univariate genetic model, for 
monozygotic twin pairs and for dizygotic twin pairs, respectively. The 
model allows for additive gene action (parameter h), environmental ef- 
fects shared by twins (parameter c), and nonshared environmental effects 
which make one twin differ from his/her cotwin (parameter e). In addition, 
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Table I. Summary of Parameter Matrices Used to Specify Genetic and Environmental 
Models in LISREL 

Matrix Parameters Typical element 

PHI Variances, covariances of PH(i,j) gives covarianee 
ultimate variables between ith, j'th ultimate 

variables 
(= correlation for 
standardized variables) 

PH(i,i) gives variance of ith 
ultimate variable (= 1 if 
standardized) 

Paths from ultimate to dependent GA(i,j) gives path fromjth 
variables ultimate to ith dependent 

variable 
BE(i,j) gives path from jth to ith 

dependent variable 
LY(i,j) gives path fromjth 

dependent to ith observed 
variable 

TE(i) gives residual variance for 
ith observed y variable 

PS(i,j) gives covariance between 
ith, jth dependent variables 
(= correlation for 
standardized variables) 

PS(i,i) gives variance of ith 
dependent variable (= 1 ff 
standardized) 

Paths from ultimate to observed LX(i,j) gives path from jth 
(x) variables ultimate to ith observed 

variable 
Residual variances for x TD(i) gives residual variance for 

variables ith observed x variable 

GAMMA 

BETA 

LAMBDA- Y 

THETA-EPSILON 

PSI 

LAMBDA-X 

THETA-DELTA 

Paths from dependent variables 
to other dependent variables 

Paths from dependent to 
observed (y) variables 

Residual variances for y 
variables 

Variances, covariances of 
dependent variables 

the model allows for reciprocal sibling interaction (parameter s), i.e., 
environmental effects of the first twin's phenotype on that of his/her co- 
twin, and vice versa (Carey, 1986). We might expect sibling interaction 
to be important in cases where, for example, extroversion in the first twin 
has an inhibitory effect on extroversion in the cotwin, and vice versa 
(s < 0), or where drug or alcohol use by one twin encourages drug or 
alcohol use by the cotwin, and vice versa (s > 0). All parameters are 
constrained to be the same in twins from monozygotic (MZ) and dizygotic 
(DZ) twin pairs, as well as in first and second twins from each twin group. 
Thus the model assumes that trait-relevant "passive" environmental ef- 
fects are no more highly correlated in monozygotic than in dizygotic twin 
pairs. In terms of traditional variance components (e.g., Falconer, 1982), 
when s = 0, VA = h 2, V C  = c 2, and VE = e 2. 
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a b 

El AI CI E2 A2 C2 KSI-variables El A1 C1 E2 A2 C2 

PI ~ -  m, P2 ETA-variables P1 ,t P" P2 

11 s I1 I~ s ; I  
YI MZ twin pairs Y2 Y-variables Y1 DZ twin pairs Y2 

Fig. 2. Univariate  genetic model. P1, El ,  A1, and C1 denote the phenotype,  unique en- 
v i ronmenta l  deviation, additive genetic deviation, and shared environmental  deviation of 
the first twin; t '2,  E2, A2, and C2 denote the corresponding variables for the second twin; 
Y1 and Y2 denote  observat ions on the first and second twins. See text for identification of 
parameters  e, h, c, and s. 

Parameter  matrices needed to set up this job in L I S R E L  are the 6 
• 6 PHI  matrix, the 2 • 6 GAMMA matrix, the 2 x 2 BETA matrix, 
and the 2 • 2 LAMBDA-Y matrix (see Table I). Taking the variables in 
Figs. 2a and b in the order  in which they occur  from left to right, these 
matrices will be as follows (see Table I). 

1 0 0 0 0 0 
0 I 0 0 1 0 
0 0 1 0 0 1 

PHI = 0  0 0 1 0 0 (for MZs) 

0 1 0 0 1 0 
0 0 1 0 0 1 

o r  

PHI = 

1 0 0 0 0  0 
0 1 0 0  . 5 0  
0 0  1 0 0  1 
0 0 0 1 0 0 (for DZs), 

0 .5 0 0 1 0 
0 0  1 0 0  1 

GAMMA = 
e h c O 0  0 
O 0  O e h c 

1 0 
LAMBDA- Y = 

0 1 

0 s 
BETA = 

s 0 

Only the PHI  matrix will differ between twin groups. The effects of  genetic 
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dominance and shared environment are confounded in data on twin pairs 
reared together, the former decreasing the dizygotic correlation to less 
than half the monozygotic correlation, and the latter increasing the di- 
zygotic correlation to greater than half the monozygotic correlation. If 
the data are consistent with genetic dominance rather than shared envi- 
ronmental effects, then we must estimate the parameter d (= VD 1/2) in- 
stead of c by fixing PHI (6,3) [= PHI (3,6)] for dizygotic twins to .25 
rather than unity. Appendix I (Fig. A1) gives a sample LISREL job for 
fitting a simple univariate genetic model to twin data, allowing for additive 
gene action, nonshared environmental effects, plus reciprocal sibling in- 
teraction [i.e., setting c = 0; the joint resolution of sibling interaction and 
either shared environmental effects or genetic dominance will not be fea- 
sible with data on MZ and DZ twin pairs alone, for realistic sample sizes 
(Eaves, 1976; Jardine, 1985; Carey, 1986)]. The LISREL manual (J6res- 
kog and S6rbom, 1986a), should be consulted for full details of how to 
set up a problem run in LISREL. 

Genotype • Sex/Cohort/Emvironment Interaction 

The model in Fig. 2 is easily modified to allow for differences in 
genetic and environmental effects as a function of sex, age cohort (e.g., 
older versus younger twin pairs), cohabitation history (e.g., twin pairs 
living together versus twin pairs living apart), or environmental exposure 
(e.g., exposure or nonexposure to a high-risk environment). This is il- 
lustrated in the three composite diagrams in Figs. 3 and 4. Figure 3 would 
be appropriate for testing hypotheses about genotype x sex interaction. 
The same model could be used for testing hypotheses about cohort or 
cohabitation effects (with the younger/older or cohabiting/living-apart 
pairs replacing male and female like-sex pairs), except that in these cases 
there will be no equivalent of the unlike-sex pairs. The model allows for 
differences in sibling interaction effects as a function of sex, cohabitation, 
etc. For unlike-sex or discordant twin pairs, there are two different ways 
of representing sibling interaction, which differ with respect to whether 
the environmental effect of twin's phenotype on cotwin's phenotype is 
allowed to depend upon the sex of the actor or the sex of the recipient 
(the case represented in Fig. 3). These two different representations will 
generally lead to different predictions in twin data and, thus, will be test- 
able by chi-square test of goodness of fit. 

The model in Fig. 3 not only allows for differences in the magnitude 
of genetic and environmental effects as a function of sex (or cohabitation, 
etc.), but also for the possibility that those environmental effects which 
are shared by male twins, and those environmental effects which are 
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shared by female twins, are imperfectly correlated in twins from unlike- 
sex pairs (i.e., rc < 1). With twin data, when testing for genotype x sex 
interaction, it is not possible to test simultaneously for imperfect corre- 
lations in both gene effects and shared environmental effects in the two 
sexes, since there are no unlike-sex monozygotic twin pairs! However, 
when testing for genotype x environment interaction, there will be both 
monozygotic and dizygotic pairs discordant for exposure, so we will be 
able to test whether the correlation between gene effects in exposed ver- 
sus nonexposed twins, rg, is less than unity. This cannot be achieved 
directly using the model in Fig. 3, since there is no way of indicating in 
LISREL that the element of the PHI matrix in discordant dizygotic twins 
which gives the correlation betwen A1 and A2 should be one-half the 
corresponding element of the PHI matrix for discordant monozygotic 
pairs. However,  we can reparameterize the model in Fig. 3 to achieve 
this effect, as illustrated in Fig. 4. Here we are estimating parameters ha 
and h"  instead of h and h', where the genetic variance in exposed twins 
is given by VA = h 2 = 2 ha  2, and the genetic variance in nonexposed 
twins by VA'  = h '2 = 2ha '2. After model fitting, estimates of ha and ha' 
should be transformed to estimates of the genetic parameters h and h' 
(or VA and VA') .  This model permits us to estimate rg, the correlation 
between gene effects under the two conditions of environmental exposure. 
It can also be used to represent genotype x sex interaction where the 
correlation between gene effects in the two sexes is less than unity. Ap- 
pendix II (Fig. A1) gives a sample LISREL job which fits a genotype x 
environment interaction model to twin data. 

Bivariate Models, Causal Pathways, and Genotype-Environment 
Correlation 

With twin data on two or more variables, we can test hypotheses 
about the contribution of genetic and environmental factors to the co- 
variation of variables. A general bivariate model for the resemblance of 
twin pairs for two traits (or the same trait measured on two occasions) is 
presented in Fig. 5 (cf. Eaves and Eysenck, 1975). (To simplify the dia- 
gram, shared environmental effects have been omitted.) The full model 
estimates separate genetic and environmental parameters for each trait 
(h, h' ,  etc.), together with correlations between gene effects, shared en- 
vironmental effects, and nonshared environmental effects for the two 
traits (re, rc, and rE). The parameters i and i' are redundant in the full 
model. However,  sometimes we may wish to test a more restrictive hy- 
pothesis, that trait PA is one of the causes of variation in trait PB (i > 
0), against the more general model, and the alternative hypothesis that 
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r (MZ) or i/2r a (DZ) 
a 

re ) r  I(MZ) or 1/2(DZ) TM 

s  r a  ra(MZ ) or 1/2ra(DZ) ~ r ~ f ; r 

EAt AA1 EBI AB1 EA2 AA2 EB2 AB2 

PAl ~- " PB1 P A 2 e  " PB2 

Twin t Twin 2 
Fig. 5. Bivariate genetic model altowing for reciprocal interaction between variables. PA 1, 
EA1, and AA1 and PA2, EA2, and AA2 denote the phenotypic deviation, unique environ- 
mental deviation, and additive genetic deviation for the first trait in the first and second 
twins: PB1, EB1, and AB1 and PB2, EB2, and AB2 denote the corresponding variables for 
the second trait; ra and re denote the correlations between additive genetic deviations and 
unique environmental deviations for the first and second traits; subscripts A and B distin- 
guish genetic and environmental parameters for the first versus second trait; paths i and i' 
represent direct effects of the first trait on the second trait, and vice versa. 

trait PB causes  variation in trait PA (i' > 0). Even  with cross-sectional 
bivar ia te  twin data,  such causal pa thway models can be specified and 
tes ted,  jus t  as can be achieved with prospective data on samples of  un- 
related individuals (e.g., Kess ler  and Greenberg,  1981), provided that  twin 
correlat ions differ in magnitude for the two variables PA and PB. In testing 
these  al ternative submodels ,  we set rA = r c  =- r E  = 0 and either i = 0 
(PB is a cause  of PA) or i' = 0 (PA is a cause  of PB). Once again, the 
full model  cannot  be directly represented in L I S R E L - - b e c a u s e  the cross- 
corre la t ion be tween  AA1 and AB2 or be tween  AB1 and AA2 is ra in MZ 
pairs but  �89 in DZ p a i r s - - b u t  must  be reparameter ized  by including the 
var iables  AA1 and AB1 twice for each twin. Since the same principle 
applies as in the reparameter ized  model  in Fig. 4, we do not give the 
L I S R E L  representa t ion here. 

The  bivariate  model  represented in Fig. 5 can be used to test  for  one 
type  of  geno type -env i ronm en t  correlat ion (Eaves  et al., 1977), where  
genetic liability is posit ively correlated with exposure  to environmenta l  
r isk factors  because  individuals high on genetic liability (e.g., to depres-  
sion) are more  likely to expose  themselves  to high-risk environments  [e.g., 
s tressful  life events  (cf. Brown and Harris ,  1978)]. Thus the model  can 
be used  to determine whether ,  for example,  stressful life events  are a 
cause  of depress ion or depression is a cause of  self-exposure to stressful 
life events .  The  more  general hypothesis ,  that there is reciprocal  inter- 
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action between P A  and P B  (i.e., i r 0 and i' ~ 0, e.g., because stressful 
life events are a cause of depression, which in turn increases self-exposure 
to stressful life events) cannot in general be resolved with c r o s s - s e c t i o n a l  

twin data. 

Multivariate Genetic Models 

In analyses involving three or more variables per twin, more elab- 
orate hypotheses about the structure of genetic and environmental effects 
can be conducted within the framework of multivariate genetic analysis 
(e.g., Martin and Eaves, 1977; Kendler et  al . ,  1987; Silberg et  al . ,  1987). 
Multivariate genetic analysis is a generalization of factor analysis, in 
which we use not only phenotypic covariances or correlations between 
variables, but also covariances and cross-variable covariances between 
MZ and DZ twin pairs, to estimate loadings on separate genetic, shared 
environmental, and nonshared environmental common factors�9 The sim- 
plest possible model would combine any of the "structural" models in 
Figs. 2-5 with a factor "measurement" model to specify the relationship 
between P1 (or P A l ) ,  etc., and the observed variables Y1, Y2 . . . I n ,  

allowing also for residual environmental effects on the y variables�9 How- 
ever, this model implies the very strong assumption that all variable- 
specific effects are uncorrelated over twin pairs (i.e., that there are no 
trait-specific genetic or shared environmental effects), an assumption 
which is rarely satisfied in real data. 

Figure 6 presents a somewhat more general version of such a model, 
which has sometimes been described as the "psychometric" model 
(McArdle and Goldsmith, 1984) or "common pathway" model (Kendler 
et  al . ,  1987), which does allow for variable-specific genetic and environ- 
mental effects�9 The diagram has been simplified by the omission of shared 
environmental effects. The model illustrated is termed the single-common 
factor model, since the correlations between observed variables Y1, Y2 
�9 . . Yn are directly determined by one latent variable, P A .  It is not pos- 
sible to estimate the absolute magnitudes of the parameters h and e in 
Fig. 6, only their relative magnitude, so one of these parameters (or c, 
in models allowing for shared environmental effects) must be fixed to 
unity�9 If this model fits the data, the heritability of the latent phenotype 
(or phenotypes) can be computed in the usual fashion, as h2/(h 2 + c 2 + 

e2). The path coefficients corresponding to the paths from P A  to P1, P2 
�9 . . P n  are the factor loadings of these variables on the latent phenotype 
P A .  The paths from the variables A I, El,  etc., are the variable-specific 
genetic and environmental loadings. Multivariate genetic models can be 
represented in LISREL in a variety of different ways. Appendix III (Fig. 
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/e l  ~12/e2 V l ~ n / e n  

E' 1 A' 2 E~ AA' E A ' A '  n E n 

/el  h2/e  

Y Y2 Yn Yi Vi Y;1 

Twin I Twin 2 
Fig. 6. Latent phenotype multivariate genetic model. P1, P 2  �9 �9 �9 Pn and Y1, I"2 �9 . . Yn 
denote the phenotype and observation for traits 1 . . . n; A~ . . . An and E1 . . . E~ denote 
corresponding trait-specific genetic and environmental effects. PA denotes the intervening 
latent phenotype, and AA and EA denote the corresponding common genetic and environ- 
mental effects. Primes are used to distinguish variables of the second twin from those of 
the first twin. 

A1) illustrates one possible way of representing the model in Fig. 6 in 
L I S R E L .  

A more general multivariate genetic model is illustrated, for the case 
of  two latent genetic common factors and two latent nonshared environ- 
mental common factors (by convention a " two-factor"  model), in Fig. 7. 
To simplify, we give the diagram for a single twin, rather than for both 
members of a twin pair, and omit variable-specific genetic and environ- 
mental effects. Under this model, which has sometimes been described 
as the " independent  pa thway"  model (Kendler et al., 1987) or "bio- 
metrical" model (McArdle and Goldsmith, 1984), no latent phenotype 
intervenes between the common genetic and environmental factors and 
the observed variables. Thus the genetic factor structure m a y  be quite 
different from the environmental factor structure, as indeed has usually 
been found in multivariate analyses of affective variables (e.g., Kendler 
et  al. ,  1987; Silberg et  al., 1987). The genetic and environmental common 
factors in Fig. 7 are orthogonal (i.e., AA, AB,  EA,  and E B  are all uncor- 
related), although this constraint can be relaxed when assortative mating 
or joint  cultural and biological inheritance generate correlations between 
the common factors (cf. Rao et al., 1976; Cloninger et al., 1979; Carey, 
1987). Appendix IV (Fig. A1) illustrates a L I S R E L j o b  for fitting the "one-  
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AA h e EA ~ h AB h r EB 

1 ~  2n 

P1 P2 

Y1 Y2 Twin 1 Y 

Fig. 7. General multivariate genetic model. To simplify, only variables for the first twin 
from a pair are represented, and trait-specific influences are omitted. AA and AB denote 
the first and second latent genetic common factors; EA and EB denote the first and second 
latent environmental common factors. 

factor" version of the model in Fig. 7. The model in Fig. 6 is a special 
case of the latter model, where loadings on the common genetic or com- 
mon shared environmental factors are constrained to be constant multi- 
ples of loadings on the corresponding common unique environmental fac- 
tors. The goodness of fit of the restricted model can thus be compared 
to that of the more general model by likelihood-ratio chi-square test (e.g., 
J6reskog, 1978; Neale et al., 1989b), to test for differences in genetic and 
environmental factor structures. 

When two or more common factors are estimated for a given source 
(i.e., two or more genetic common factors, or two or more shared en- 
vironmental c o m m o n  factors, or two or more unique environmental com- 
mon factors), the problem of factor rotation (e.g., Harman, 1976) often 
arises. An infinite number of equivalent solutions may exist, so that con- 
straints must be imposed to ensure that LISREL converges on one of the 
possible solutions. In LISREL this may be achieved by arbitrarily fixing 
to zero, separately for each source, one loading on the second common 
factor, two loadings on the third common factor, and so on. Programs 
for factor rotation (e.g., SAS Institute, 1985) may then be used to rotate 
separately the genetic loadings, the shared environmental loadings, and 
the unique environmental loadings, to maximize conformity with tradi- 
tional criteria for "simple structure" (Harman, 1976). In versions of the 
common pathway model in Fig. 6 which estimate two or more latent 
phenotypes (PA, PB, etc.), the rotation problem can sometimes be 
avoided (Heath et al., 1988b). This is possible, however, only when there 
are differences in genetic architecture between latent phenotypes, such 
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that there is only a single genetic dominance common factor correspond- 
ing to one latent phenotype, a single shared environmental common factor 
corresponding to a second latent phenotype, a single additive genetic 
common factor exhibiting genotype x sex interaction, and so on. 

Multivariate genetic models can be elaborated exactly as in the uni- 
variate case, allowing for genotype x age/environment/cohort interac- 
tions, causal pathway models, genotype-environment correlation, etc. 
However,  if we wish to test whether some genetic or environmental ef- 
fects are sex specific or specific to one condition of environmental ex- 
posure, instead of estimating correlations between latent genetic and en- 
vironmental factors (as in Figs. 4 and 5), we now estimate additional 
common genetic and environmental factors which are specific to only one 
sex or exposure condition. 

Other Applications 

We have considered here only the analysis of cross-sectional twin 
data. Hewitt et al. (1988) and Boomsma and Molenaar (1986; Boomsma 
et  al., 1989b) illustrate the analysis of developmental or time-series data 
using LISREL. The power of the twin design is greatly enhanced by 
obtaining data on the relatives of twins, especially their parents (e.g., 
Eaves et  al., 1978; Fulker, 1982; Vogler and Fulker, 1983; Heath et al., 
1985) and spouses (e.g., Eaves, 1979; Heath and Eaves, 1985; Heath, 
1987). Some simple ways of modeling cultural and biological inheritance 
in twin-family data, in the presence of assortative mating, are discussed 
by Eaves et  aI. (1989). 

CONCLUSIONS 

It is important to be aware of the problems that cannot be handled 
using LISREL. If twin pairs have been ascertained because at least one 
twin is affected by a disease, and so do not constitute a random sample 
from the population, the use of LISREL will be inappropriate. A general 
treatment of assortative mating (e.g., Carey, 1987) is not possible using 
LISREL. Joint cultural and biological inheritance (e.g., Rao et al., 1976; 
Cloninger et al., 1979), when this gives rise to genotype-environment 
correlation, cannot easily be represented in LISREL. LISREL will not 
handle very large problems. Even moderately small multivariate genetic 
problems are laborious to set up in LISREL because there is no efficient 
way of specifying parameters which are constrained to be equal (e.g., 
corresponding genetic and environmental loadings for first and second 
twins from each group). Current versions of LISREL will not easily han- 
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dle problems where the number of variables per case differs between 
groups. Thus the analysis of twin-family data where the family structure 
is variable (e.g., because only some twins are married or because parental 
data are missing from some families) is better achieved using purpose- 
designed programs. In analyses of discontinuous variables, the current 
versions of LISREL or PRELIS will not permit threshold values to be 
constrained to be equal across groups. It is sometimes necessary to fit 
models directly to raw data (e.g., Lange et al., 1976), perhaps because 
genetic or environmental effects vary as functions of continuously dis- 
tributed variables such as age or measured environmental risk factors. 
For such applications the user is forced to write his/her own software. 
For the simple applications which we have discussed in this article, how- 
ever, the use of a software package for structural equation modeling such 
as LISREL will allow rigorous testing of a wide range of genetic and 
environmental hypotheses. 
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A P P E N D I X E S  I - I V  

A p p e n d i x  I 

This LISREL program fits a simple gcneti~ model tu 
twin data, allowing for addit.ive genetic elIecLs, aniq~le 
environmental eflqects and sibling interaction (see lleath 
et a l .  1988a, for further information about thc dala- 
set). Thc MO cards have been split over two lines; 
concatenation of these lines is necessatry for LISREL 
input. 

Oz Alcohol - Young MZF pairs cohabiting 
DA NG=2 NI=2 NO=IYI MA=CM 
LA 

'A I,C 1' 'ALC2' 
CM FU 

1.280 (t.766 
0.766 l, 194 
MO NY--2 NE--2 NK=6 GAzFU,FR BE::FU,FI 
bY=ID PIt=S'Y,FI PS=ZE TE=ZF 
LK 

'E l '  ' h i '  'CI '  'E2' 'A2' 'C2' 
LE 

'P I '  'P2' 
ST l.O I'H(1,1) P14(2,2) P~t(3,3) PH(4,4) P14(5,5) 
ST 1.0 Pll(6,6) P11(2,5) 1'1"I(3,6) 
FR BE(I,2) BE(2,1) 
EQ BE(l,2) BE(2,1) 
ST 0.00 BE(I,2) 
PA GA 

1 1 0 0 0 0  
9 9 0 I  i 0  
EQ (]A(~,I) (]A(2,4) 
EQ QA(I,2) GA(2,5) 
ST o.a Oh( IJ ) -oa(2 ,6 )  
OU TM=609 ND~5 
Young DZF pairs cohabiting 
DA NI=2 NO=I01 MA=CM 
LA 

'ALCI '  'ALC2' 
CM I"U 

1.077 0.463 
0.463 0.962 
MO GA=IN PS=IN bY=IN PII=SY,FI TE=IN 
BE=IN 
I,K 

'El' 'AI '  'CI '  'E2' 'A2' 'C2' 
I,E 

'PI '  '1'2' 
ST 1.0 PH(I,I) PH(2,2) PH(3,3) PH(4,4) PH(5,5) 
s 'r  1.0 t,u(6,6) PH(3,6) 
ST ~.s pl i(2,s) 

Fig. 

OU TM=6(I NI)=5 SE TV PC 

A p p e n d i x  I I  
This LISREL program [its a model which allows for the 
interaction of genetic attd environmental effects with 
exposure or non-exposure to an environmental risk fac- 
tor (c.f. Heath et al., 1988,~). The MO cards have been 
split over two lines; concatenation of these lines is nec- 
essary for LISREL input. 

Alcohol - Concordant exposed MZF's 
DA NG=6 NI=2 NO=36 MA=CM 
LA 
* 

'ALCI '  'A LC2' 
CM FU 

1.08D 0.77I 
0.771 1.061 
MO NY=2 NE=2 NK=8 GA=PU,FR BE=ZE LY=ID 
PH=SY,FI PS=ZE "I'E=ZE 
bR 

'E l '  'AI '  'DUMMYI'  'C I '  'E2' 'A2' 'DUMMY2' 'C2' 
LE 

' P l '  'P2' 
ST 1.0 PH(I,1) PH(2,2) Ptt(3,3) P[I(4,4) Pii(5,5) 
ST 10 eM(g,8) eH(Ta) P~(8,g) 
ST 1.0 PH(2,6) PH(3,7) P1f(4,8) 
F'A GA 

i i  I f 0 0 0 0  
0 0 0 0 t  ~ I I  
t,:q CA(I , , )  (:A(2,5) 
EQ CA(l,2) CA(2,0) GA(I,3) CA(2,7) 
t.'.q CA0,4) GA0,g) 
ST 0.3 GA(I,I)-GA(2,8) 
OU TM=600 ND=5 
Concordant exposed DZF 
DA NI=2 NO=I8 MA=CM 
LA 

'ALCI '  "ALC2' 
CM FU 

1.2t."10.106 
0.106 1.836 
MO NY=2 NE=2 NK=8 GA ~I:U,Ft~. BE=ZE IA" II) 
PII=SY,FI PS ZE T E : Z E  
I,K 

'E I' 'A l '  'DUMMY I' 'C1' 'ET 'A2' 'DUMMY2' '(]2' 
LE 

'PI '  'P2' 
ST 1.9 PH(I,1) Pit(2,2) Pt"1(3,3) PH(4,4) PH(5,5) 
ST 1.0 PIt(6,8) Pl1(7,7) Ptl(g,8) 

A I  
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ST ~o t>It(2,61 PH(4,81 
PA GA 

t [ 1 1 ( 1 ( 1 0 0  
f } 0 0 0  1 ] I l 
i':Q Car l , l , 1 )  GA(I , I )CA(2 ,5 )  
EQ GA(I,I ,2)  GA(I,2) GA(2,61 GA(I,3) GA(2,71 
~,;q ca(i,~,4) oa(~,4) ca(~,s) 
OH TM-6OO N D - S  
(]oncordant non-exposed MZF 
DA NI=2 NO-:391 MA=CM 
LA 

'ALCI '  'A LC2' 
CM FU 

1.262 0719 
0.719 1.2(13 
MO NY :2 NE: 2 NK-:8 GA-I?U,FR BE:ZE LY=ID 
PIt- SY,Ft I'S-:ZE T E - Z E  
LK 

'El '  'A I '  ' I )UMMYI'  'C1' 'E2' 'A2' 'DUMMY2' 'C2' 
l.E 

'P I '  '1'2' 
ST 1.0 Pit(l ,1) 1'1t(2,21 PH(3,3) P1t(4,4) 1'It(5,5) 
ST 5.0 Plt(6,61 1'1t(7,71 PH(8,8) 
ST l.o P11(2,6) pt-l(a,7) p11(4,81 
PA GA 
, 

111  1 0 0 0 0  
0 0 0 0 I  1 1 I 
EQ GA(1,I) GA(2,5) 
EQ CA(I,2) GA(2,6) GA(I,3)  GA(2,7) 
EQ GA(I,4) GA(2,81 
ST 0.3 C,A(i,I) GA(2,8) 
(>i) TM-:~OO ND ,~ 
Concordant non-exposed DZF 
DA Nix2 NO=217 MA=CM 
I,A 

'ALCI '  'A I,G2' 
CM FU 

1.212 0.456 
0.456 1.290 
MO NY-2  NE 2 NK=8 GA=FU,FI(  BE=ZE LY=ID 
PIt=SY,FI PS=ZE TE=ZE 
LK 

'El '  'A t '  'DUMMYI '  'CI'  'E2' 'A2' 'DUMMY2' 'C2' 
LE 

'P l '  'P2' 
ST 1.0 Pl t ( l , I )  Pl1(2,2) PH(3,31 PH{4,4) PH(5,5) 
ST I 0 P[t(6,fl) PI1(7,7) I>ii(8,~) 
ST I 0 P11(7,6) P1t(4,8} 
PA GA 

Fig. A I  

I 1 1  I 0 0 0 0  
0 0 0 0 1 1 1 1  
EQ GA(3.1.1) GA(I , I )  GA(2,5) 
Eq GA(3,t,2) GA(I,2) GA(2,61 (;A(1,3) GA(2.7) 
EQ GA(3,I,4) GA(I,4) GA(2,8] 
OU TM=600 ND=5 
Exposed/non-exposed MZF 
DA NI=2 N O - I I 3  MA-CM 
LA 
* 

'AGEI '  'AGE2' 
CM FU 

1.557 0.642 
0.642 1.348 
MO NY-2 NE=2 NK=8 GA=FU,FR BE-ZE LY-I I )  
Ptt=SY,FI PS-ZE TE=ZE 
LK 

'E l '  'AI '  'DUMMYI'  'CI '  'E2' 'A2' 'DUMMY2' '(]2' 
LE 

'P I '  'P2' 
ST 1.0 PH(I,1) Pit(2,2) Ptf{3,3) PIt(4,4) Pit(5,5) 
ST 1.0 PH(6,6) PH(Lr )  PH(8,8) 
ST 1.0 Pit(4,8) 
FR Plt(2,6) PH(3,7) 
EQ PH(2,61 PH(a,7) 
ST 0.75 PH(2,6) 
PA GA 

1 1 1 1 0 0 0 0  
0 0 0 0 1 1 1 1  
V.Q CA0,1,1 ) CA0,1  ) 
EQ GA(3,1,t) GA(2,51 
EQ GA(I,1,2) CA(I,2) GA(1,3) 
EQ GA(3,1,2) GA(2,61 GA(2,7) 
EQ GA(I,I ,4)  GA(I,4) 
zq cA(a,~,4) CA(2,8) 
OU TM=600 ND=5 
(Exposed/non-exposed) DZF 
DA NI=2 NO=89 MA-CM 
LA 

'ALCI '  'ALC2' 
CM FU 

1.213 0.088 
0.088 1.081 
MO NY=2 NE=2 NK=8 GA=FU,FR BE-ZE LY-ID 
PIt=SY,Ft PSmZE T E - Z E  
LK 

'El '  'A i '  'DUMMYI'  'C t '  '1';2' 'A2' 'DUMMY2' 'C2' 
LE 

'P I '  'P2'  
ST 1.0 Pt t ( I , I )  PH(2,2) PH(3,3) PH(4,4) PIt(5,51 
ST 1.0 PH(6,61 PH(7,7) PH(8,8) 
S'I' 1.0 PH(4,8) 

( C o n t i n u e d )  
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I,'II l'It(2,(i) 
S'I' n.75 t ' t I(2fi)  
P A  (;A 

I I t t U II II II 
(I U 11 0 1 I I I 
[':(~ ( ' , t , ( t , [ , I )  G A ( I , O  
~,:q ~.:A(:~,l,1) oA(2 ,s )  
EQ GA(1,1,2) GA(I,2)  Ca ( l , 3 )  
t';Q (;A(3,1,2) GA(2,0) QA(2,7) 
EQ GA(I , I ,4)  CA(I ,4)  
I"Q (1A(3,1,4) GA(2,81 
OU TM 600 Nl) 5 SE TV PC 

Appendix III  
This I,[SRI'~i, program fits a one-factor 'common path- 
way' multivariate genetic model, allowing for genetic 
and unique environmental common and specific factors, 
t~ Australian twin data  on Neurotic[sin, symptoms of 
anxiety, and symptoms of depression (see Jardine et al., 
1985, for further details of data-set). "rite MO cards 
have }men split over two lines; concatenation of these 
lines is ne~:essary for LISREL input. 

Common pathway model Female MZ 
I)A NG ;-2 NI 6 NO:1231 MA=CM 
LA 

'NI '  'ANXI '  ' D E P I '  'N2'  'ANX2' 'DEP2'  
CM 

0.0854 0. 1 1 8 4  0.4135 0.1032 0.2746 
0.3710 0.0415 0.0636 (I.0502 0.0801 
0 06(;2 0 162(7 [11358 9.11,14 0.4(193 
0.0575 11.1280 0.1356 0.I037 0.2709 0.3583 
MO NY=6 NE=8 NK=16 G A = F U , F R  I,Y=FU,Pl 
I'lt SY,I:I I'S ZE Tt'3-:ZE t:IF,=FU,FI 
LF. 

'AI '  't;;1' 'A2' 't'12' 'AA'  'EA' 'A3' 'E3' 'AI :TW2 '  
'E I :TW2 '  'A2:TW2'  'F2 :TW2'  'AA:TW2'  'EA:TW2'  
'A3:TW2'  ' t ' ;3:TW2' 
I, 1'; 

' P I '  'P2 '  'PA'  'P3 '  ' P I : T W 2 '  'P2:TW2'  'PA:TW2'  
'I>3:TW2 ' 
S'I' I.O t 'It(1,1) P11(2,2) Pt1(3,3) Plt(4,4) I'11(5,5) 
s'1' ko plt(6,G) plt(7,7) 
ST 1.0 1'1t(8,8) Pit(9,9) Plt(10,10) P I t ( I I , I I )  
ST l.U P11(12,12) PlI(13,13) 
ST 1.0 PI1(14,14) Plt(15,15) Plt(16,16) 
ST 10 Ptl(1,9) Pit(3,11) P1t(5,13) PH(7,15) 

ST 10 t,Y(I.ll  
LV(8,8) 
PA CIA 

I) I o (I r) II o 0 

01 10 II 0 fl 
(I 000 l fl 0 (l 

00000011 
00000000 
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

1,5(2,2) I , ' ~ f 3 , 1 1  I , Y ( I . q )  I,', (',,+i) 

h {I i i  el i i  i i  o 

11 (1 II f~ o t/11 

i1110 (~ (l (l II 

I (I (I 0 (1 0 0 
(I I I 011  0 I)- 
0 0 0 1 0 (1 I) 
(100 0 (l I 1 

EQ GA(I , I )  GA(5,9) 
EQ GA(I,2) GA(8,111) 
EQ GA(2,3) GA(0,1 l) 
EQ GA(2,4) GA(fi,12) 
T,:Q G^(3,q (;A(7,,:~) 
EQ GA(4,7) GA(8,15) 
EQ GA(4,8) GA(8,16) 
ST 1.0 GA(3,6) r 
ST .2 GA(I , I )  CA(G,18) 
OU TM=I200  NI) 7 
Female DZ 
DA NO- 749 M A  CM 
LA 

'NI '  'ANXI '  ' D E P I '  'N2' 'ANX2' 'I)EI)2 , 
CM 

0.0754 0.1024 0.3895 0.089.1 0.2540 
0.3498 0.0210 0.0383 (I.0334 0.0891 
0.0295 0.0761 0.0655 0.1270 0.4341 
0.03420,07270.0785 0.1241 (I.3261 0.4829 
MO NY=6 NE=8 NK-:16 ( ;A:  IN LY-IN Pll SY,Ft 
PS=ZE T E = Z E  BE- IN  
LK 

'AI '  'E l '  'A2' 'E2' 'AA' 'I",A' 'A3' 'E3' ' A h ' I W 2 '  
'E I :TW2 ~ 'A2:TW2'  'E2:TW2'  'AA:TW2'  'EA:TW2'  
'A3:TW2'  '[.33:TW2' 
LE 

' P I '  'P2 '  'PA'  'P3 '  ' F I : T W 2 '  'F2:TW2'  'PA:TW2'  
'P3 :TW2'  
ST 1.0 Pit( l ,1) I'1t(2,2) PII(3,3) Pit(4,4) Pll(5,5) 
ST 1.0 Pit(6,6) Ptt(7,7) 
ST 1.0 I'1t(8,8) P11(9,9) PH(10,l(I) P l l ( l l , l l )  
ST 1.0 1"11(12,12) P11(13,13) 
ST 1.0 Pt1(14,I4) 1'11(15,15) PlI(I6,10) 
ST0.5  Ptt( l ,9) Pl l (3 , t l )1 ' I I (5 ,13)Pl t (7 ,15)  
OU SE TV TM : 12011 NI) 7 

Appendix IV 
FR BE(l,3) BE(2,3) BE(4,3) BE(5,7) BE(6,7) BE(8,7) This L1SREL program fits a general o,,e-factor multi- 
EQ IIF(I,3) t3E(5,7) variate genetic model, allowing for genetic and unique 
I';Q IIE(2,3)Bt',(6,7) environmentM cmnnma and specific factors, to the 
EQ BE(4,3) BE(8,7) same data-set used in Appendix 3. The MO cards have 
S T  tl.5 BE(I,3)-BE(8,7) been split over two lines; concatenation of these lines is 

Fig. A1 (Continued) 
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necessary for l,l.<,lll';I, input. 

(]enera] tnu]llvariale nlodel MZ[" 
DAN/;  2 NI 6 NO 1233 MA CM 
[,A 

'NI '  'ANXI'  'DI'~PI' 'N2' 'ANX2' 'DEP2' 
(~IM 

0.0804 0.I 184 0.4135 0.1032 0.2746 
0.a710 0.0415 0.0636 0.0562 0.0801 
{}.0662 0.1637 0.1358 0.1144 0.4003 
0.05750.12800.13560.[0370.27090.3583 
MO NY-6 NE=6 NK=I6 GA=FU,FR I,Y=ID 
Pll: SY,FI PS=ZE T E - Z E  
l,K 

"AA' 'l'3A' 'AI '  'A2' 'A3' 'E l '  'E2' 'E3' 'AA:TW2' 
'EA:TW2' 'AI :TW2'  'A2:TW2' 'A3:TW2' 'EI :TW2'  
'I'32:TW2' 'E3:TW2' 
IA'; 

'VI '  'V2' 'V3' 'VI :TW2'  'V2:TW2' 'Va:TW2' 
ST 1.0 P t t ( l , l )  P11(2,2) PIt(3,3) Ptt(4,4) P H ( 5 , 5 )  
S'I' 1.0 PH(0,,q) Ptt(7,7) PI1(8,8) PH(9,9) Plt(l.0,10) 
ST ).o P11(~l,ll)PH02,12) 
s'I' io  pH(13,13) eH04,14 ) PH(1S,lS) P U 0 a jo  ) 
ST LO PH(,,9) PH(a:0 PH0,12) PH(Saa) 
PA C,A 

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0  
I I 0 1 0 0 1 0 0 0 0 0 0 0 0 0  
1 I 0 0 1 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  I t 1 0 0 1  O0 
0 0 o 0 0 0 0 0 1 1 0 1  O0 I 0 
{ ) 0 0 0 0 0 0 0  I 1 0 0 1 0 0 1  
FQ GA(I , I )  GA(4,9) 
I';Q GA(I,2) GA(4,10) 
EQ GA(I,3) GA(4,11) 
I,;Q C,A(LO) CA(4:4) 
EQ (3A(2,1) CA(5,9) 
EQ GA(2,2) GA(5,10) 
I'~Q GA(2,4) OA(5,12) 
EQ GA(2,7) GA(5,15) 
EQ e, AO,l ) CA(S,9) 
EQ GA(3,2) GA(6,10) 
EQ GA(3,5) GA(6,13) 
I':Q GA(3,8) GA(6,16) 
VALUE .2 GA(I,I)-GA((3,16) 
OU TM=I200 ND-7  
General multivariate model DZF 
I)A NO=749 MA=CM 
LA 

'NI '  'ANXI'  'DEPI '  'N2' 'ANX2' 'DEP2' 
C M 

I1�9 0�9 0.3895 0.0894 0.2540 
0.3t98 0.02t0 0.0383 0,0334 0.089t 
0.0295 0.0761 0.0655 0.1270 04341 

Fig. A l  

11.03.12 0.0727 t) (1785 (I 12-11 (I :~2{i1 (I .1529 
MO GA: IN I'S IN I',E IN I.D IN 
TE IN 
I,[( 

I'll SI .I'I 

'AA' 'EA' 'AI '  'A2' "A]" 'E l '  E2'  'E3" 'AA:T\V2" 
'EA:TW2' 'AI:TW2'  'A2:'I'W2' 'A3:TW2' 'EI:T\V2' 
'E2:TW2' '1'33:TW2' 
LE 

'Vl '  'V2" 'V3' 'VI:TW2'  'V2:TW2' 'V3:TW2' 
ST 1.0 PH(I,I) P11(2,2) P11(3.3) P11(4,4) 1'11(5,5) 
ST 1.0 PH(6,a) Pn(7,7) PI1(8,8) PII(9,9) l 'll(m,~.) 
ST 1.0 PH( l l , I I )  Pti(12,12) 
ST 1.0 P11(13,I3) P1{(14,14) 1'|1(15,15) PII(la,16) 
ST 0.5 Pti(l,.q) P11(3,11) P1I(4,12)I'II(5,13) 
OU SE TV TM 1200 ND 7 

(Continued) 
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