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In prior research we have shown how linear structural equation models and 
computer programs (e.g., LISREL) may be simply and directly used to provide 
alternatives for the traditional biometric twin design. We use structural equa- 
tions and path models to define biometric group differences, we write traditional 
common-factor models in the same way, and then we take a detailed look at 
some alternative multivariate and biometric models. We contrast the biometric- 
factors covariance structure approach used by Loehlin and Vandenberg (1968), 
Martin and Eaves (1977), and others with the psychometric-factors approac h 
used by McArdle et al. (1980) and others. We use the multivariate primary 
mental abilities data on monozygotic (MZ) and dizygotic (DZ) twins from Loehlin 
and Vandenberg (1968) to detail fundamental differences in model specification 
and results. We extend both multivariate biometric approaches using exploratory 
and confirmatory multiple-factor models. These comparisons show that each 
alternative multivariate methodology has useful features for empirical applica- 
tions. 

KEY WORDS: twins; multivariate; factor analysis; structural equation models; LISREL; RAM; 
intelligence; primary mental abilities. 

I N T R O D U C T I O N  

One of the key insights of evolutionary genetics is that diversity plays an im- 
portant role in the adaptation of species. This may be true of model building in 
behavioral genetics as well. For example, Martin and Eaves (1977) begin their 
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treatment of multivariate biometric analysis by noting, "The techniques of factor 
analysis have been used extensively in the behavioral sciences to simplify the 
representation of relationships among multiple variables. Geneticists, rightly, 
are sceptical about the use of such methods in genetical research . . . .  " This 
treatment introduced a confirmatory factor analysis with maximum-likelihood 
estimation for a multivariate form of the covariance among measures of various 
genetic and environmental factors. Technically, Martin and Eaves (1977) showed 
how the concepts of J6reskog's (1970) ACOVS model could be extended to a 
multiple group case to estimate multivariate biometric models. This presentation 
formalized the earlier multivariate ideas of many others (e.g., Loehlin and Van- 
denberg, 1968) and partially allayed behavioral geneticists' skepticism about 
contemporary issues in factor analysis. 

There have been numerous developments in structural equation modeling 
outside of behavioral genetics (e.g., J6reskog and S6rbom, 1979; McDonald, 
1985). In a 1980 conference paper, we showed how the widely available LIS- 
REL computer programs could be used to estimate multivariate biometric models 
(McArdle et al., 1980). Our LISREL-based calculations directly followed Mar- 
tin and Eaves (1977) ACOVS analyses but required less novel programming, 
and this proved to be practically useful. We extended this biometric methodology 
to other problems and issues in later conference papers and published reports 
(McArdle et al., 1981; McArdle and Goldsmith, 1984; Goldsmith, 1983; McArdle, 
1986; Horn, 1986). 

Our work in this area has been recognized by several biometric researchers 
(e.g., Henderson, 1982; Boomsma and Gabrielli, 1985); independently devel- 
oped and refined by several behavioral geneticists (e.g., Fulker et al., 1983; 
Cantor et al., 1983) and the LISREL programming techniques are now widely 
used (e.g., Martin et al., 1984; Tambs et al., 1984; Boomsma and Molenaar, 
1986). In fact, this approach has become so popular that a whole issue of 
Behavior Genetics has been devoted to a conference on "Twin Methodology 
Using LISREL" (Martin et al., 1989). 

Our approach to these problems 10 years ago differed in at least two ways 
from these subsequent presentations. First, we employed a matrix specification 
that has little overt resemblence to standard LISREL notation. Our matrix no- 
tation is based on general path analysis graphics, and we have used it to dem- 
onstrate the convergence of available computer programs such as ACOVSM, 
COFAMM, LISREL, and COSAN (McArdle, 1980, 1986; McArdle and 
McDonald, 1984; McArdle and Horn, 1990). Second, and more relevant now, 
is the fact that we used structural modeling techniques to estimate some novel 
integrations of biometric and psychometric models. The factor loadings derived 
from the Martin and Eaves (1977) analyses yield genetic and environmental 
loadings on each of the observed measures. We termed this the biometric-factors 
model and we recognized it as the standard model in the field. As an alternative, 
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McArdle et al. (1980) and subsequent treatments (Goldsmith, 1984; McArdle, 
1986) estimated a different model where the factor loadings represent a psycho- 
metric common factor and the genetic and environmental effects relate to this 
measurement factor. We termed this the psychometric-factors model and we 
treated it as a viabte modeling alternative. We continue this comparison of 
multivariate models here. 

In this paper, we elaborate the novel aspects of our previous structural 
modeling approach. The Methods section provides some elementary structural 
equation notation for univariate and multivariate biometric models and program- 
ming. We also present a few details on the alternative biometric and psycho- 
metric common-factor models for multivariate observations. In the Results section 
we fit and compare these multivariate models using the familiar data from Loeh- 
lin and Vandenberg (1968) onprimary mental abilities (PMA). We extend these 
comparisons to additional multivariate models, including models without unique 
factor restrictions, multiple-factor identification problems, and the differences 
between orthogonal and oblique rotations. The Discussion summarizes these 
issues and the Appendix provides computer program Iistings. 

This paper bridges a gap between biometrical genetics and psychometric 
measurement theory. In this sense we try to examine ideas about "the Genetics 
of IO,"  by applying the same modeling standards to the " I Q "  as are usually 
applied only to the "'Genetics." We try to demonstrate the utility of alternative 
models for genetic and environmental influences on common factors derived 
from the observed measures. To achieve this goal, we bypass several interesting 
but highly technical controversies of biometric structural modeling. Instead, we 
are interested mainly in using multivariate biometric structural equation models 
as one aspect of the validation of psychological constructs. 

M E T H O D S :  LINEAR STRUCTURAL EQUATION MODELING 

In this section we present some details on the basic models we use. This 
is not intended to be entirely technical, but we do outline our notation to give 
the formal basis of our multivariate concepts. Readers more interested in em- 
piricaI resutts may skip to the next section. 

Univariate  Biometr ic  Models  

In Table [1] we present some mathematical notation for a univariate bio- 
metric model. We assume that a single behavioral variable P (phenotype) has 
been measured on a sample of n = 1 to N individuals. A linear model for these 
P~ scores is written in a scalar form as Eq. [1.1]. In this simple model, we 
assume that Pn can be represented as a weighted linear combination of three 
unobserved scores: an additive genetic score (genotype) Ga,, a common or 
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Table [1]. Mathematical Notation for Biometric Structural Equations 

where, 

[1.1] Traditional Biometrie Linear Model 

and 

[1.21 

where 

P,, = hGan + c E c  n + eEi . ,  

for the n-th individual, 
Pn = the observed phenotype or behavioral mean deviate score, 
Gan = the unobserved additive genetic score (genotype), 
Ecn = the "shared"  environment score, 
Ein = the unobserved independent or error score, 
h = the coefficient for genotype upon phenotype, 
c = the coefficient for common environments on the phenotype. 
e = the coefficient for independent effects upon the phenotype. 

Additional Biometric Assumptions 

E{Ga Ga'} = E{Ec Ec'} = E{Ei Ei'} = 1, and 

E.[Ga Ec'} = E{Ga Ei'} = E{Ec Ei'} = 0, 

scores Ga, Ec, Ei and P are vectors of order (1 x N), and 
E{*} = the expected value over n = 1 to N individuals. 

[1.3] Resulting Phenotype Expectations 

E{PP'} = E { ( h G a  + c E c  + e E i ) ( h G a  + c E c  + eEi) '}  

h E{Ga Ga'} h' + cE{Ec Ec'} c' + e E {Ei Ei'} e' 

hh'  + cc' + ee' 

[1.4] A General RAM Matrix Notation (after McArdle & McDonald, 1984) 

v = vA + u, where 

v = [ P : G a : E c : E i ] , a n d A  = [ hc!10000000 
S = E{uu'}, where 

u = [ Z : G a : E c : E i ] , a n d S  = [o 7] O 1  
0 0 1  
0 0 0  

m = vF = P, a n d F  = [ 1 0 0 0 ] ,  
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Table [1]. (Continued) 

where matrices 
A = asymmetric coefficients (e.g., regressions, intercepts, arrows), 
S = symmetric coefficients (e.g., variances, correlations, slings), 
F = filter elements (e.g., fixed unit values), 

and where vectors 
v = all model variables, 
u = all endogeneous model variables. 
m = all manifest model variables, 
z = all undefined placeholder nodes. 

[1.5] The General Matrix Expectations (after McArdle & McDonald, 1984) 

C = E{vv'} = E{(vA + u)(vA + u)'} = E{[(I-A) -~ ul [ ( I -A)  -~ u]'} 

C = ( I - A )  t E{uu'} ( I - A )  -1' = ( I - A )  -1 S ( I - A )  - v ,  

1 0  1 0 0  h ' 1 0  
C =  0 1  0 1 0  c ' 0 1  

0 0 0  0 0 0 1  e ' 0 0  

f l  h c l ]  [ !  0 0 1 1 1 0  1 0  [ ( h h ' + c c ' + e e ' )  h c e ] h ,  1 0  0 

C =  0 1  0 1  = c' 0 1 0  
0 0  0 0  e' 0 0 1  

X =  F C F ' ,  

X = [10  0 0J h' 1 0  0 = (hh'+cc'ee') 
c' 0 1 0  
e' 0 0 1  0 

[1.6] Proportional Expectations from Biometric Theory (after Martin & Eaves, 1977) 

S(mzb) = E{u(mzb) u(mzb)'} = diag [.0, 1.0, 2.0, 1.0], 

S(dzb) = E{u(dzb) u(dzb)'} = diag [.0, .75, 2.0, 1.0], 

S(mzw) = E{u(mzw) u(mzw)'} = diag [.0, .0, .0, 1.0], 

S(dzw) = E{u(dzw) n(dzw)'} = diag [.0, .25, .0, 1.0], 

where the labels mz = monozygotic, dz = dizygotic, b = between, and w = within. 
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shared environment score Ecn, and an independent environment or random error 
score Ein. The structural coefficients for all individuals are given as h for geno- 
type upon phenotype, c for common environments upon the phenotype, and e 
for the combined effects of independent error and nonshared environments upon 
the phenotype. 

In Eq. [1.2] we define additional assumptions of standardized scaling and 
orthogonality among the unobserved components. We use these assumptions to 
obtain a simplified expectation for the variance of the phenotype written as Eq. 
[1.3]. In this classical variance components (covariance structure) model the 
term hh' reflects the variance of P due to heredity, the term cc' reflects the 
variance which is nonheritable and due to shared environments, and the term 
ee' reflects the residual variance which is nonheritable. When the phenotype P 
is also standardized (i.e., E{PP'}= 1), these model components of variance in 
[1.3] are directly interpretable as proportions of variance. 

Researchers can translate model [1.1] into other biometric notation, e.g., 
the scores Ga= 1/2 Dr, Ei=E1, and Ei =E> These additional model assump- 
tions [1.2] are not generally testable features of the biometric models using the 
twin data that we discuss here. More complete models that include nonadditive 
sources of variance, gene-environment correlation, and gene-environment in- 
teraction are obviously important and can be incorporated easily into the model 
framework we use. We use this notation as a simple starting point for our 
psychometric model development, and we do not now consider more complex 
biometric issues (but see Eaves et al., 1978). 

A graphic display of this biometric model is presented as a structural path 
diagram in Fig. [1.1]. In our notation, the elements of the algebraic model in 
Table [1] and the graphic model in Fig. [1.1] are identical. In these pictures (1) 
the vector v lists all variables that are drawn; (2) the matrix A contains all one- 
headed arrows, from column to row variable; (3) the matrix S contains all two- 
headed arrows; and (4) the matrix F filters the squares from all variables. This 
diagram is similar to the typical path analysis diagram except (1) all model 
variables are considered either observed or unobserved, (2) all model parameters 
are displayed and labeled in the graphic, and (3) we use a two-headed arrow 
(termed a "sling") to connect a variable with itself. In most cases here, these 
two-headed parameters represent a variance or residual variance term, but in all 
cases they are needed for consistency between the algebra and the graphics. 

In Eqs. [1.4] and [1.5] in Table [1] we define a matrix notation for this 
model. In [1.4] we define score vectors v, for all variables, u, for all unobserved 
residuals, and p, for all observed variables. We also define linear coefficient 
matrices, A, for asymmetric parameters, and S, for symmetric parameters, as 
well as the permutation matrix F, to filter observed from unobserved variables 
In [1.5] we calculate all model covariance expectations C by taking the inverse 
E = ( I - A )  -1, specifying S, and pre and post multiply to obtain C = E S E'. 
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[1.1]: A Theoretical Summary Diagram using RAM notation (McArdle & Horn, 1990) 

1 1 

N ~ ~ t  N 
1 

l T 

C l i o  N 

[1.2]: An Intraclass Covariance Estimation Diagram (after Jaspers & Deleeuw, 1980) 

2 1 I 9 0 I 2 C~ 
3 I 
4 i o u l 

N 
[1.3]: A Mean-Square Covariance Estimation Diagram (McArdle & Goldsmith, 1984) 

Fig. 1. Univariate structural diagrams of biometric twin models. 
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The algebraic expectations (of [1.5]) follow a simple and consistent set of 
path tracing rules (for more details, see McArdle, 1980, 1986; Horn and McArdle, 
1980, 1990). Perhaps the most notable feature is that these matrices are largely 
empty (sparse). Indeed, this algebraic form is overly complex for the simple 
model considered. On the other hand, this basic matrix representation can be 
used for any structural equation model and forms the necessary and sufficient 
computer programming for any model (see the Appendix). Algebraic features 
of this model are described in further detail in other presentations (McArdle, 
1980, 1986; McArdle and McDonald, 1984; McDonald, 1985; Loehlin, 1987). 

Alternative Data Structures 

One clear feature of Eq. [1.3] is that there are three unknown model pa- 
rameters h, c, and e, and only one observed variance term based on P. Thus, 
the three unknowns cannot all be independently and uniquely estimated from 
the single variance term. The standard biometric approach to this problem cap- 
italizes on the availability of variance terms from different experimental groups. 
In the general case, we assume the same measurements made on g = 1 to G 
predefined and measured groups, and we partition the available data. Two al- 
ternative data structures are used for twin data: (1) cross-covariances and (2) 
mean squares. These biometric approaches are described in detail by Jinks and 
Fulker (1970), Eaves et al. (1978), and Cattell (1960, 1982), and Loehlin (1978) 
demonstrates equivalences between the mean squares and cross-covariance ap- 
proaches. A few structural modeling aspects of these data are presented in Fig. 
[1.2] and [1.3]. 

First, we consider the traditional two-group twin design where twins and 
cotwins are measured and zygosity is known as either monozygous (MZ) or 
dizygous (DZ). Given this special group structure, we can estimate h, c, and e 
using a "cross-covariance" approach (after Karl Pearson). Here we assume that 
one member of each twin pair is randomly labeled as a " twin"  and the other 
is labeled as a "cotwin." Figure [1.2] is a structural graphic for a single ob- 
served variable. We draw observed variables on a twin and a cotwin for the MZ 
and DZ pairs. The unobserved model components are assumed 

(1) to be standardized (i.e., the two-headed arrows labeled 1); 
(2) the Gan are correlated at r =  1.0 for MZ pairs and at r = .5 for DZ pairs; 
(3) the Ecn are correlated at r =  1.0 for each pair; 
(4) the Ein are correlated at r-- 0 for each pair; and 
(5) the h, c, and e coefficients are repeated (forced to be equal) for all 

individuals across all effects (one-headed arrows). 

This diagram can now be easily translated to matrices A, S, and F, for the 
generation of expectations required for further computer estimation (Behrman 
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et al., 1977; Jaspers and DeLeeuw, 1980; McArdle, 1986; Neale and McArdle, 
1990). 

Another popular data structure for model estimation recasts these same 
basic expectations into "analysis of variance components" or "expected mean 
squares" (after R. A. Fisher). These scores are usually calculated in matrix 
terms by defining a total score cross-products matrix T, a between-pair sum 
score cross-products matrix B, and a within-pair cross-products matrix W = 
T-B. We can also write and interpret these as score vectors where the between- 
group scores (Bn) are pair sums, and the within-group scores (Wn) are pair 
differences that are further partialed from the pair sums. Using this technique, 
the obtained Bn and the W,, scores are orthogonal. This mean-square data struc- 
ture is useful because the cross-sib covariance terms (i.e., E{P~b P j }  are re- 
dundant or zero and can be dropped from further estimation. The mean square 
structure yields expectations E{ P ~ k  } that differ proportionally over different 
groups, as defined in [1.6]. That is, the h, c, and e coefficients are repeated for 
all individuals across all effects (one-headed arrows) in all groups but the pro- 
portions of variance (two-headed slings) change according to biometric theory. 
Figure [1.3] presents a structural path model based on this mean square data 
structure. 

These alternative model organizations do not alter our interpretation of the 
model parameters h, c, and e. The cross-covariance approach [1.2] and the 
mean square approach [1.3] are simply two ways to organize the parameters of 
the fundamental biometric model [1.1]. Many researchers prefer one approach 
over the other, but the reasons for these preferences typically involve technical 
issues of estimation. We now use the summary diagram in Fig. [1.1] as a 
convenient way to draw a complete model of the biometric decomposition and 
to represent any biometric group. This graphic simplification will prove useful 
in the presentation of models with more variables and extended kinships. 

Alternative Estimation and Comparison 

There are several simple ways to estimate the parameters h, c, and e. 
Many researchers have used the familiar "double entry" formula to obtain 
the intraclass data for MZ and DZ groups. These intraclass statistics are used 
to obtain information about the parameters. Such simple correlational esti- 
mations are still popular, but they are subject to some difficult statistical and 
mathematical problems (Jinks and Fulker, 1970; Goldsmith, 1983). For ex- 
ample, it is often unclear how to constrain the parameter estimates, how to 
obtain adequate statistical tests, or how to use information from samples of 
different sizes effectively. 

These problems with the simple correlational approach led researchers 
to examine a simultaneous equations model-fitting approach (described in 
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detail by Cattell, 1960; Eaves et al., 1978; Fulker, 1978). First, we rewrite 
the model observations Og and expectations Xg for g = 1 to G groups to define 
model misfits or residuals Rg = (Og - Xg) (McDonald, 1985). Second, we 
can calculate a discrepancy function based on weighted least squares or as a 
likelihood-ratio criterion (LRC). Finally, we obtain parameter values and 
produce expectations Xg that minimize the residuals Rg. The computation of 
these "best"  estimates requires the a priori definition of a multiple group 
LRC(g). Since we assume that the groups are independent, the LRC for the 
entire model is calculated as a simple sum of the g independent LRC(g) for 
the G separate groups. The numerical minimization of this function produces 
a minimum chi-square for the assessment of goodness of fit, as well as ap- 
proximate maximum-likelihood estimates(MLE) and standard errors (SE) for 
all free parameters. More complex estimation techniques are well developed 
(Lange and Boehnke, 1983; also see Bock, 1989), but these are required only 
for more complex kinship designs. 

Most problems inherent in the assessment of goodness of fit in analysis of 
variance, multiple regression, and factor analysis also pertain to biometric struc- 
tural modeling. Given certain regularity conditions on the function, the LRC(G) 
for the entire model can be considered a chi-square variate with degrees of 
freedom (dr) equal to the numerically independent information (McDonald and 
Krane, 1979). A test of the null hypothesis can be translated in Z score units 
(Horn and McArdle, 1980; McArdle, 1986). Relatively large chi-square (and 
Z) values reflect nonrandom residuals, but the size of the nonrandom effects is 
often indexed in other ways. For example, we could define a specific test size 
(i.e., p<.01) for model fit and use this as a rigorous standard of statistical 
inference. Alternatively, we could guide our modeling decisions by the search 
for a minimal number of parameters, each of which has a clear substantive 
interpretation. These are important modeling issues, and we present further 
details later. 

There are many alternative ways to calculate biometric parameters for 
these univariate model estimates (for general proof, see McArdle and McDonald, 
1984). A listing of one LISREL program for this kind of univariate analysis 
is presented in the Appendix. This approach is identical to our earlier work 
(e.g., McArdle et al., 1980) but differs in several ways from more recent 
work in this area (e.g., Boomsma and Molenaar, 1986). The programming 
of only three matrices has a direct resemblance to the diagrams in Fig. 1: the 
"arrows" are placed in one matrix and the "slings" are placed in another. 
We think this programming approach is effective because it includes all nec- 
essary and sufficient features, it allows path analysis to be carried out in any 
metric, and it allows flexibility in multivariate extensions (McArdle, 1986; 
McArdle and McDonald, 1984; McArdle and Horn, 1990; McArdle and Boker, 
1990). 
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C o m m o n - F a c t o r  Models  

The extension of the previous univariate biometric model to a multivariate 
form is compelling but not obvious. In this section we examine models where 
the observed phenotype P is defined as a (M x N) matrix for m = 1 to M 
different measures. There are many sensible multivariate approaches to this 
problem, but we focus on the common factor model defined in Table [2]. The 
scalar model of Eq. [2.1] and matrix form of [2.2] follow the classic structural 
model of Spearman (1904); it includes one factor, F, common to all variables, 
and one factor, U[m], unique to each phenotype P[m]. 

This single-factor model can be examined in exactly the same way as the 
previous biometric models, but we require multiple measures rather than mul- 
tiple groups. As in all previous latent variable models, unique estimates require 
at least one scaling constraint on each independent latent variable, so we use 
the typical standardization and model constraints of Eq. [2.3]. These additional 
assumptions lead to the simplified set of variance expectations of [2.4] and the 
covariance expectations of [2.5]. These expectations are restrictive because they 
require proportionality constraints among all covariances, and these restrictions 
permit a test of the suitability of the single common-factor model (McDonald, 
1985). 

The single-factor model is drawn as a structural graphic in Fig. [2.1]. The 
associated structural model matrices, A, S, and F, are defined in Table [2.6]. 
Because the algebra can be obtained directly from this graphic, there is usually 
no need to present both algebra and graphics. 

The Biometric-Factors  Model  

Fulker (1978, 1979) provides an informative historical perspective on mul- 
tivariate biometric analyses. He reports that Tukey (1951; as reported by Fulker, 
1978) originally suggested the calculation of between- and within-pair cross- 
product matrices for a variety of measures followed by separate principal-com~ 
portents analysis of these matrices. Additional statistical contributions to this 
approach were made by Kempthorne and Osborne (1961), Bock and Vandenberg 
(1968), Meredith (1968), Loehlin and Vandenberg (1968), and Crawford and 
DeFries (1976). Contemporary advances in this methodology were offered by 
Martin and Eaves (1977), Behrman et al. (1977), Chamberlain and Grilliches 
(1977), and Fulker (1978, 1979). These later developments used the same basic 
mean square approach but added several features, including (1) the estimation 
of a single common factor model including unique factors, (2) numerical ap- 
proximations to obtain maximum likelihood estimates and standard errors for 
all model parameters, and (3) multivariate hypothesis testing based on likeli- 
hood-ratio tests. 
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Table [2]: Traditional Multivariate Factor Equations (e.g., Spearman, 1904) 

[2.1] A Single Common Factor Model 

P[mJn = L[m] Fn + u/m] U[m], 

where, for the ith individual, 
P[m]n = the observed score on the m-th measure, 
F~ = the common factor score, 
U[m]n -- the unique factor score, 
L[m] = the factor loading of P on F, and 
u[m] = the unique loading of F on U[m]. 

[2.2] Matrix Form of [4,1] 

] C -I P[2] [ L[2] | 
/ L [ 3 ] /  el3] = F + 

L P[i ] L L[;/l J 

u[1] u[2] / u[2] 
u[3] / .U!3] 

" " " LUrMI 

[2.3] Additional Scale Constraints 

e{F F'} = 1, and E{U[m] U[m]'} = 1. 

[2.4] Diagonal Variance Expectations 

E{P[m] P[m]'} = E{(L[m] Fo + u[m] U[mD (L[m] Fo + u[m] U[m]o)'} 

= L[m] E{F F'} L[m]' + u[m]' + u[m] E{U[m] U[m]'} u[m]', 

= L[m] L[m]' + u[m] u[m]', 

[2.5] Off-Diagonal Covariance Expectations 

E{P[i] P[j]'} = E{(L[i] F. + u[i] U[i].) (L[j] Fn + u[j] U[j].)'} 

= L[i] E{F F'} L[j]' = L[i] L[j]. 

[2.6] A General Matrix Model (after McArdle & McDonald, 1984) 

[ i  L[M] u[00M]] v = [P[M] : F : U[M]], and A = 0 
0 

u =  [Z[M]:F:U[M]] ,andS = [ i  0Q s% m ]  

and F = [I[m] 0 0[m]], 

where, in general, X[M] are matrices with m = 1 to M rows or columns. 



Common Factor Models for Multivariate Biometric Analyses 581 

~ L ~  

U U U U U 
[2.1]: A Single Common Factor Model (after Spearman, 1904) 

Fig. ,2. Multivariate structural diagrams of biometric twin models. 

Table [3] is a listing of a multivariate biometric model presented by Martin 
and Eaves (1977). Equation [3.1] presents a scalar form of the linear model for 
multiple phenolypes. In this model we allow six sources of variance for each 
phenotype. The factors common to all measures are labeled Ga, Ec, and Ei 
(without subscripts) with common factor loadings H[m], C[m], and E[m]. The 
factors unique to a specific measure m = 1 to M are labeled Ga[m], Ec[m], and 
Ei[m] with unique loading coefficients him], c[m], and e[m]. These components 
are all orthogonal in this model, so the coefficients can simply be squared, 
added, and scaled to obtain variance proportions. In sum, this model assumes 
that each phenotypic matrix can be formed from common and unigue factors 
that represent genetic and nongenetic factors. 

This structural organization can be clearly seen in the matrix form of Eq. 
[3.2]. The additional scale constraints and model conditions in [3.3] are required 
for all latent variables. Given these assumptions, this multivariate model pro- 
duces expectations for the variances of all P[m] variables in [3.4] and for the 
covariances of pairs of P[i] and P[j] variables in [3.5]. These expectations are 
slightly more complex than the proportionality restrictions of the traditional 
factor model. Unique parameter estimation requires both multiple psychometric 
measures and multiple biometric groups. 

Figure [2.2] displays the basic structure of the multivariate linear model of 
Table [3] in a summary form. Estimation of these parameters requires the sub- 
partitioning of the matrix data into either cross-covariance or mean square ma- 
trices for the four groups described earlier, but this picture is largely redundant 
and is not presented here [see Fig. [1.3] and McArdle et al. (1980)]. On the 
other hand, the current diagram [2.2] is especially clear about the sources of 
variance [3.4] and [3.5] for any variable in the model, and this is the key 
modeling issue. 
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u ~  u ~  u ~  u ~  u ~  
U U U U U 

[2.2]: The Biometric Common Factors Model (after Martin & Eaves, 1977) 

N N N 

[2.3]: The Psychometric Common Factor Model (after McArdle, Connell & Goldsmith, 1980) 

Fig. 2. Continued. 

A Psychometric-Factor Alternat ive  

The biometric-factors model in Table [3] uses the basic logic of the common 
factor model in Table [2], and this can be informative. But the model in Table 
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Table [3]: Traditional "Biometric Factors" Model Equations (e.g., Martin & Eaves, 1977) 

[3.1] Scalar Representation of Multiple Phenotypes 
P[m]. = H[m] Ga, + C[m] Ec, + E[m] Ei, + 

h[m] Ga[m]n + c[m]~ + e[ml Ec[m]. + e[m] Ei[m]., 

where, for each measure m = 1 to M, 
Ga, Ec, and Ei (without subscripts) are common to all measures, 
Ga[m], Ec[m], and Ei[m] (with M subscripts) are unique to each measure, 
coefficients H[m], C[m], and E[m], are common factor loadings, and 
him], c[m], and e[m] are unique factor loadings. 

[3.2] Matrix Expansion of [3.1] 

P[21 H[2] l 
:,[3] = rff3] l Oa 

~;[M] I:I:M] .J/ 
+ 

F c[1] "! V E[I] "1 
c[21 / 

/ / 
[_ C[M] 3 [ .  E[M] .J  

[ ]r all [clJ 1 l Ga[2] | h[I]h[2]h[3] / Ga[3"] / o[2] 
+ c[3] 

"" "hiM] L claiM] A ' "  c[Ml 

EcElll lee l[Ei] Eel2] | el2] Ei[2] 
Ec[3] / + el3] El[3] 

Ec[M] | ,J " " " e[M? Ei(M l 

[3.3] Multivariate Model Scale Constraints (with Proportionality [1.6] assumed) 

E{Ga Ga'} = E{Ec Ec'} = e{Ei Ei'} = I, 

E{Ga[m] Ga[m]'} = e{Ec[m] Ec[m]'} = E{Ei[m] Ei[m]'} = 1, 

[3.4] Multivariate Model Variance Expectations 

E{P[m] P[m]'} = H[m] H[m]' + C[ml C[m]' + E[m] E[m]' 
+ h[m] him]' + c[m] c[m]' + e[m] e[m 1' 

[3.5] Multivariate Model Covariance Expectations 

E{P[i] P[jJ'} =H[i]  H[j]' + C[i] C[j]' + E[il E[j]'. 
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[3] is not the only way to use the common-factor model in Table [2]. In our 
earlier reports, we studied a different kind of model based on psychometric 
considerations (McArdle et al., 1980; Goldsmith, 1983; McArdle, 1986). In 
Table [4], we present the basic algebra for this psychometric variation. 

In [4.1] we assume that each phenotype P[m] can be decomposed into a 
single common factor F and unique factors U[m]. In a second equation we then 
assume that these common and unique factor scores have biometric sources of 
influence; i.e., the common factor F comes from common sources Ga, Ec, and 
Ei, with effects H, C, and E, whereas the unique factor U[m] comes from 
common sources Ga[m], Ec[m], and Ei[m], with effects H[m], C[m], and E[m]. 
These simultaneous equations are also written in a "reduced form" to show the 
proportional assumptions of the second-order biometric model directly on the 
zero-order phenotypes. The basic factor structure of this model is also presented 
in Fig. [2.3]. The pattern of influences clearly shows that the first-order common 
psychometric factor F is influenced by second-order biometric sources Ga, Ec, 
and Ei. The unique factors have a similar higher-order structure. This model 
has standard psychometric components which themselves have a biometric source. 

The independent estimation of parameters for both the common-factor load- 
ings L[m] and U[m] requires the usual restrictions on the model parameters. 
These scale constraints (in Table [4.3]) lead to variance expectations (in Table 
[4.4]) and covariance expectations (in Table [4.5]). These expectations represent 
our alternative psychometric model. 

Alternative Multivariate Model Comparisons 

In the psychometric model above we assume (1) a first-order psychometric 
separation into a common factor F,, and M unique factors U[m] and (2) a second- 
order separation of the biometric sources Ga, Ec, and Ei of these common and 
unique factors. This is different from the more traditional biometric model. The 
formal difference between the two multivariate models is expressed by three 
differences in structural expectations in Tables [3] and [4]. 

(1) The Psychometric Factors Model Is a Subset of the Biometric Factors 
Model. The two models can produce identical expectations under conditions 
where the loadings of the biometric-factors structure can be written as Him] = 
L[m] H, C[m] = L[m] C, and E[m] = L[m] E, where L[m] is a common-factor 
loading for the ruth variable. That is, this psychometric model is a biometric 
model with the additional constraint of proportionality of loadings Him], C[m], 
and E[m] across all m manifest variables. 

(2) The Psychometric Factors Model Is Usually More Restrictive. The 
psychometric model estimates M + 3  common-factor parameters L[m], H, C, 
and E, whereas the biometric model requires M.3 common-factor parameters 
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Table [4]: Non-Traditional "Psychometric Factors" Biometric Model Equations (e.g., McArdle, 
Connell & Goldsmith, 1980) 

[4.1] Biometric Additions 

P[m]n ---- L[ml F. + u[m] U[m]n, 

Fn = H Ga:, + C Ec,, + E Ein, 

u[m], - h[m] Ga[m]. + c[m] Ec[m]n + e[m] Ei[m]n, 

or, in reduced form, 

P[m]n = L[m] {H Gan + C Ec, + E Ei~- 

+ u[m] {him] Ga[mln + c[m] Ec[m]~ + eIm] Ei[m]~}, 

where H, C, and E are now (1 x 1) scalars representing the second-order impact of the biometric 
components upon the psychometric factor. 

[4.2] A Matrix Form of [4.1] 

r P [ l ] l  r [1] I Oa] | P[21 | L[21 
= Ec L[3] :E] + 

/ P[M] / L[M] Ei 

[hE1 ]rGall lcll h[2l | Oa[2] | c[21 
h[3] / G a[3.] + c[3] 

�9 " h[M] / Oa[M] ..I "c[M] ] IEcll] [el ]rEiE1 1 
Ec[2] e[2] l El[2] l 
Ec[3] + e[3].. / Ei[3] / 

E'ciM ] "elM] / El(M]/ 

[4.3] Factor Scale Constraints 

E{Ga Oa'} = E{Ec Ec'} = E{Ei El'} = 1, 

E{Oa[m] Ga[m]'} = E{Ec[m] Ec[m]'} = E{Ei[m] Ei[mJ'} = 1, 

[4.4] Diagonal Variance Expectations 

E{P[m] P[mJ'} = L[m] (H H' + C C' + E E') L[m]' 

+ h[m] h[m]' + c[m] c[m]' + e[m] elm]' 

[4.5] Off-Diagonal Covarianee Expectations 
E{P[i] P[j]} = L[i] {H H' + C C' + EE'} L[j]'. 
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H[m], C[m], and E[m]. It follows that, when the number of measures M _> 3, 
the degrees of freedom for DF{psychometric} > DF{biometric}. 

(3) All Differences Come from the Common Factor Structure. The unique 
factor structure is identical in both models, and in later applications we ignore 
the biometric structuring of the unique factor variances. 

The three structural contrasts above imply that these two models are always 
testable alternatives (given m > 3). In the next section, we provide a demon- 
stration of these multivariate differences. 

RESULTS: COMMON FACTOR MODELS OF THE PMA 

We now present results for the fitting of several multivariate models to the 
five-variable PMA matrices presented by Loehlin and Vandenberg (1968; see 
Appendix here). These summary statistics were previously fitted using a bio- 
metric-components approach by Loehlin and Vandenberg (1968) and a biometric 
factors approach by Martin and Eaves (1977) and again by Boomsma and Mo- 
lenaar (1986). McArdle et al. (1981) reported the LISREL estimation of the 
biometric factors model and compared these with the psychometric factors model 
applied to these data. Some aspects of this comparison follow. 

Initial Mode l  Comparisons  

The second column in Table [5] gives maximum-likelihood estimates for 
the Martin and Eaves (1977) biometric-factors model [4] fitted to the M =  5 
measures of the PMA. This listing includes all common factor loadings in stan- 
dardized form, shows a few loading parameters which are not significant, and 
yields an LRC=33 on df--30. This is obviously an excellent fit, and these 
results match the earlier report of Martin and Eaves (1977). 

The third column in Table [5] gives the standardized results for a slight 
variation on this model. Martin and Eaves (1977) originally suggested that a 
proportional patterning of the factor loadings H[m] for common additive genetic 
Ga and the loadings C[m] for common shared environments Ec could be used 
to structure an assortative mating coefficient (Ma) within the classical twin 
design. To wit, Martin and Eaves fit a model where Ga[m] -- b �9 Ec[m], and 
the standardized estimates for this model are reproduced in column 3 in Table 
[5]. This model yields the MLE(b)= .704 and an overall LRC = 52 on df--34, 
which is also a reasonably good fit. 

This second model shows that Martin and Eaves (1977) clearly recognized 
the possibility of more complex constraints upon their model (also see Fulker, 
1978, 1979). However, Martin and Eaves (1977) did not use further propor- 
tionality constraints on the factor loading matrices, nor did they allow correlation 
among the factor scores. The additional constraints [5.4] and [5.5] can be made 
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Table [5]: Alternative Multivariate Models fitted to the Primary Mental Abilities Twin Data. 

Model 1: Model 2: Model 3: Model 3: 
Genetic Proportional Psychometric Psychometric 
Factor Ec Factor Factor Expectations 

Additive Genetic First-Order Factor Loadings 
Ga-->  PMA[N] :=  HI1] .758 .533 .0"* 
Ga --> PMA[V] :=  H[2] .348 .569 .0"* 
Ga--> PMA[S] :=  H[3] .434 .335 .0"* 
Ga--> PMA[W] :=  HI4] .382 .436 .0"* 
Ga--> PMA[R] :=  H[5] .423 .543 .0"* 

Common Environment First-Order Factor Loadings 
Ec --> PMA[N] : =  C[1] .410 .533 .0"* 
Ec --> PMA[V] :=  C[2] .782 .569 .0"* 
Ec--> PMA[S] :=  C[3] .239 .335 .0"* 
Ec--> PMA[W] :=  C[4] .463 .436 .0"* 
Ec--> PMA[R] :=  C[5] .616 .543 .0"* 

Indpendent Environment First-Order Factor Loadings 
Ei--> PMA[N] :=  E[1] .024* .018" .0"* 
Ei--> PMA[V] :=  E[2] .299 .300 .0"* 
Ei--> PMA[S] :=  g[3] .043* .025* .0"* 
Ei--> PMA[W] :=  E[4] .244 .218 .0"* 
Ei --> PMA[R] :=  E[5] .277 .265 .0"* 

Psychometric First-Order Factor Loadings 
F- ->  PMA[N] :=  L[1] .0"* .0"* .599 
F- ->  PMA[V] :=  L[2] .0"* .0"* .857 
F- ->  PMA[S] :=  L[3] .0"* .0 .... .427 
F- ->  PMA[W] :=  L[4] .0"* .0"* .656 
F- ->  PMA[RJ :=  L[5] .0"* .0"* .819 

Psychometric Second-Order Factor Loadings 
Ga[1]--> F[1] :=  M[1,4] 1.0"* 1.0"* .614 
Ec[1]--> F[1] :=  M[1,5] .0"* .0"* .739 
Ei[1]--> F[1] :=  M[1,6] .0"* .0"* .276** 
Ec[2]--> F[2] := M[2,8] 1.0"* .704 .0'* 
Ei[3]--> F[3] :=  M[2,12] 1.0"* 1.0"* .0"* 

Goodness of Fit Indices 
Likelihood Ratio [DF] 33 [30] 52 [34] 72 [38] 
Residual Z Statistic .46 1.96 3.18 

Notes: 

.429 

.526 

.262 

.403 

.503 

.517 

.633 

.316 

.485 

.605 

.193 

.237 

.118 

.181 

.223 

(1) Scores on all Primary Mental Abilities obtained from the five PMA covariance matrices 
listed by Loehlin & Vandenberg (1968), with matrix error corrected; 

(2) "MLE" = Maximum Likelihood Estimate and "SE"  = Standard Error; 
(3) All symmetric coefficients fixed at value determined by biometric model; 
(4) Single asterisk denotes a parameter which is not greater than twice its standard error (i.e., 

P/SE[P] < 2.00); 
(5) Double asterisks denotes a parameter which has been "fixed" at a value; 
(6) LRC = Likelihood Ratio Test Statistic ["LISREL Chi-Square" Value]; Z = {[LRT/ 

Df]**(1/2) - [1-[2/9]/Df]**(1/3)} = Null Model Normal Z-score (Horn & McArdle, 
1980). 
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from psychometric theory, and the MLE for this restricted model are presented 
in the fourth column in Table [5]. 

The usual requirements of latent variable scaling apply to both first- and 
second-order factors for Model 3, and there are many ways to achieve this result 
(see [5.3]; Appendix). In standardized form, the MLE loadings L = { .699, 
.857, .427, .656, .819 } are relatively large, so we interpret F as a common 
factor of all PMA subtests except spatiaI (S) ability. Simultaneously, the bio- 
metric decomposition of this single-factor score F yields MLE for B = { .614, 
.739, .276 }. The biometric proportion of variance can be calculated as B2= {.377, 
.546, .076}. These biometric results are common to all five measures and dem- 
onstrate a major effect of shared environments Ec and additive genetic effects 
Ga and only a minor effect of independent environments Ei. In this psychometric 
factors model, the common factor score F is a perfectly reliable variable; thus, 
in some contexts, these effects may be called the reliable biometric effects. 

This analysis leads to a reasonable question: How do the biometric esti- 
mates for the latent variable correspond to simpler models, such as an un- 
weighted linear combination of the manifest Z scores or a weighted principal- 
components score? In these data we have found that the latent variable para- 
meters do not dramatically differ among these models. Nevertheless, the psy- 
chometric factors model is consistent with contemporary latent variable path 
analysis (McDonald, 1985; Loehlin, 1987). We usually assume that variables 
are measured with error or specificity, so the univariate estimation of ee' is 
always an overestimate of the variance of independent environments Ei. Even 
in the rare case where all loadings L[j] are equal, the ratio of hh' to cc' could 
be estimated without bias but the ee' would still be overestimated. The prior 
caIculation of sum scores, component scores, or even factor scores can eliminate 
some unwanted variance due to errors of measurement. These psychometric 
calculations are not based on any biometric model. In contrast, the latent variable 
factor loadings L[j] above are the most likely loadings given all other biometric 
equations, and simultaneously, the biometric effects b are the most likely effects 
given the psychometric equations. This psychometric approach also leads to 
several interesting structural hypotheses that cannot be reliably tested with a 
single univariate score (see the next section). 

Multivariate differences between the biometric and the psychometric or- 
ganizations can be seen in the parameter estimates listed in Tables [5] and [6]. 
The effect of adding the biometric constraints can be seen by a direct comparison 
of the second and third columns in Table [5]; the last column lists the psycho- 
metric model predictions. Here, for example, the parameter for the common Ga 
effect on PMA[N] is .429. This comes from L[i].B[j] = .614..699. This estimate 
can be compared to the corresponding estimate of .758 from the biometric- 
factors modeI (column 2). Note that the largest psychometric factor loading for 



Common Factor Models for Multivariate Biometric Analyses 589 

Ga is PMA[V] = (.526), but the corresponding loading is relatively small (.348) 
in the biometric-factor model. 

In Table [6] we present a comparative display of the proportions of manifest 
variable variance attributed to common and unique influences for both models. 
This standardization of all model components is a by-product of the computer 
output as long as the three-matrix form is used (see Appendix; McArdle et al., 
1980; cf. Boomsma and Molenaar, 1986). In Table [6] we list the common 
proportions separately, accumulated over the specific effects for the two main 
models. Some of these differences are also noteworthy, especially the common 
genetic contribution to PMA number facility and PMA vocabulary and the de- 
creased specific variance in the biometric model. 

The validity of the multivariate model interpretation rests on a comparison 
of goodness of fit. Here the psychometric "one factor" model fits with LRC = 72 
on df=38 (Z=3.18), and the genetic one-factor model fits with LRC=33 on 
df= 30 (Z = .46), so the difference between them is a difference dLRC = 39 on 
ddf= 8 (Zd = 4.34). The size of this difference illustrates the potential power to 
distinguish between these two alternatives. This test of the constraints of Eq. 
[4.5] seems to show that biometric factors model fits better than the psycho- 
metric factors model. Before we rest on this initial conclusion, we consider a 
few more complex alternatives. 

Ignoring Unique Biometr ic  Structure 

In most multivariate analyses the common factors are of primary importance 
and the unique factors are less essential for interpretation. Of course, the esti- 
mation of unique factors makes the common factor approach different from, 
say, the principal components approach. Also, unique parameters can be statis- 
tically related to common factor parameters. As discussed earlier, both the bi- 
ometric and the psychometric models assume exactly the same unique factor 
decomposition, so these considerations do not differentiate the models. 

These theoretical results lead to a practical device for simplifying multi- 
variate modeling problems. We can rewrite the simultaneous equations in Table 
[3] or [4] to allow the unique variance to take on any MLE (i.e., a separate 
estimate in all groups). In either factor model this relaxation of the unique 
variance structure does not alter the covariance expectation [3.5] or [4.5] and 
these restrictions lead to considerable simplification of the required programming 
(because the number of total variables within each group is much smaller; see 
the Appendix). 

In the first set of models in Table [7], we examine the necessity for the 
biometric structuring of unique factors. The initial model in Table [7] (Iabeled 
#0) allows all unique variance terms to be estimated in an unstructured way. 
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Table [6]: Decomposition of Manifest Variable Variance for Common and Unique Biometric 
Influences for Two Alternative Factor Models of PMA 

Common Ga Common Ec Common Ei Unique 

PMA Number Facility 

Biometric Factors: .574 .169 .001 .257 
Psychometric Factor: .184 .267 .037 .512 
Difference: .390 - .098 - .036 - .255 

PMA Vocabulary 

Biometric Factors: .121 .612 .089 .178 
Psychometric Factor: .277 .401 .056 .266 
Difference: - .156 .211 .033 - .088 

PMA Spatial Relations 

Biometric Factors: .189 .058 .002 .757 
Psychometric Factor: .067 .100 .014 .817 
Difference: .122 - .042 - .012 - .060 

PMA Word Fluency 

Biometric Factors: .146 .214 .060 .580 
Psychometric Factor: .162 .235 .033 .570 
Difference: - .016 - .021 .027 .010 

PMA Reasoning 

Biometric Factors: .179 .380 .077 .365 
Psychometric Factor: .253 .367 .051 .329 
Difference: - .074 .013 .026 .036 

Notes: 
(1) All percentages are MLE from squared parameter estimates of Table [6]. 
(2) Composite Standard Error and Confidence Boundaries can be obtained from MLE and Infor- 

mation Matrix elements. 
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This model is typically labeled the "nul l"  or "zero-factors" model because all 
variances are free but all covariances are restricted to be zero. The fit of this 
model is indexed by an LRC= 588 on dr= 40 (Z= 19.5) which is large. Ob- 
viously this model does not fit, but it can be used as a baseline for judging the 
need for more complex structure in the covariances. 

The next model, labeled #O + U, adds the three-parameter restrictive bi- 
ometric structure to each of the unique variances. The absolute fit of this model 
is indexed in Table [7.1] by a Z=  19.4, and the loss due to structuring unique 
variance is indexed in Table [7.2] by a Zd = .51. The same approach is used 
with models labeled #B1 + U and #P1 + U. The unique components are left 
unstructured and then structured and the differences in fit examined in Table 
[7.2]. In general, we conclude that the unique variances can be structured by 
biometric restrictions without any loss of fit so this substructure is not essential 
to our further model comparisons. 

Single-Factor Alternatives 

The models in Table [7] listed as #B1 and #P1 all represent single-com- 
mon factor alternatives. The set of models labeled #B1 has a biometric factors 
interpretation and fits the PMA data exceedingly well. The difference models 
in Table [7.2] show that the genetical covariance model substantially improves 
the fit of the model (Zd = 19.8), and the addition of the biometrie constraints 
(Zd=3.12) is not as serious a loss of goodness of fit. From a mathematical 
point of view, this full biometric model #B1 or #B1 + U  may be an "over- 
pa rame te r i zed"  structure and the simpler # B I + B  model ( i .e . ,  with 
H[m] =b*S[m]) fits these data very well. (cf. Martin and Eaves, 1977; and see 
column 3, Table [5], here). 

The models labeled #P  are based on the psychometric factors models. The 
first model, #PO, fits a single-factor model with an invariant factor pattern but 
no biometric constraints. The goodness-of-fit values detect some departure from 
fit (Z = 3.32), but one common factor is a dramatic improvement over no factors 
at all (#0, Zd = 18.3), and the additional biometric constraints are acceptable 
(#P1, Zd= .47). The difference in fit between biometric model #B1 and psy- 
chometric model #P1 is indexed by a Zd = 4.25. But once again, the biometric- 
factor model is a considerably complex set of model parameters, so we continue 
to ask the question, Are the psychometric constraints acceptable? 

The next single-factor models test various hypotheses about the equality of 
the common biometric effects on the common factor F. The direct comparison 
of model #P1 to model #PE yields a test of "Are the biometric effects on the 
factor of equal size?" and the results show Zd = 6.71. These comparisons illus- 
trate the statistical flexibility of this approach but also point out the complexities 
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Table [7]: Goodness-of-Fit Indices for A Selected Set of Alternative Multivariate Genetic Models 
to Primary Mental Abilities Twin Data 

[7.1]: Absolute Goodness-of-Fit Indices for Alternative Factor Models of the PMA 

Goodness-of-Fit 
Model and Parameter Description Indices 

Psychometric Biometric Common Unique 
Factors Factors Effects Effects Df LRT Z 

#0  :=  None None None Free 40 588 19.5 
# 0 + U  :=  None None None h, c, e 45 594 19.4 
#B1 :=  None One H, C, E Free 25 29 .63 
# B I + U  :=  None One H, C, E h, c, e 30 33 .46 
# B I + B  :=  None One H = b C ,  E h, c, e 34 52 1.96 
# B 1 - E  :=  None One H, C, E = 0  Free 30 85 4.91 
#B2  :=  None Two [Ortho] H, C, E Free 13 14 .32 

#P0 :=  One None Free Free 32 66 3.25 
#P1 : =  One None H, C, E Free 33 67 3.33 
# P I + U  :=  One None H, C, E h, c, e 38 72 3.18 
# P 1 - E  :=  One None H, C, E = 0  Free 34 96 5.19 
#PE : = One None H = C = E Free 35 128 6.87 
# P E + U  :=  One None H = C = E  h, c, e 40 132 6.63 
# P 2 + O  :=  Two [Ortho] None H, C, E Free 27 35 1.08 
# P 2 + C  : =  Two [Oblique] None H, C, E Free 26 31 .75 
# P 2 + S  :=  Two [Simple] None H, C, E Free 28 34 .84 

[7.2]: Relative Goodness-of-Fit for Difference Comparisons among Alternative Models 

Key Structural Hypothesis Difference-of-Fit Indices 
Comparison dDf dLRT Zd 

# 0  vs 
#B1 vs 
#P1 vs 
#PE vs 
#B1 vs 
# B l + U v s  
#B1-E vs 

#PO vs 
#P1 vs 
#P1 vs 
#PE vs 
#P1-E vs 
#P1 vs 
#P1 vs 
#P1 vs 
#P2 + 0 vs 
#P2 + S vs 

# 0 + U  : =  Can unique or variances be structured? 5 6 .51 
# B I + U  : = [same] 5 4 .56 
# P I + U  : =  [same] 5 5 .21 
# P E + U  :=  [same] 5 5 .21 
# 0  : =  Is biometric factor model unnecessary? 15 588 19.8 
#B1 + B  :=  Are H = b S  model constraints acceptable? 4 19 3.12 
#B1 :=  Is the independent environment common? 5 56 6.08 

#0  : =  Is psychometric factor unnecessary? 8 522 18.3 
#P0 : =  Are biometric constraints on factor OK? 1 1 .47 
#B1 : =  Are psychometric constraints acceptable? 8 38 4.25 
#P1 : =  Are biometric effects on factors equal? 2 61 6.71 
#P1 : =  Is independent environment effect common? 1 29 4.87 
#P2  : =  Is second biometric factor unneccessary? 12 15 .70 
# P 2 + 0  : =  Is second orthogonal factor unneccessary? 6 21 2.89 
# P 2 + C  : =  Is second oblique factor unnecessary? 7 36 4.25 
# P 2 + C  : =  Are the oblique relatinos unnecessary? I 4 1.72 
#P2 + C : =  Is the simple factor pattern acceptable? 2 3 .77 
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of inferential statistical testing in models. In general, these differences are not 
large and we may need external substantive criteria to make a clear choice. 

In two final single-factor models, #B1-E and #P1-E, we test the hypothesis 
that no E effect at the factor level is needed. These models offer a direct test 
of the hypothesis of "Are common independent environmental effects needed?" 
In both cases the model with E = 0  fits the data rather poorly (Z=4.91 and 
Z = 5.19). We conclude that there should be an environmental effect common 
to the PMA subtests which is not shared by cotwins. 

More importantly, the last two models offer a potentially informative way 
to separate independence from unreliability using multivariate measures. In the- 
ory, the unique factor effects Elm] are confounded with both independent en- 
vironmental effects and random error or unreliability, but, because the common 
factor F is a purely psychometric construct with only reliable variance, the 
common factor effect E contains only pure independent environmental effects. 
Likewise, in the biometric-factors model the Ei factor reflects only the common 
components so the model does account for unreliable variation. Either multi- 
variate approach allows the hypothesis testing of a concept that is not usually 
tested at the univariate level and is of substantive interest to behavioral geneti- 
cists (Plomin and Daniels, 1987; cf. McArdle and Gottesman, 1987). 

Multiple Factor Model Identification 

We have treated the biometric factors model and the psychometric factor 
model as special kinds of "one factor" models. However, as is obvious from 
Table [3], the biometric factors model has three orthogonal factors that combine 
to produce the manifest observations, whereas the psychometric factor model 
has only one common factor strategically deployed to account for the same 
manifest observations. Some aspects of these differences can be clarified by 
further examination of the mathematical properties of multiple factor solutions. 

The common factor model [3] is frequently written to include multiple 
common factors. For example, we may wish to assume two common factors 
F[1] and F[2]. In this two-factor model we usually retain scale constraints and 
orthogonality between common and unique factors, but we also allow a covar- 
iation Q between the two factor scores. The model expectations for the covar- 
lances among m = 1 to M measures again follows directly. The traditional variance 
and covariance expectations show how the increasing complexity of the model 
structure reflects an increasing complexity of the sources of variance. 

These results also lead to an increasing complexity in the independent 
estimation of parameters for both the common factor loadings L[m] and the 
unique loadings u[m]. The identification constraints required in the multiple- 
factor model are complex but the general results on factor identification for the 
K-factor model can be summarized simply: in most cases, K,K fixed parameters 
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are required to estimate the remaining values in matrices L and Q. The scaling 
restriction of unit variance used above places K constraints on the model so only 
K,(K-1) additional restrictions are required. 

In the oblique models, a correlation Q among the factors is estimated, and 
there is one fixed zero loading for each of the two factors scores. These oblique 
models differ from the orthogonal models only in the location of the required 
K,(K-1) constraints. The main problem with any final choice between the or- 
thogonal and the oblique models is that they can produce the same expectations 
about the covariances. That is, even though the parameters are all uniquely 
identifiable, the model structure can be rotated without loss of fit. 

This leaves us with the fundamental question of factor rotation--What is 
the best way to deploy the remaining K,(K-1) required restrictions? There is no 
single mathematical criterion for model simplicity that is uniformly palatable. 
In the typical application, the final choice between these models rests on sub- 
stantive and practical considerations. To describe some of these multiple factor 
alternatives, we use the new path diagrams in Fig. 3 and the new parameter 
estimates in Table [8]. As we now demonstrate, novei options obtain with some 
multiple-group structural equation models. 

Exactly Identified (Exploratory) Alternatives 

One resolution to the identification problem to use the "orthogonal" factor 
restrictions. This rotation of the parameter space essentially forces the correlation 
among the factors to be zero (Q = 0) and also fixes one of the loadings on the 
second factor to be zero (i.e., a triangular restriction). In this case, the first 
orthogonal factor scores are interpretable as a common general to all variables. 
The second common factor is general to all variables except the variable with 
the loading forced to be zero. 

Referring to Table [7], the model labeled #B2 starts with the biometric- 
factors model of Martin and Eaves (1977) and adds a second orthogonal factor 
to each component. The first factors were identified as in #B1, and the second 
factors were identified by imposing orthogonal restrictions on each factor and 
forcing one of the Ioadings in the second factor to be zero. This results in a six 
common factor orthogonaI model. The results yield a Z = .32 for the overall fit 
and a Zd = .70 (not shown in Table [7)] for the improvement over the one-factor 
model. The addition of a second component for each source did not improve 
the fit of the original three common biometric factors model. 

The model labeled #P2 + 0 in Table [7] adds a second orthogonal factor 
to the psychometric model. This model has two psychometric factors, which in 
turn have orthogonal biometric components. This model was identified by forc- 
ing one zero loading for the spatial PMA[s] subtest (in the second column of 
the factor pattern) and by having each factor identified by the fixed loading in 
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[3.1]: An Orthogonal Factors Influence Model 
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[3.2]: An Oblique Factors with Common Influence Model 

Fig. 3. MultipIe-factor psychometric and biometric alternatives. 

the respective Ei[1] and Ei[2] loadings E[1] and E[2]. The results of this model 
show a good overall fit Z=  1.08 and a potential improvement over the one- 
factor model with Zd = 2.89. 

The MLE for this psychometric model #P2 + O are listed in the second 
column in Table [8]. These results show the same general factor plus a second 
factor which is neither Spatial (which was fixed at zero) or Number (which was 
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U U U U U 

[3.3]: A Restrictetd Oblique Factors Model 
Fig. 3. Continued. 

estimated at approximately zero). The biometric components of these factors 
seem to have different patterns: the source of the first factor is now largely Ga, 
whereas the second factor has no Ga effects. This psychometric model, although 
restricted by the position of the zero loading, allowed the emergence of a simple 
patterning of the biometric components. 

Next in Tables [7] and [8] are the familiar oblique psychometric factor 
models. Although there are many ways to allow factor correlations in these 
models, we assume a structure that allows separate biometric components for 
each of two factors, and where the biometric components of the first factor, 
Ga[1], Ec[1], and Ei[l] are used as a source of both psychometric factors F[1] 
and F[2]. A path diagram of this model is provided in Fig. [3.2]. This oblique 
and invariant model: (1) allows correlations among F[1] and F[2], (2) provides 
a test of the utility of the previous orthogonal restrictions, (3) restricts the 
correlations in a mathematically useful way (i.e., to positive semidefinite form), 
and (4) restricts the covariance structure in a biometrically informative way. 

The practical implication of this last-mentioned property (4) is that we can 
depict two factor models wherein the genetic and environmental sources of 
variation on one factor exert an influence on the other factor. These effects 
contrast with a model where latent variables of one factor merely correlate with 
latent variables of the other factor. Such directed influences are implied in most 
longitudinal biometric designs (Loehlin, 1979; McArdle, et al., 1980; Gold- 
smith, 1984) and in theoretical relationships [such as that between fluid and 
crystallized intelligence (McArdle et al., 1981)]. 
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Table [8]: Multivariate Estimates for "Two Factor" Psychometric PMA Alternatives 

Alternative Factor Models 
Orthogonal Oblique Simpte-I Simple-II 

First-Order Factor 1 Loadings 
F[1] --> PMA[N] :=  L[I,1] .901 1.100" 1.470 .858" 
F[1] -->PMA[V] :=  L[2,1] .698 .0 ** .0 ** .0 ** 
F[1] -- > PMA[S] :=  L[3,1] .480 .479* .437 .500* 
F[1] -->PMA[W] :=  L[4,1] .551 .189" .0 ** .0 ** 
F[1] -- > PMA[R] :=  L[5,1] .680 .209* .807 .101" 

First-Order Factor 2 Loadings 
F[2] -->PMA[N] :=  L[1,2] - .083*  - .251" - .744 .0"* 
F[2] -- > PMA[V] : = L[2,2] .556 .90t .891 .875 
F[2] -- > PMA[S] : = L[3,2] .0"* .0"* .0"* .0"* 
F[21 -- > PMA[W] :=  L[4,2] .333 .479 .646 .653 
E[2] -->PMA[R] := L[5,21 .680 .612 .0"* .726 

Second-Order Factor 1 Loadings 
aa[1J -->F[1] : =  M[1,4] .738 .409 .533 .461 
Ec[1] -->F[1] :=  M[1,5] .652 .816 .769 .803 
Ei[1] --> F[1] : =  M[1,6] .171"* .258** .249** .248"* 

Second-Order Factor 2 Specific Loadings 
Sat2] -->F[2] : =  M[2,7] .002 .18I* .0 '  .140" 
Ec[2] -->F[2] :=  M[2,8] .848 .002" .0" .004* 
Ei[2] -- > F[2] : = M[2,9] .530* * .258"* .249" * .248"* 

Second-Order Factor 2 Common Loadings 
Ga[I] -->F[2] : =  M[2,4] .0"* .828" .662 .881" 
Ec[1] -- > F[2] : = M[2,5] .0"* .544* .701 * .469* 
Ei[1] --> F[2] : =  M[2,6] .0"* .137 .249 .059 

Goodness of Fit Indices 
Likelihood Ratio [DF] 35 [27] 31 [26] 34 [28] 34 [28] 
Residual Z Statistic 1.08 .75 .84 .84 

Notes: 
(1) Scores on all Primary Mental Abilities 

obtained from the five PMA covariance matrices listed by Loehtln & Vandenberg (1968), 
with matrix errors corrected; 

(2) " M L E "  = Maximum Likelihood Estimate and "SE" = Standard Error; 
(3) All symmetric coefficients fixed at value determined by biometric model; 
(4) Single asterisk denotes a parameter that is not greater than twice its standard error (i.e., 

P/SE[P 1 < 2.00); 
(5) Double asterisks denote a parameter that has been "fixed" at a value; 
(6) LRC = Likelihood Ratio Test Statistic ["LISREL Chi-Square" Value]; Z = {[LRT/ 

Df]**(t/2) - [1 - [2/9]/Df]} / {[[2/9]/Df]**(1/3)} = Null Model Normal Z-score (Horn & 
McArdle, 1980). 
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The empirical results for this oblique model are presented as model #P2 + C 
in Table [7] and in the third column in Table [8]. The model is identified by 
forcing one zero loading in each column of the factor pattern matrix. In this 
example the factor F[1] was identified as "Not Vocabulary" and the factor F[2] 
was identified as "Not Spatial." The MLE show poor overall behavior, as seen 
in the mixed loadings on Number. 

We think it is useful to examine model features at the level of the latent 
biometric factors. For example, the common environmental effect Es is the 
strongest input to the first Not Vocabulary factor (E[1,1] = .816), with the ad- 
ditive genetic (Ga) input being moderate. On the other hand, the Ga effect 
common to the first and second psychometric factors contributes strongly to 
variation in the second Not Spatial factor (//[2,1] = .828). Of the three modestly 
sized biometric inputs to residual variation in the second factor, the effect of 
the specific environmental factor Ei is greatest (E[2,2] = .258). If we overlook 
the instability of these factor loadings, the model yields a very differentiated 
mapping of genetic and environmental influences on latent psychometric factors. 
Also, this oblique model fits very well (Z = .75) and represents a clear improve- 
ment over the orthogonal case (Zd= 4.25). 

Overidentif ied (Confirmatory)  Alternatives  

We do not pursue the exactly identified models in further detail because 
these rotation problems lead us to the use of the third and final model in Fig. 
[3.3]--the "confirmatory" or "restricted" factor model. Here the oblique model 
is used as a starting point and many additional factor loadings are set equal to 
zero. This model offers the most power when these strong restrictions are made 
by an a priori hypothesis. This confirmatory approach leads to "overidentified" 
parameter estimates, less rotational indeterminacy, and numerous degrees of 
freedom to test the basic model hypothesis. More complex cases have been dealt 
with in the literature (J6reskog and S6rbom, 1979; McDonald, 1985). 

The last model, #P2-S, in Table [7] gives the fits obtained when a Thur- 
stone (1947) "simple structure"-based approach is required of the psychometric 
factors. In this example we have forced two more loadings to be zero by psy- 
chometric hypothesis. The fourth column in Table [8] shows that this model is 
restricted so the factor F[1] has zero loadings on Vocabulary and Word Fluency, 
while the second factor F[2] has zero loadings on both Spatial and Reasoning. 
The model fit is certainly acceptable (Z= .84), and the loss due to the added 
zero restriction is trivial (Zd = .77). 

This pattern is an elementary way to represent a biometric basis for the 
theory of "fluid and crystallized intelligence" (Cattell, 1982; Horn, 1986; Loeh- 
lin and Vandenberg, 1968; McArdle et al., 1981). The interpretation of the 
MLE factor loadings would lead us to define factor F[1] = Gf (fluid) and factor 
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F[2] = Gc (crystallized), except for the odd behavior of the PMA Number mea- 
sure. The biometric component estimates suggest that the small independent 
environment Ei component is the only specific component of the Gc factor not 
already accounted for by Gf. 

The last model, labeled "Simple-II," uses the same basic model but forces 
the Number variable to be aligned with one factor F[1]. The fit of this model 
is necessarily the same and the behavior of the MLE improves, but large standard 
errors suggest this alternative rotation is actually much worse. For these reasons, 
we think the model labeled "Simple-I" is the best restricted psychometric model 
for these data. 

Statistical Model  Comparisons  

In any structural modeling experiment we need to address the question of 
goodness of fit of alternative models. In a mathematical sense our two main 
models are nested, so we can prescribe statistical rules to describe the degree 
to which the two models fit the same manifest covariances. If we proceed to 
define a priori  significance levels, we can rigorously test the null hypothesis 
(Ho) of the adequacy of any model subset against the alternative (Ha) of any 
model superset. Unfortunately, the traditional LRC model comparison logic is 
limited in many ways, and we typically use other less formal devices to judge 
the key differences between alternatives (JSreskog, 1969, p. 201; McDonald, 
1985, p. 55; Loehlin, 1987, pp. 215-216). 

In Fig. 4 we have plotted the LRC as a function of the DF for most of the 
models presented earlier. To distinguish the two approaches, biometric model 
fits are listed with an x, whereas psychometric model fits are listed with an o. 
We have also fitted a regression line to these indices where LRC[#] =B �9 DF[#] 
for all models (except the null models) so the resulting B = 2.08 reflects the 
empirical LRC penalty for each DF (McArdle, 1988). Models below the line 
are good in the sense of giving a good fit for each DF, whereas models above 
the line give a bad fit. The model labeled #B1 + U is farthest below this line, 
so this is the best-fitting model. This model was also chosen by Martin and 
Eaves (1977) using rigid statistical criteria. 

But Fig. 4 also shows that the model # B I + U  is not much better than 
several others. For example, the psychometric model # P 2 + S  has a similar 
benefit in LRC given its DF, so it may be a reasonable choice as well. The 
overview in Fig 4 is important because the psychometric model # P 2 +  S has 
two common factors, all biometric influences, and no uniqueness structure. This 
means that psychometric factor model #P2  + S is not nested within biometric- 
factor model #B1 + U. These results are limited to the narrow subspace defined 
by models fitted, but other models and indices demonstrate similar comparisons. 
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Fig. 4. The relative goodness of fit of various multivariate PMA models. 

From these results we conclude that the fit of the one factor biometric and the 
two factor psychometric models are indistinguishable. 

DISCUSSION: MERGING PSYCHOMETRIC AND BIOMETRICS 

In this paper we compared some structural models for multivariate twin 
data. In doing so we reexamined aspects of a traditional biometric factors model 
(e.g., Martin and Eaves, 1977) and elaborated a different psychometric factors 
model (e.g., McArdle et al. ,  1980). In our alternative model we directed the 
investigator's attention to genetic and environmental influences on a common 
factor derived from the observed measures. We also extended this model to 
include multiple factors, 

Methodological Issues 

The consumer of these models may wish for a nontechnical, even somewhat 
intuitive, treatment of the relative virtues of each model alternative. Figure 2 is 
probably the most direct or clearest comparison we can make. The first differ- 
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once that strikes the eye is that the psychometric factors model contains a latent 
factor, F, that is assumed to produce the phenotypic manifestations. Multiple 
latent variables, F[1] and F[2], represent realistic organizational principles that 
are common and useful. If one is interesting in drawing inferences about such 
latent factors per so, our psychometric approach seems preferable. This may not 
always be the case. 

Our figures also readily show benefits of the biometric factors model. This 
model allows a more differentiated view of genetic covariation. A pattern of 
loadings of each manifest variable on the genetic factor is obtained, in compar- 
ison to the one genetic loading in our one factor model. Thus, the degree of 
attractiveness of the notion of a "genetic" factor might influence choice of 
models. The notion of a psychometric factor, as in our model, needs little 
discussion. 

A second difference between these models comes because the psychometric 
factors model specifies fewer parameters for comparable models (e.g., #B1 vs. 
#P1,  #B2  vs. #P2 + 0). In this sense, the psychometric factors model is more 
parsimonious. Parsimony is a traditional philosophical criterion for evaluating 
models, and it has often been relied upon in biometrics, so it is relevant here. 
The main differences arise because the biometric factors model assumes a pro- 
portionality of pattern but orthogonal scores, whereas we assume proportionality 
of pattern and identity of scores. To wit, the one factor version of the biometric 
factors model actually includes three different factors, whereas the one factor 
version of the psychometric factors model has only one common factor. The 
greater parsimony entails more restrictions so psychometric factors are a testable 
alternative to biometric factors. 

The alternative biometric and psychometric factors models have similar 
mathematical and statistical properties. Both multivariate models have advan- 
tages over the more traditional univariate models because they allow the ex- 
amination of reliable covariation and the direct examination of hypotheses about 
independent environments Ei. There are other advantages over univariate models 
as well. 

The main d~fferences arise because these two models represent restricted 
variations on particuIar first order and second order loading matrices. These may 
be considered by some to be subtle variations but they can be substantively 
important. In some cases the biometric structuring of individual differences can 
help the psychometrist define the important factors of interest, and this leads to 
devices for testing biometric ideas. We may, for example, desire factors to have 
"simple structure" in the biometric patterns, or more generally, we may desire 
factors that have "invariance over groups" in the biometric patterns. The two 
mathematical models emphasized here may be considered as extreme cases in 
the rotation of second order factors. In other substantive problems, alternative 
theoretical rotations may be more meaningful. 
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Substantive Results  

There are several conceptual differences in interpretation of our psycho- 
metric factors and those in the purely biometric case. For example, in our 
psychometric factors model the pattern of factor loadings can be said to be 
" 'pul led" toward values that allow the model organization of the genetic and 
environmental paths to fit as well as possible. In contrast, a single factor model 
with no biometric structuring has a different fitting function and, hence, a po- 
tentially different set of factor loadings. It follows that the numerical results of 
different latent factor organizations can be substantially different. 

The empirical results of our PMA analyses offer only a limited view of 
these issues. We limited this investigation by starting with only five manifest 
variables. No doubt these five subscales are reliable indicators of primary abil- 
ities, but they may not provide the broad measurement basis needed for testing 
higher order hypotheses. Nevertheless, these illustrations suggested a psycho- 
metric model with two oblique measurement factors and second order biometric 
factors that fit about as well as the biometric model with three orthogonal bio- 
metric factors. The two psychometric factors obtained are highly correlated and 
some estimates are ill defined. Nevertheless, substantive interpretations can be 
easily described: 

The results of the present investigation also bear some relevance to Catteli's hy- 
pothesis of two kinds of intelligence, "fluid" and "crystallized" (Cattell, 1943, 
1963). This hypothesis holds that two "general intelligence" factors exist, strongly 
correlated but functionally distinct, the one reflecting innate ability, the other the 
effects of educational and cultural processes. These factors are said to be best mea- 
sured by nonverbal and verbal tests, respectively. In some ways the present study 
offers more direct support for such a notion than the data that Cattell himself presents, 
although it should be noted that the hereditary factor in this study is a quite general 
one, and by no means represented only or chiefly in nonverbal tests. (Loehlin and 
Vandenburg, 1968, p. 276) 

In the original statements of Gf/Gc theory, Gf abilities, reflecting thinking, 
reasoning, and neurological efficiency, were assumed to be highly heritable. In 
contrast, Gc abilities, reflecting knowledge, learning, and acculturation, were 
considered less heritable. Our current results show that both Gf and Gc abilities 
have substantial heritability. These results are consistent with most recent the- 
oretical and substantive treatments of this issue (Cattell, 1982; Horn, 1986; 
McArdle et al., 1981). These limited empirical results also give direct evidence 
for the earlier implications of Loehlin and Vandenberg (1968) (also Gotdberger, 
1977; Royce, 1979; and others). 

Model ing  Extens ions  

There are many other extensions of the psychometric factors model. In our 
initial presentation with twin data on childhood temperament,  we proposed that 
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latent psychological constructs be derived in the same procedure in which genetic 
and environmental parameters were estimated, and we decomposed latent lon- 
gitudinal paths biometically (McArdle et al., 1980; see Goldsmith, 1984, p. 
407). Next we applied the model to all 15 PMA subtests and demonstrated how 
the genetic and environmental paths could be estimated for latent psychometric 
factors of the first and second order (McArdte et  at., 1981). In this paper we 
estimated both biometric factors and psychometric factors models at different 
levels of measurement within the same model (cf. McArdle and Goldsmith, 
1984; Horn, 1986). We also have shown how the basic ideas of the psychometric 
model organization allow for some dynamic growth models for longitudinal data, 
and we used this organization to fit twin models to both means and covariances 
(McArdle, 1986). 

We have not dealt here with several issues of practical concern. For ex- 
ample, the efficiency of structural equation specification, the often unwieldy 
behavior of the numerical fitting algorithms, and the use of formal hypothesis 
testing. These topics all deserve further consideration. These concerns are even 
more apparent when working with higher-order latent variable structures, and 
these issues may be easier to study using algorithms other than LISREL (e.g., 
Fraser, 1979). We also think our basic model, and our representation of it using 
LISREL (in the Appendix), can be valuable for further biometric investigations 
(Carey, 1986; Neale and McArdle, 1990). In any form, formal models help us 
understand the "'hidden" complexity of "simple" correlational approaches (Eaves 
et at., 1978; McArdle and Gottesman, 1987), and in this sense, further research 
on structural equation models is a practical necessity for biometrics. 

Multivariate structural equation techniques allow us to define latent factors 
by both psychometric measurement patterns and by biometric patterns. These 
models allow new combinations of psychometric and biometric principles. Psy- 
chological substance or well-defined research goals may formally prescribe one 
organizing principle over the other. In one experiment the psychometric factors 
measurement model may be useful, while in another experiment the biometric 
factors model may be better. We think that a diversity of models is necessary 
for the long-term fitness of both biometrics and psychometrics. 
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APPENDIX 

Table [A1]: A LISREL-7 Program Input for General Multiple Factors Models 

Multivariate PMA Data: Simple I Psychometric Factors: Group 1 = MZ Between 
DA NG = 4 NI = 5 NO = 123 MA = CM 
LA 
'mzb-n','mzb-v','mzb-s',' mzb-w',' mzb-r' 
CM SYM 
3603.41 
1521.73 2047.49 
1449.47 712.91 4059.80 
889.60 837.76 304.36 1161.32 

1034.20 959.43 453.67 937.22 
Model NY=5 NE= 13 BE=FU,FI PS=SY,FI LY=IZ TE=ZE 
LE 
'mzb-Un','mzb-Uv','mzb-Us','mzb-Uw','mzb-Ur' 
'FI ' , 'F2', 'Ga-I ' , 'Es-I ' , 'Ei-I ' , 'Ga-2', 'Es-2', 'Ei-2'  
MA BE[effects-or-arrows] 
0 0 0 0 0 1 1 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 1 1 0 0 0  
0 0 0 0 0 0 0 1 1 1 1 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0  
MAPS [proportions-or-slings] 
1 
O1 
0 0 1  
0 0 0 1  
O O 0 0 1  
0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1  
0 O O 0 O O O O 1  
0 0 0 0 0 0 0 0 0 1  
O 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 1  
ST 1 AL[simple-structure-first-order-loadings] 
F R B E 1 6 B E 3 6 B E 5 6  
FR BE 17 BE 27 BE 47 
ST 1 AL[identifiable-second-order-loadings] 
FR BE 69 BE 610 
FR BE 712 BE 713 
FR BE 79  BE 710 BE 711 
ST 1 AL[unstructured-zero-order-uniqueness] 
FRPS 1 1 P S 2 2 P S 3 3 P S 4 4 P S 5 5  
ST 50 PS 11PS  22  FS 33 PS 44  PS 55 
ST 1 AL[biometric-second-order-proportions] 
S T 1 . 0 P S 8 8 P S 1 1 1 1  
ST 2 . 0 P S 9 9 P S  1212 
ST 1.0 PS 10 t0 PS 1313 
OU ND = 3 NS TO ALL add = off 
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Table [.all] (Continued) A LISREL Program Input for General Multiple Factors Models 

%%%%% Group 2 = DZB 
DA NO = 75 
LA 
'dzb-n', 'dzb-v', 'dzb-s', 'dzb-w', 'dzb-r'  
CM SYM 
3942.48 
2160.52 2161.06 
2248.69 1683.94 4595.79 
1282.17 1062.12 877.62 1064.25 
1425.28 1199.44 1084.55 682.36 1064.74 
MOdel BE = IN PS = PS LY = IZ TE = ZE 
LE 
'dzb-Un','dzb-Uv', 'dzb-Us', 'dzb-Uw','dzb-Ur' 
'FI ' , 'F2 ' , 'Ga-I ' , 'Es- t ' , 'E i - I ' , 'Ga-2 ' , 'Es-2 ' , 'E i -2 '  
S T 1 . 5 P S 8 8 P S  11 11 
ST 2 . 0 P S 9 9 P S 1 2 1 2  
ST 1.0 PS 10 10 PS 13 13 
O15 
Group 3 = MZW 
DA NO = 124 
LA 
r mz'w-n' ~ 'mzw-v' ~ 'mzw-s r, rmzw-w' ~ 'mzw-rr 
CM SYM 

372.74 
- 1 . 4 8  161.25 

1.36 18.13 449.28 
-2 .57  58.41 28.26 196.90 
30.04 69.88 13.66 43.60 126.89 

Model BE = IN PS = PS LY = IZ TE = ZE 
LE 
'mzw-Un', 'mzw-Uv', 'mzw-Us' , 'mzw-Uw', 'mzw-Ur'  
'FI ' , 'F2 ' , 'Ga-I ' , 'Es- I ' , 'E i - I ' , 'Ga-2 ' , 'Es-2 ' , 'E i -2 '  
ST . 0 P S 8 8 P S  1111 
ST . 0 P S 9 9 P S  1212 
ST 1.0 PS 10 i0 PS 13 13 
OU 
Group 4 = DZW 
DA NO = 76 
LA 
'dzw-n', 'dzw-v', 'dzw-s' , 'dzw-w', 'dzw-r '  
CM SYM 
1183.74 
242.25 325.00 
464.66 111.14 1110.50 
307.51 198.69 313.88 478.80 
226.77 132.65 183.25 1t4.34 177.84 

Model BE = IN PS = PS LY = PS TE = ZE 
LE 
'dzw-Un', 'dzw-Uv', 'dzw-Us', 'dzw-Uw', 'dzw-Ur' 
'FI ' , 'F2 ' , 'Ga-I ' , 'Es- I ' , 'E i - I ' , 'Ga-2 ' , 'Es-2 ' , 'E i -2 '  
ST . 5 P S 8 8 P S  11 11 
ST . 0 P S 9 9 P S  12 12 
ST 1.0 PS 10 10 PS 13 13 
OU 
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reports of this research. We especially thank John Loehlin and Nick Martin for 
their corrections and encouragements. 
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