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II. Theoretical Justification 
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We analyze here a multigrid algorithm used for solving iteratively the algebraic 
system resulting from the approximation of a second-order problem by spectral 
or spectral element methods. The analysis, performed here in the one-dimen- 
sional case, justifies the good smoothing properties of the Jacobi preconditioner 
that has been presented in Part I of this paper. 

1. INTRODUCTION 

Spectral element methods are high-order methods that combine the 
flexibility of finite-element methods with the "infinite-order accuracy" of 
spectral methods. The domain of computation is decomposed into some 
subdomains--the elements (generally these are deformed parallelotopes)-- 
and the exact solution is approximated by a piecewise polynomial of high 
degree. The spectral element method differs from other spectral methods 
using domain decomposition techniques (patching methods) by the way 
the matching conditions are handled. These are, as in the finite-element 
method, implicitly taken into account by the variational statement of the 
discrete problem. This allows for more flexibility with no loss of the 
spectral accuracy (see, e.g., Patera, 1984; Maday and Patera, 1989; 
Funaro, 1986). When the algebraic equations resulting from this kind of 
discretization are obtained, the problem that remains is to solve, in an 
efficient way, the algebraic system. 
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The interest of domain decomposition technique is to fraction the 
computational task so as to yield smaller problems and to use parallel 
computers, for instance. If the value of the approximate solution were 
known on the various interfaces, the problem would be very simple since 
it would results in the resolution of as many disconnected problems 
as the number of elements. The main difficulty is that this value is not 
known; hence a technique known as the iteration by subdomains has 
been proposed in the literature (Funaro, Quarteroni, and Zanolli, 1988; 
Quarteroni and Sacchi Landriani, 1988) to discover this value iteratively. 
Another approach is to try to invert the whole problem by not working 
iteratively on each subdomain. This method (Maday and Patera, 1989; 
Fischer, Ronquist, Dewey and Patera, 1988; Ronquist, 1988) consists in 
reducing iteratively the residue at the same time on every subdomain. The 
global method used can be based on a conjugate gradient algorithm or 
another iterative procedure. 

In Part I of this paper, E. M. Ronquist and A. T. Patera (1987) have 
presented some results concerning a new multigrid method for the resolu- 
tion of the algebraic system resulting from the approximation of a second- 
order P.D.E. by spectral or spectral element method in the one-dimensional 
domains. The very simple idea of using the Jacobi preconditioner as a 
smoother for the iterative multigrid algorithm appears to be a very good 
one. Indeed, the numerical properties of this smoother seem to surpass all 
expectations; the reduction rate of each V-cycle appears numerically to be 
independent of the discretization parameters. 

When iterative techniques are used, it is important to understand why 
these methods converge in order to foresee the generalization and the 
ability of the methods to be adapted to more than test problems. Here we 
propose an analysis of this phenomenon and provide the justification of 
these very good properties. Many general convergence proofs exist in the 
literature for the numerical analysis of the multigrid technique; among 
them let us cite Maitre and Musy (1984) and Bank and Douglas (1985). 
We use here the abstract framework developed by Bank and Douglas 
(1985) that fits exactly the numerical conclusion of Ronquist and Patera 
(1987) concerning the optimal choice of the smoothing operations. 

To our knowledge, the numerical analysis of the convergence for the 
multigrid algorithms used in spectral type techniques is somehow empty. 
The main reason is certainly that the nice analysis that can be done 
requires a variational framework, and the awareness that the spectral 
methods are, exactly or very close to, the variational approach is not so 
old. The other reason, perhaps, is that the previous multigrid techniques 
applied to spectral type methods (Zang, Wong, and Hussaini, 1982, 1984) 
used a finite difference preconditioner as a smoother and a Chebyshev 
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framework. The convergence, in this case, is not so brillant as in the 
present approach and a priori more related to the good properties of 
preconditioner of the finite difference operator. Besides, the variational 
formulation involves a nonsymmetric form that makes the analysis much 
more difficult. 

The paper is organized as follows: in Section 2, we recall the theory of 
Bank and Douglas (1985) in a form adapted to our analysis. In Section 3, 
we first explain on the test example of the Galerkin spectral approximation 
of the homogeneous Poisson problem the fundamental reasons of optimal 
properties of this multigrid method. The tools are based on the Jackson 
inequality and some refined version of the approximation properties of the 
L2-projection operator. In Section 4, we generalize the analysis to the case 
of the spectral element approximation. We compare in each section the 
results obtained by the theory with the numerical results presented in 
Ronquist and Patera (1987). The last section, Section 5, deals with the one- 
domain multigrid technique when applied to a nonconstant second-order 
problem. 

The generalization of these results to multidimensional problems will 
be presented in a future paper. 

2. P O S I T I O N  OF THE P R O B L E M  A N D  ABSTRACT T H E O R E M  

2.1. Generalities on Variational Multigrid Techniques 

In this subsection, we first recall the theory developed by R. Bank and 
C. Douglas to analyze the convergence rate of the multigrid algorithm for 
solving the linear algebraic system that arises from the numerical 
approximation of elliptic partial differential equations. We present it in a 
version that we shall use afterwards. First of all, let J f  be a Hilbert space, 
a be a continuous, elliptic, symmetric, bilinear form, and g be a continuous 
linear form, both defined over .~. The problem to be solved is to find 
u ~ J f  such that 

Vv e ~t ~, a(u, v) = g(v)  (2.1) 

For the numerical resolution of this problem, we first introduce a sequence 
of finite-dimensional subspaces ~1 c ~'2 ~ ""  c 4 of ~ ;  then consider 
the problem: Find ujs J/gj. such that 

Vv ~ J/g;, a(u;, v) = g(v)  (2.2); 

The basic idea for solving problem (2.2) with a multigrid algorithm 
consists in first defining a simple problem over the largest spaces Jgj and 
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solving it, then correcting the residual derived from the solution of this 
simpler problem when plugged into problem (2.2)j by solving problem 
(2.2)k for lower values of k < j. The first step is the most important one and 
relies on the good choice of continuous, elliptic, symmetric, bilinear form 
b, called smoother, that represents a in some sense and is easier to invert. 
Let us suppose that we have only two grids, the coarse one (i.e., d//1) and 
the fine one (i.e., dk2, a n d j  = 2). The two-grid procedure, with m smoothing 
at each cycle, consists of 

1. m/2 steps of smoothing where we solve m/2 times a problem like the 
following one: Find 5e<p in rig2 such that 

Vv~J/g2, b ( 5 ~  (2.3) 

2. One step of coarse grid correction where we solve only once a 
problem like the following one: Find (~ in ~1 such that 

Vv �9 ddl, a(Cp, v) = g(v) - a(<p, v) (2.4) 

and define c~0 = q~ + ~b. 

3. m/2 steps of smoothing as in (2.3). 

We consider here only two grid levels, for the sake of simplicity of 
notation; but as in Bank and Douglas (1985), we would consider the entire 
W-cycles based on more than two levels. If the initial guess for the exact 
solution u is u ~ after one V-cycle like the one described previously by the 
three steps 1-3, the resulting solution is u 1 and can be expressed like a 
function of u ~ as follows: 

u ~ -- ~m/2cgspml2(uO) (2.5) 

SO that, after the rth V-cycle, the solution is 

urn_ [,.~prn/2f~m/2"]r (U O) (2.6) 

Moreover, it is very simple to note that if u is the exact solution, then 

(gu=u  and oWu=u 

so that, if e r denotes the error after the rth V-cycle, we derive from (2.6) 
that 

e r =  [~m/2(~.,Gom/2] r (C 0) (2.7) 

Note that the equations (2.3) and (2.4) define affine operators cg and 5 ~ but 
in (2.7) we can consider these operators as linear ones since they operate 
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on differences e ~ and er; from now on, we shall consider these operator as 
linear ones while keeping the same notation. 

As noted in Bank and Douglas (1985), of importance is the analysis 
of the spectrum of the following eigenvalue problem: Find ~u in ~'2 and 2 
in ~ + such that 

VvE ~2 ,  a(~,v)Z2b(f t ,  v) (2.8) 

where b has been scaled so that the maximum eigenvalue )~max is equal to 
1. Let us order the eigenvalues in increasing order 0 < 2, ~< 22 ~< .. .  ~< 2e = 
irma,= 1 (where P is the dimension of ~'2) and choose relative eigen- 
functions g~l, g~2 ..... g~p. Of equal importance in the analysis is also the 
compatibility between the coarse space ~(1 and the space spanned by the 
first eigenvectors. 

More precisely, under the following hypothesis: 

H the space J/g1 coincides with span { gt I , ~2 ..... gtp } 
(where p is the dimension of ~'~ ) 

one can prove the following theorem 

Theorem 1. Under the hypothesis H the error after the first V-cycle 
verifies 

a(e 1, e I ) ~ (1 -- 2p+ 1) 2m a(e ~ e ~ 

Proof First of all, let us recall that the eigenfunctions g t ,  n = 1,..., P, 
form a basis of ~2  that is orthogonal for both the forms a and b. Let us 
span e ~ in this basis; we get 

P 
^0 ~ n  e ~  2 en 

n=1 

then, due to (2.3) and (2.8), we derive that ~m/2(e~ satisfies 

P 
~m/2(e~ = ~ (1 - 2,) m/2 ~ ~ ,  (2.9) 

n = l  

From hypothesis H, we then derive that the operator ~ truncates the 
previous spectrum so that 

P 
~0 ~r ~ = ~ (1 --,~.)m/~ e. % 

n = p + l  

then the smoothing procedure diminishes once more the spectrum of the 
error as follows: 

P 

= = - 2 . )  e.~gn el a~'m/2c6a~'~m/2(dO) 2 (1 m ~0 

n = p + l  
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We deduce now from the orthogonality of the ~u that 

P 
a(el, e l )= ~ (1 2,)2r~ .02 - (en) a ( ~ n ,  ~n)  

n=p+l  
P 

~< (1 -- ;~p+ 1) 2m E n0 2 (e,) a ( ~  n, ~n) 
n - - p + 1  

P 
~<(1-2p+,)  2~ ~ (O~ 

n=J 

= (1 - 2p+ 1) 2m a(e ~ e ~ 

Remark 1. Note that the previous theorem is very simple and is a 
trivial extension of the analysis of the multigrid procedure in the Fourier 
space. Note also that if the space Jg~ is not so well chosen, for instance if 
it coincides with span{~e_p+l ,  gte p+2 ..... g/e}, then the multigrid 
procedure would not converge rapidly since, after the first V-cycle, we 
obtain 

P - - p  

~'Qpm/2(~~ = 2 (1 - -  2 n )  m 8 n nO ~ir n 

t i - -1  

and the error remains important since 2j can be very small. In fact, the 
method has exactly the same properties as the plain Jacobi algorithm. 

It turns out from the previous analysis that the multigrid procedure, 
when applied under hypothesis H, is degenerated since only one V-cycle is 
needed and m is the only important factor of convergence. So in the non- 
trivial applications where hypothesis H is not verified, we have to measure 
the actual situation between the hypothesis H and the situation explained 
in Remark 1. This can be explained as follow: the "rough" eigenmodes 
[Bank and Douglas (1985) denote this way the ~Pn with 2n close to 1] are 
damped during the smoothing procedure [-their components are multiplied 
by a factor ( 1 - 2 n ) ]  while the "smooth" modes (corresponding to small 
2n) remain almost constant. Under the hypothesis H these are completely 
erased during the procedure, but if we are not in this optimal situation, 
they can be only damped during this step. 

The general analysis proposed in Bank and Douglas (1985) allows for 
measuring the position with respect to both hypotheses. Let us recall the 
basis of their proof since we shall extend it in Section 5. To this purpose, 
they introduce the various norms, defined for any real index 0, as follows: 

Veer4, IIlr o=[ ~ )~O(p2] I/2 (2.10) 
n=l 
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They introduce also the function f 

f(a,b)=a~bb(a+b) (a+~)= 

Then we derive that 

let us write now 

sup ( 1 - x ) ~ x  ~ 
x ~  [ 0 , 1 ]  

V~o e ~/tz, Vz, 0~<~<0,  

0 ~ 2  I I l ~ m / 2 ~ o l t l o  = (1 - 2.)m 2~'p~ 
n 1 

<.f(m/2, (0 - z)/2) I[1~o111~ 

3 2 9  

(2.11) 

(2.12) 

III ~m/2~p III ~ = a(C~'~m/efP, ~ff dc~m/2 ) = a(r ~m/ 2q  ), c~S'~m/2q ) -- (0 ) 

= a (C~m/2(p ,  ym/2 (p )  

~< 1[l~6em/2~~ a-B IllY'/2~~ ~ .8  

L*~J[2 Ill~'llll J II1~m/2~01111 IllYm/2~~ 

so that we derive 

[ IIl~,lll ~1 +~ (2.13) IIICgY'/2~0111, ~< sup i1[ ~ II1~m/2~o1111 
LO E J-/2 II1~01 

which is valid for any/~ > 0; we deduce from (2.12) that 

III Y ' /2~se" /% III1 < f(m/2, fl/2) III ~sem/2~o III1 - 

<.f(m/2, ill2) ]l[~5~m/2~olll 1 [ sup 
II1~,111 _lj . ]  

L , ~  IJlrgOllll J 

<<.f(m/2, fl/2) [ sup 
~ ~12 

~ f(m, ~) I sup 
I[I(~,lll 1_~] 2 

Defining ~ ' ~  as follows: 

J r  = {q~ e J/d2, such that V~, e ~1 ,  a(rp, ~,) = 0} 

(it coincides with the range of Z) and by minimizing the right-hand side 
over fl, they state the following theorem: 
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Theorem 2. 
for any ~o ~ ~ F 

then 

where 

Assume there exists a constant ~ ~> 1 and c~ > 0 such that 

It1~o1[11_= ~ ~:=/2 IIIcPll41 

a(e 1, el)~ya(e ~ e ~ (2.14) 

2 m  

7 = if m ~< c~(x- 1) 

y = [ ~ f ( m ,  c0] 2 if m > e ( ~ c -  1) 
(2.15) 

2.2. Formulation of the Spectral Element Discretization 

Let us turn now to the position of the problem. We consider here the 
simple test problem over the interval A = ] -  1, 1 I-: Find u such that 

- u x x = f  overA (2.16) 

provided with homogeneous Dirichlet boundary conditions 

u ( - 1 ) = u ( 1 ) = 0  (2.17) 

where f is a given force. This problem is very simple, but it allows a state- 
ment of the basic features of the multigrid algorithm and an understanding 
of why the method works. 

The spectral element method for approximating the solution of (2.16) 
consists in discretizing the space of acceptable functions by a subspace of 
piecewise polynomials. More precisely, given a pair h = (K, N), we first 
break the interval A into K disjoint subintervals of comparable sizes 

K 

A = U Ak' Ak= ]ak, ak+bk[ 
k = l  

then, we choose for the space of approximate functions a subspace X~' of 
H~(A) consisting of all piecewise polynomials of degree ~<N, 

xN= yU ~ H~(A) (2.18a) 

where 

N Yh = {rp such that (PlAk ~ P(Ak)} (2.18b) 
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and Pu(Ak) denotes the space of all polynomials of degree ~ N  on A~. We 
remind that contrary to the finite element approximation, the convergence 
is achieved by increasing the degree of the polynomials N and not refining 
the mesh. 

The discrete problem starts from the variational formulation of 
problem (2.16), (2.17)--that is, find u in H~(A) such that 

VvEH~(A), a(u, v)= (f, v) (2.19) 

where (., .) denotes the L2(A)-scalar product and a(., .) denotes the 
following bilinear form defined over Hi(A) as follows: 

vq,, 0 E/-/a(a), a(q,, 0) = (q,., ~,~) 

Then we construct the numerical scheme by discretizing with Gauss- 
Lobatto quadrature formulas the various integrals present in (2.19) and 
restricting the space of test functions to X N. This results in the following 
problem: Find uh s X~ v, such that 

w~ e );2 ~, a20L(". ,  v~) = (f, U h ) h ,  G L  (2,20) 

where the discrete forms are defined as follows: 

K N 

v~o, O E YL (~o, N 
k = l  n = O  

Wp, 0 E x L  a~,oL(~0, 0) = (~0x, N 

Here, the p~, and the ~ are the weights and nodes of the Gauss-Lobat to-  
Legendre formula with N +  1 points and the collocation points ~..k are 
defined by ~,~,k=ak+(~'+l)bJ2.  We recall here that the integration 
formula is exact on P2N 1 SO that, contrary to the appearances, a N does -- h, G L  

not depend on h nor on N since aNh, oL---- a (seel e.g., Maday and Patera, 
1989). 

The algebraic system that has to be solved is derived by choosing 
the values of the unknown function uh on the collocation points and 
representing uh in the basis of the interpolant basis hk, n defined as follows: 
h~,. is the only element of y~V such that 

V~t,,,, hk, n(~l,m) --- 6 k l 6 . , ~  (2.21) 

The matrix system that has to be solved can be written as follows: Find 
k, rt u = (u h ) such that 

Au = g (2.22) 
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where A is the stiffness matrix with entries equal to 

K N 

(2/b~) ~ '  ~ p,,k[dhi, , /dxdh;,m/dx](~,k) (2.23) 
k = l  n = 0  

with P,,,k = pnbk/2 and ~ '  denotes the direct "stiffness summation," while g 
is related to the forcing term. We refer to Ronquist and Patera (1987) and 
to Maday and Patera (1989) for more details on the derivation of this 
matrix. 

This numerical method is proved to work very well in a great number 
of interesting problems that include, for instance, the full Navier-Stokes 
problem (see, for instance, Maday and Patera, 1989; Maday et al., 1988, 
1989; or Ronquist, 1988) and is numerically competitive and implemen- 
table on a parallel medium grain paradigm (see, for instance, Fischer et al., 
1988). 

Let us turn now to the multigrid algorithm for solving iteratively 
problem (2.22). As explained in Ronquist and Patera (1987), nested spaces 
are related to spaces of polynomials with lower degree X~ (say M =  N/2) 
and the smoother is simply the Jacobi preconditioner B that is propor- 
tional to the diagonal part of the matrix A and normalized in such a way 
that the highest eigenvalue of B- tA  is 1. We shall analyze in the two 
following sections the properties of this preconditioner and explain why the 
numerical method works so well as presented in Ronquist and Patera 
(1987). 

In this paper, we shall use two grids only, though the analysis can be 
performed with no extra difficulty other than comprehension, and we shall 
u s e  

J[1 = X~/z and J//2 = X~ v 

The problem enters in the general theory of Bank and Douglas (1985) since 
the numerical problem involves bilinear forms and matrices that do not 
depend on h. 

3. ANALYSIS OF THE CONVERGENCE OF THE MULTIGRID 
ALGORITHM IN THE CASE OF ONE ELEMENT 

As announced in the title, we shall assume for the moment that the 
discretization is applied on only one domain to problem (2.16). For the 
sake of simplicity, we shall drop out the second index that corresponds to 
the subelement characterization in the notations. The situation is simple 
here as soon as we have explained the properties of the diagonal matrix, 
but this simple example permits enhancement of the main features that 
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allow for a rapid convergence of the algorithm. The problem can be written 
as a pure collocation scheme as already noted in Maday and Patera (1989). 
Indeed, by taking vh = hn for n = 1 ..... N -  1, in (2.20) and using twice the 
exactness of the Gauss-Lobat to  formula, we derive 

a~.GL(Uh, h , )  = a(uh, hn) = - f  A u~(x) hn(x) dx = --(U'h', h~)h, GL = --U~'(~n) pn 

besides we note that 

h N (f, ,)h, GL = f(~n) P, 

SO that the problem actually verified by Uh is as follows: Find Uh in X u such 
that 

Vn, n = 1,..., N -  1, -u~ ' (~n)=f(~n)  

This consists in a pure collocation procedure to solve the initial problem. 
In order to analyze the multigrid algorithm, let us first compute 

exactly the diagonal part of the stiffness matrix; that is here simply the 
matrix with entries equal to 

N 

A ij 2 , N t N = p,hi(~n ) hy(~n ) for i, j = 1,..., N -  1 
n = 0  

A o j = A N j = 0  

Owing to the exactness of the Gauss-Lobat to  formula, we easily obtain 
that, for i =  1,..., N -  1, 

Ai~= f A [h~(x)]2 dx = --f A h~'(x) h , (x)  dx 

and here again, by using the exactness of the Gauss Lobatto formula, we 
derive from (2.21) 

N 

-Pihi (~ )  A ii ~ E tt N N tt N p.h~ (~ . )  h , (~.  ) = 
n = 0  

As already derived in Gottlieb, Hussaini, and Orszag [1984, formula 
(7.4)], we have 

L e m m a  1. The diagonal of the stiffness matrix verifies 

N ( N +  1) 
Aii = Pi 3(1 - (~?)2)  (3.1) 
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Proof Let us drop out in this proof the superscript N. First of all, we 
note that, from the definition (2.21) of hi, we have 

N 1 2 N--1 
h i ( x  ) : ~ I / =  1 ,Sr  x - -  ~ j ) ( x  - -  1) ~v 1 2 =c~i l - I  ( x - ~ j ) ( 1 - x 2 )  

I-Ij= 1, j . i (~i--~j)(~i--1) j=l  
jv~i 

where ~i is a nonzero constant. It is well known (see, e.g., Davis and 
Rabinowitz, 1985) that the internal nodes of the Gauss-Lobatto formula 
verify 

N 1 

L'N(X) = c f  ~I ( x -  ~s) (3.2) 
j=l 

where CN is a nonzero constant. Hence, we can write 

(X - -  ~i)  h i ( x )  ~--- CN 1~i(  1 - - X 2 )  L'N(X) = 5i(1 --x 2) L'N(X) 

and after taking the derivative of both sides, we obtain 

(X --  ~i)  h ; ( x )  -t- h i ( x  ) = ~ i ( d / d x ) [  (1 - x 2) L~v(X)] 

Let us recall now the eigenfunctions property verified by the Legendre 
polynomials (see, e.g., Davis and Rabinowitz, 1985) 

(d/dx)[(1 - x 2) LN(X)] = - - (N) (N + 1 LN(X ) (3.3) 

we derive that 

(x - ~i) h;(x) + hi(x) = -~iN(N-t -  1) LN(X ) (3.4) 

plugging now x = ~i into this equation yields 

1 = - (~ iN(N+ 1) Lu(~i) (3.5) 

Besides, by taking the derivative of (3.4), we obtain 

( x -  ~i) h~'(x) + 2h;(x) = - ~ i N ( N  + 1) L'N(X) (3.6) 

plugging also here x = ~i into this equality and using (3.2), we get 

h;(r = 0  (3.7) 

Let us multiply now (3.6) by (1--x 2) and take the derivative of the 
resulting equation; we deduce 

( x -  ~i)(d/dx)[(1 - x  2) h;'(x)] + 3(1 - x  2) h ; ' ( x ) -  4xh;(x) 

= ~ iNZ(N+ 1) 2 LN(X) 
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Finally, plugging in one more time x = ~.i, we derive from (3.5) 

3 (1 -42  ) hT(~i)= -N(N+ 1) 

and the lemma follows from the value of Aii. 

Remark 2. Note that, as a consequence of (3.7), we have proved here 
that the Lagrangian at point 4i has its maximum at ~.  

Associated with the matrix A is the bilinear form a, and in the same 
way, associated with B, the normalized diagonal of A can be defined a 
bilinear form b N This will be the smoother of the multigrid algorithm. h, GL" 

Lemma 1 proves that the smoother we have introduced is proportional to 
the bilinear form ~ N  defined for any (p and ~b in X u [which here is h, GL 

simply PN(A)m HI(A)]  

N 

E 0( i)(1 - (3.8) 
i = 0  

It is interesting to note that, owing to the exactness of the Gauss-Lobatto 
~ N  formula, we can rewrite bh, GL in a continuous way since for any ~o and Ip 

in X~ v, the function [~p~b(1-x2) -1] is still a polynomial and belongs to 
P2N_2(A), so that we have 

~GL(~O' ~ ) =  b((P' ~)=fA ~p(x) ~(X)(1 --X 2) 1 dx (3.9) 

Let us now analyze the eigenvalue problem (2.8) or more precisely the 
eigenvalue problem associated to ~. The situation is here very simple since 
we have an exact expression for the solution to this problem. 

Lemma 2. Let us define for any integer n, 1 ~< n ~< N -  1 

~n(x) = (1 - x  2) L'n(x) (3.10) 

then we have 

Vv~X N, a(~n,v)=n(n+ l)~(~, ,v ) (3.11) 

Proof Let us first recall the following standard formula on the 
Legendre polynomial (see, e.g., Davis and Rabinowitz, 1985, Chap. 2, 
Sec. 7) 

V n ~ ,  [(1-x2)L'n(x)]'+n(n+l)L~(x)=O (3.12) 



336 Maday and Mufioz 

Let us compute, for any v in X~ v, 

a(~n , v )=  f ~ ~ ' ( x )  v ' (x)dX= fA [(1--x2) L'.(x)] ' v'(x) dx 

using (3.12) and integrating by parts, we obtain 

( .  ( ,  

a( ~n, v) : -n (n  + 1) JA L,(x)  v'(x) dx : n(n + 1) JA L'n(X) v(x) dx 

=n(n + 1) fA (1--X 2) L'n(x ) v(x) (1- -x  2)-1 dx=n(n  + 1) ~(qu , v) 

this ends the proof of Lemma 2. 

It is important to note that in this simple example the eignvalues 
are well known and, moreover, that the first M of them span exactly the 
space PM+I(A)c~H~(A). As a first consequence, we can state that the 
normalized form that will be used as a smoother is defined as follows: 

X N, b(q~, ~b) = U ( U -  1) ~(~p, ~) = N ( N -  1) fA ~p(x) ~b(x)/(1 - x 2) dx V ~p, 

(3.13) 

We are in the case where the simple hypothesis H of Section 2 is valid, and 
we can state now the following theorem. 

Theorem 3. Let u ~ denote the initial guess in the multigrid algorithm 
applied to problem (2.20) in the case of one element, and u I denote the 
solution obtained after m smoothing and one correction. This solution 
converges to the exact solution u as follows: 

a(u - u l, u -- u I ) = [-1 - ( N +  2)/4(N-- 1)]  2m a(u - u ~ u - u ~ 

Proof This is a simple corollary of Theorem 1 and Lemma 2 since 
lrN/2" it the first ( N / 2 ) - 1  eigenvectors ~ ,  span the coarse space d//l=.~h , 

follows that the eigenvalues of problem (2.8) are n(n + 1 ) / ( N -  1)N. [3 

Remark 3. Note here that the correction on the coarse grid need 
only be done once and that there is no optimal choice for the number of 
smoothings since the convergence is proportional to this number. This is 
actually in accordance with the numerical simulation of Ronquist and 
Patera (1987) as appears in Table 1 of that paper. 

Remark 4. Let us point out the fundamental reasons that give this 
rapidity to the algorithm. They are hidden here owing to the simplicity of 
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the eigenvalue problem. First of all, even if this is not of major importance, 
the matrix B is a good preconditioner of the matrix A. Indeed, the condi- 
tion number of B-1A is order N 2 as opposed to the condition number of 
A, which is order N 3. This will be also the case for other problems and has 
already been noticed by Heinrichs (1988) in a different context for an 
application to conjugate gradient algorithms. This can be viewed as an 
inverse inequality or a Jackson type one since the weighted L2-type norm 
associated to the bilinear form b is compared to the Hl(A)-norm as 
follows: 

V ~ p ~ N ( A ) ~ H ~ ( A ) ,  I[~p II 2.A ~< N(N--  1) b(~p, ~p) (3.t4) 

Secondly, the other property that is very important in the multigrid algo- 
rithm is that the factor ~ as defined in Theorem 2 is also bounded by two 
constants independent of N. Indeed, we can state 

Vrp ~ X~ v such that N ah, OL(q~, V) = 0 for any v in .~vU/2h 

we have 
b(~p, ~p) <~ tc~/Za(~p, r (3.15) 

where the constant rc is bounded by 4 ( N - 1 ) / ( N +  2) as can be derived 
from Lemma 2. 

Let us generalize now the results that we have obtained in this very 
simple situation to the case of a multielement discretization. 

4. ANALYSIS OF THE C O N V E R G E N C E  OF THE MULTIGRID 
ALGORITHM IN THE CASE OF SEVERAL ELEMENTS 

We begin here also by analyzing the properties of the diagonal of the 
stiffness matrix A. We immediately note that there are two kinds of 
diagonal elements in this matrix: those that correspond to internal points, 
i.e., that involve the scalar product 

K N 

Ai.,= ~ '  ~ p , , k [dhJdxdh id /dx ] (~ , , k )  (4.1) 
k = l n  0 

with i = 1 ..... N -  1; and those that correspond to interface points, i.e., that 
involve the scalar product (4.1) for i = 0  or N. The first kind of diagonal 
elements are the same as those involved in the previous section. Indeed, the 
corresponding Lagrangian interpolants vanish at the interfaces and also on 
any subinterval that does not contain the point ~i,t; therefore, from 
Lemma 1, we can state that 

N ( N +  1) 
Vi, i=  1 ..... N -  1, W, l=  1,..., K, A~,t = (2/bt)p~ 

3(1 - (4,) 2) 
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or again, thanks  to a simple change of variable, 

Vi, i=l  ..... N - l ,  W,I=I,...,K, 

N ( N +  I) 
Ai, t = Pi, l 3 (~ i , l -  al)(al+l - ~ i , l )  

For  the interface terms we have the following lemma. 

(4.2) 

Let us compute  the integral on the r ight-hand side of this equation.  First 
we have 

hN(X ) -- 

F r o m  (3.13) we then get that  

(x + 1) 177-~'(x - 4,) 
2 I - I N - 1 Q  /= , ,  -4 , )  

hN(X ) = (X -Jr- 1 ) L 'N(X) /2LN(  I ) 

so that,  after integrat ion by parts,  we obtain  

f A Edhu/dx]2 (x) dx 

= - [2L~v( l ) ] -2  (fA (x + 1 ) L u ( x ) ( d 2 / d x 2 ) [ ( x  + 1)LN(X)]  dx 

- 2L~(1 )(a/dx) F(x + 1 ) L~v(X)] (1)) 

L e m m a  3. Fo r  i =  0 and any ! =  2 ..... K w e h a v e  

A,., = [ (b ,_  1) ~ + ( b , ) - l ] ( N 2  + N +  1)/3 (4.3) 

Proof As already used, the exactness of the G a u s s - L o b a t t o  formula  
gives, for i = 0 and l = 2,..., K (or i = N and l = 1 ..... N -  1, due to the direct 
stiffness summat ion )  

A,,, : fA,-i [dhx" '/dx]2 (r de + fA, [dh~ (r de (4.4) 

A simple change of variables and the use of the symmet ry  of h~v and ho 
yields 

= [ (2 /b ,_  1) qL (2/bl)] ~ [dhN/dx] ~ (4) d~ (4.5) Ai,: 
JA 
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here again, the use of the exactness of the Gauss-Lobat to  formula to 
compute the integral on the right-hand side yields 

fA [dhN/dX]2 (x)dx= - [2L~v(1)] l{(d2/dxZ)[(x + 1)L~v(X)](1) PN 

- (d/dx)[(x+ 1) L~v(X)](1)} (4.6) 

It is an easy matter to note that 

(d/dx)[(x + 1 ) L~v(X)] = (x + 1) L'~(x) + LN(X) 

(d2/dx2)[(x + 1 ) L~v(X)] = (x + 1) LN(X) + 2L~(x) 

from (3.12) written in the form 

(1 - x 2) L ' ~ ( x )  - 2 X L N ( X )  + N(N + 1 ) LN(X) = 0 

we derive that 

L~v(1) = N(N+ 1)/2 

L~(1) = ( N -  1) N(N+ 1)(m+ 2)/8 

L~(1) = ( N -  2 ) ( N -  1) N(N+ 1)(N+ 2 ) (N+ 3)/48 

this gives 

(d/dx)[(x + 1) L~v(X)](1) = m2(x+ 1)2/4 

(dZ/dx2)E(x + 1 ) L~v(x)](1) = ( X -  1) N2(N+ 1) 2 ( N +  2)/24 

Plugging this in (4.6) and using the relation (see Davis and Rabinowitz, 
1983) 

PN = 2 / (N+  1)N (4.7) 

we derive 

f A [dh~v/dx]2 (x) dx-- (N2 + N + 1)/6 (4.8) 

The lemma follows then from (4.5). 
N From (4.2), (4.3), and (4.7), we derive that the bilinear form bh.aL that 

defines the smoother and is associated to the normalized diagonal part of 
A is proportional to the bilinear form ~N defined for any go and 0 in X N h,GL 
as follows [recall (3.8)]: 

K 
~N bh.oL(go, O)=  ~ ~,(go, ~) (4.9) 

l ~ l  

854/3/4-2 
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bz(q~, ~) = p,,lq~(~i,,) ~O(Ci, I)[(~, , , -  al)(al+l - ~id)] -1 
i 1 

+ Po, lCP(~od) IP(~o,l)[( N2 + N +  1)/(bl) 2 ] 

+ pN, lq)(~N,l) @(~N,I)[(N 2 + N +  1)~(hi)2]} 

In the two next lemmas, we shall analyze the eigenvalue problem 
N between a and ~h, GL that will allow us first to estimate the normalization 

factor between b u and ~N h, G L  h, G L "  

Lemma 4. For any ~o in X~, we have 

f A (p'Z(x) dx <~ (4N3 + 2N2 + 3 N -  1)N/3(NZ + N + 1 ~N ) bh, GL(q~, q~) (4.10) 

Proof To any q9 in X~ let us associate the element ~Po defined as 
follows: 

K 

(Po=~P - ~ q~(al)[ho, l+hN, l_~] (4.11) 
/ = 2  

we deduce from (4.11), 

f. ~o'2(x) dx<~(1 +~-l) fA ~o'o:(x)dx 

+ (1 + ~) fA [cp(al) h'od+ ~o(al+ 1) h'u,l] z (x) dx 
/ 

(4.12) 

It is an easy matter to note that the restriction of ~o o to any A~ belongs to 
[PN(AI) c~H~(At) so that the Lemma 2 and a simple change of variables 
yields 

N - - I  

fA qo;2(X) dx <~ N ( N -  1) ~ P~,,q~((i,t)[(~i,t- at)(a, + b , -  ~i,t)] -1 

N 1 
<~X(X- I) ~ 2 Pi, ffP (~i,l)[(~i,l-- at)(at+ b l -  ~i,l)] -~ 

i = 1  

so that q0 o and q~ coincide on the interior collocation points. Using the 
inequality 

( a +  b)2 ~< (1 +c~-1) a2 + (1 + ~ ) b  2 
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Besides, from (4.8), we derive that 

fA  r 2 f d  t 2 [ho,,] (x) dx=, [hu.,] ( x )dx=(N2+N+l ) /3b ,  
l l 

as following the same lines as in the proof of Lemma 3; we get, for any 
N~>2 

I h'o, zhu,,(x) dx <~ 1/3bt 
~A l 

From (4.12) we then deduce 

f ~, q;2(x) dx 

N - - I  
~<(l+c~ 1 ) N ( N - 1 )  Z 2 Pi.,q ) (~i.,)[(~i.,- al)(a,+ b~- ~i.t)] -1 

i = l  

+ (1 + c~)[-(N 2 + N +  2)/3b,3 [-[q~(az)l 2 § [q)(az+ ~)l 2] 

choosing now c~=3(N-  1 ) ( N 2 + N +  1)/(N+ 1 ) ( N 2 + N + 2 ) ,  it follows 
from (4.7) and (4.9) that 

f A (p'2(X) dx <~ (4N 3 + 2N 2 + 3 N -  1)N/3(N 2 + N+ 1 ) ~hUGc(q~, q~) 

and the lemma follows. 

Remark 5. The estimate in the previous lemma provides a less 
precise characterization of the eigenvalue problem than the one we could 
get in Lemma 1, but we note that the highest eigenvalue involves the same 
asymptotic order as in the previous section and this will be enough for our 
purpose. The important fact is that the result is independent of K and of the 
ratios between the various subinterval length bt. As we shall see in what 
follows, this will result in a multigrid algorithm that will work as well for 
any number of subelements. Besides, note that the smallest eigenvalue of 
problem (2.8) scales like K -2 (independently of N) such that the condition 
number of B -  1A behaves like (KN) 2, in accordance with the finite element 
equivalent (when N is order 1) and proves that the conjugate gradient 
algorithm, when preconditioned by B, has a rate of convergence that 
behaves like 1 - c/KN and depends on both K and N!!! This is of impor- 
tance when we compare the preconditioned conjugate gradient with the 
multigrid algorithm. We refer to the thesis of E. M. Ronquist (1988) for 
numerical evidence. 
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It is an easy matter to derive from Lemma 4 that the normalized form 
~N b N is defined from bh.ce by multiplication by a factor of order (4/3) N 2. h, OL 

The other property that is important for the analysis of the multigrid 
algorithm deals with the space X N/z1 of those elements ~0 of X u that verify 

VI#EX N/2, a~GL((p, 0 ) = 0  (4.13) 

Lemma 5. For any q0 in yN/2_L "~ h we have 

4(4N 3 + 2N 2 + 3 N -  l) 
b~'~ q~)~< 3 ( N 2 + N +  1)(N+2)  a(~0, (p) (4.14) 

yu/2• and let us define for l =  2 ..... K the Proof Let r belong to ~-h , 
element 0t of X~/2 by 

~kte X~, Vk = 1,..., K +  1, Ot(ak) = 6,k 

It is an easy matter to compute that 

f l/bt_l for x inAt_  t 
O ; ( x ) = l o 1 / b  , for x i n A ,  

for x in Ak, k va l and k va l - 1  

Using this function in (4.13), we derive that 

V/= 2,..., K, (1/b,_l)[q~(a,)-q~(al_l)]+(1/bt)[~o(at)-q~(a,+l)]=O 

recalling now that q~(ao)= q~(ax+ 1)= 0, we deduce that in fact ~0 vanishes 
at any interface so that qhA, is an element of lPN(AI) ~ H~(AI). The use of 
(3.15) over each A/proves that 

K 
bhN, GL( ~0' q))= 2 bl((P, q~) ~ 4/N(N+ 2 ) a ( %  ~o) 

l=1 

and the lemma follows by recalling the normalization factor of b ~ [3 h, GL" 

As a simple consequence of the previous lemmas and (2.11) and (2.14), 
we derive that the multigrid algorithm converges toward the numerical 
solution with a speed independent of both N and K; indeed, we have the 
following theorem. 

Theorem 4. The multigrid algorithm based on the Jacobi precondi- 
tioner converges, and at any V-cycle with m smoothing as detailed in 
Section 2, the rate of convergence is given by 

YA e~2(x) dx <~ 7 YA e~ dx 
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where 

and 

with 

K =  

R e m a r k  6. 

y = [ ( ~ -  1)/1r 2m for m~<(K-  1) 

7 = [~cf(m, 1)] 2 for m > 0 r  1) 

4 ( 4 N 3 + 2 N 2 + 3 N  - 1)=  (16/3)[1+ (9(N 1)] 
3 ( N 2 + N +  1)(N+ 2) 

Let us note that the convergence rate that we have 
theoretically obtained is independent of K and the sizes of the subintervals 
and does not deteriorate when N increases; this is in accordance with what 
was numerically observed in Part I of this paper (Ronquist and Patera, 
1987). However, the rather rough estimate we gave for the highest eigen- 
value in (4.10) provides a rather too high estimate for the convergence 
parameter (close to 0.81 when N is large enough). Note also that the 
optimal choice of parameter 4 < m < 5 is close to what can be observed 
numerically. As in the analysis of the multigrid algorithm when a finite 
element method is used, this optimal parameter is lower than the actual 
one. By using negative order of the norms defined from b and a, we could 
fit more closely to the experiments for this last result. This would be 
obtained, however, at the price of a much more technical proof and would 
not really be worthy since the main conclusion is the independence of the 
convergence rate with respect to the parameters of the discretization. 

5. ANALYSIS OF THE CONVERGENCE OF THE 
MULTIGRID ALGORITHM IN THE CASE OF 
N O N C O N S T A N T  COEFFICIENTS 

The previous chapter was devoted to the analysis of the multigrid 
algorithm when applied to the very simple equation -uxx  = f  Of interest 
of course is to know that the same conclusions hold in more complicated 
situations. We shall extend here the analysis to the case of the equation 

-- (~ux)x = f  (5.1) 

where ~ is a function of x such that there exist two constants ~ and ~ + 
with 

V x e A ,  0 < ~ -  ~< c~(x) ~< ~ + (5.2) 
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and also such that ~ is in the Sobolev space W2"~176 We shall assume 
here that the domain is not decomposed into subdomains, leaving this 
analysis to a forthcoming paper as well as the analysis of the multidimen- 
sional case. The analysis provided here is inspired by Braess and Verffirth 
(1988). 

It is standard to note here that problem (5.1) can also be stated in a 
variational formulation like (2.19), with a now defined as follows: 

V~0, 0 ~ Hol(A), a((o,r (5.3/ 

It is rather well known also that the general spectral (element) discretiza- 
tion of the equation consists in first choosing a discretization parameter 
n e N *, then finding u. e X n = P.(A) c~ H~(A) such that 

Vv. ~ X ~, an(u., v.) = (f, v.). (5.4) 

where the discrete form a" is defined here by 

V~o, r ~ x" ,  a~162162 (5.5) 

The nested spaces for the multigrid algorithm are exactly the same as in the 
previous sections, i.e., d//j = X N/2 and ~/{2 = xN, and the strategy also based 
on the use of the Jacobi preconditioner as a smoother. The corresponding 
bilinear form b u is deduced from the following ~N after normalization of 
the maximum eigenvalue of problem (2.7): /~N is defined by 

N 
V q j , ~ i ~ X  N, ~)N(~o,~]t= ~. A. . (o(~U)r  u (5.6) 

n--O 

where Ann corresponds to the diagonal entry of the stiffness matrix A, 
equal to 

An n N N = a ( h . ,  h N) 

and we recall that h N is the Lagrangian interpolant at the point ~ .  From 
hypothesis (5.2) and the exactness of the Gauss-Lobatto quadrature for- 
mula, it is simple to derive that 

V~o~X N, aN(~o,~o)<~ct+a(q),~o)<~e+N(N-1)'b(~o,q~) 

<~(3~+/~-)(N-1)/(N+l)[~N(cp,~o) (5.7) 

where we recall that b(cp, r  cP(x)~p(x)/(1--x2) dx. As a result, we 
derive that the normalization of b N satisfies 

bU=(3c~+/c~ ) ( N -  1)/(N+ 1)/~ jv (5.8) 
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From the eigenvalue problem: Find h u in X N and 2 in R + such that 

VI)~.X N, aN(~ J, V)=)~bU(~[ J, V) ( 5 . 9 )  

that possess N -  1 eigenvalues 0 < 21 ~< 22 ~< ... ~<'~N-- 1 ~ 1, the eigen- 
vectors of which are chosen normalized with respect to the norm derived 
from b N we define, as in (2.10) the 1[] '[t[0,x norms for any 0 e ~  by 

N 1 
VI)~X N, [[II)[H2 _ 0 N 2nb (v, (5.10) 0,N- Y~ ~.)2 

n = l  

Here the bilinear forms associated to the definition of the system and to the 
smoothing depend on N. The definitions of the smoothing operator ~N 
and the correction operator cgU have to be precised. Let us do this in the 
simple case where only two grids are used. Instead of (2.3), the smoothing 
procedure consists in finding ~oN(~0 in X x such that 

V v G X  N, bN(~,o~Nqo--(p, V)• gN(1))--aN((p, V) (5.11) 

while the correction procedure consists in finding q5 in X u/2 such that 

Vv E X N/2, aN/2((O, V) = gN(v) -- aN((p, V) (5.12) 

and defining cdN~p = ~p + 0. Then as explained in the general case, during a 
V-cycle with m/2 smoothings down and up, the error e ~ is changed in e 1 
as follows: 

e I = (~N)m/2 (~N(~ogN)m/2 e 0 (5.13) 

Before entering into the details of the analysis of the decay rate of the 
error, let us state some results of general interest. First, let there be given 
x in P~ ) and r()~) and rN()~ ) in P~ be such that 

V0 ~ P~ b(r(z), ~) = bU(rN(Z), ~) = aN(z,  ~ )  (5.14) 

where b is defined in (3.13). It is a simple consequence of (5.9) to derive 
that 

[[]FN(~)t]I02, N : bN(rN(Z), r N ( Z ) )  = aN()~, E N ( ~ ) )  ~ ][[X[[[ 2,N [I[rN()~)I][O,N 

whence 

HIr N(Z)ItIO, N <~ IIIzlll2.u 

Besides, from (5.7) and (5.14), we have 

b(r(z), r (z ) )=  bN(r N(Z), r(z) ) <~ [bN(r N(Z), r N(Z)) bN(r(z), r(z))] 1/2 

~< (cr +2/~- )1/2 [bN(rN(Z), rN(Z)) b(r(;~), r(z))] 1/2 
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finally, we derive that the solution r(z) of (5.14) has the following stability 
property 

b(r(g), r(z)) ~< c II[zlll2,N (5.15) 

Then let us state some approximation results the proof of which will be 
presented in the Appendix. 

Lemma 6. Let p defined over A and such that 

fAp 2(x)/(1 - x 2) dx < oo (5.16) 

n be a positive integer and the solutions qa(p)eH~(A),  qg,(p)eP~ 
defined by 

V v s H ~ ( A ) ,  a(~p(p), v )=b(p ,  v) (5.17) 

Vv ~ P~ a"(q~n(p), v) = b(p, v) (5.18) 

then the following approximation results holds: 

I~o(p) - ~.(p)112 ~< cn -2~(p, p) (5.19) 

b( ~o(p ) - qg ,(p ), q~(p ) - q~ ,(p ) ) <<. cn-4b(p, p) (5.20) 

Let us denote by e the t e r m  (~oN)m/2 eO, derive now as in (2.12) that 

[lie I Ill 1,N ~ f (m/2 ,  1/2) IllCgN~[l[ 0,U (5.21) 

Ill,Ill 2, N <~f(m/2, 1/2) Hie~ ~,N (5.22) 

From the definition of c~N, we derive that, for any Z in P~ 

[I[CgNzIH 0, N----IHz- ~ll[o,N ~ < l t l z -  N ( N -  1) ~P(r(~))lll 0,N 

+ n[~- N ( N -  1) q~(r(z))lllo, N 

hence 

Ill cgU;~ I[I 0, U ~< (~ +2/c~ -- )[b(z -- N ( N - -  1 ) q~(r(z)), Z -- N ( N -  1 ) r ) 1/2 

+ b ( ~ - N ( N - -  1) q~(r(z)), ~ -  N ( N -  1) r ~/2] 

With the previous notations [see (5.14) and (5.18)] and recalling that the 
normalization factor between the forms b and ~ is N ( N - 1 )  [-see (3.14)], 
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it is simple to derive that z=N(N-1)q~N(r ( z ) ) ,  while ;~ [defined in 
(5.12)] satisfies ~ = N(N-1)(ON/dr(z));  we derive 

/II~r N 

<~ (~ + 2/~- ) ( N ( N -  1))[b(q~x(r(z)) -- q~(r(z)), r -- ~o(r(z)) )1/2 

+ b(~PN/2(r(z)) -- ~0(r(z)) , qOu/2(r(x)) -- ~o(r([))) I/2 ] 

applying next (5.20) for n = N  and n = N/2, then (5.15), we obtain the 
following lemma. 

L e m m a  7. There exists a constant c independent of both N and K 
such that 

VZ e P~ I I l ~ z l i [ o , ~  c IIIxII]=,N (5.23) 

Plugging (5.23) in (5.21) and using (5.22) gives now the following theorem. 

Theorem 5. The multigrid algorithm based on the Jacobi precondi- 
tioner converges, and at any V-cycle with m smoothings as detailed in 
Section 2, the rate of convergence is given by 

f A ei2(x) dx <~ cf(m, 1 ) f A e~2(x) dx (5.24) 

Remark 7. The decay rate of multigrid algorithm is independent of 
N, and it is interesting to note that its asymptotic behavior is (9(l/m). 

Remark 8. The analysis of the case of nonconstant coefficients 
requires some regularity (i.e., W 2"~176 of the coefficient (this is required for 
Lemma 6). We do not know to what extent the lack of regularity of 
deteriorates the actual convergence. Note, however, that only local 
regularity is required, i.e., e can be nonsmooth through the interfaces. The 
multigrid procedure proposed Zang et al. (1982, 1984), and that is based 
on another approach of smoothing, is numerically proved to be very robust 
with respect to the irregularity of :r (Zang, 1988). 

A P P E N D I X  

The main purpose of this Appendix is to provide the proof of 
Lemma 6. Let us first recall the following result of the approximation 
theory (see Door, 1984): 
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Lemma A.I. Let nM denote the orthogonal projection operator from 
L2(A) onto PM(A). The following approximation results hold: 

Vu~Hm(A), HU--nMUlto~C(m) M-m[Iau(m)2(X)(1--x2)m dx] 1/2 

(A.1) 

Proof Let us recall that the Legendre polynomials constitute a total 
system of orthogonal functions of LE(A) that verifies 

faLn(x) Lm(x ) dx = (Snm2/(2n + 1) (A.2) 

Let us use this basis to span the function u; we arrive at 

u = ~ a n L n 
n = O  

so that the L2(A)-projection of u onto PM(A) is equal to 

M 

gM u= E antn 
n = 0  

and the error 

u -  nMu= ~, a.L.  (A.3) 
n = M + l  

Let us recall now that the Legendre polynomials satisfy the following 
relation: 

[( l  - -X 2) L'n]' = -n(n + 1) L n 

From (A.2) we conclude that 

fAUn(X) Lm(x)(1 -- x 2) dx = 6.m2n(n + 1)/(2n + 1) 

From (A.2) and (A.3) we get 

Ilu- ~MUlio= 

while, from (A.4), we derive that 

2aa~/(2n + 1) 
n = M + l  

AU'2(X)(1 -- X 2) dx = ~ 2n(n + 1) aZ/(2n + 1) 
n = 0  

(A.4) 
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and (A,1) is then just a simple consequence of these two equalities in the 
case m = 1. The general case is handled by recursion. 

As a consequence, we derive the following corollary. 

denote the orthogonal projection operator Corollary A.1. Let ~M 
from HI(A ) onto P~  The following approximation results hold: 

Vu ~ Hm(A) n HI(A), 

liu__~uli, <<c(m) M_,.(i u(m+m(x)(l__x2)mdx),/2 (A.5) 

Proof It has been noted many times that for any u in HI(A ) 

[ ~ u ] ( x )  = ~M_ ~(.')(t) dt 
- - I  

so that (A.5) is an easy consequence of Lemma A.1. O 

Proof of Lemma 6. It is an easy matter to note that the solution ~p(p) 
of problem (5.17) satisfies 

Vx~A, -[(~[r - x  2) 

From (5.2) and (5.16), we derive 

<. c ~a P2(X)/(1 -- x2) dx <~ c~(p, P) (A.6) 

From Corollary A.1, we know that there exists an element r of o P,/2(A ), 
such that 

]q~(P)- r <~ on-1 ~ [(p(p)]2 (X)(1 --X 2) dx 
x x  "JA 

and 

so that 

I~,.t~ < i~o(p)l, 

[~P(P) -- CnIl ~< cn-l~(P, P) (A.7) 
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From the ellipticity of the form a',  we derive that there exists a constant 
fl, such that 

fl I~o . (p)  - to . l~  ~< a ' ( q ' . ( p )  - to . ,  ~o. (p)  - to . )  

using (5.17) and (5.18) we derive that 

fl Iq0,(P) - to,,I ~ ~< a( ~o(p ), q~ ,,(p ) - to,,) - a,,( to,,, qo ,,(p ) - to,,) 

or again 

B I~o,,(p) - to.112 ~< a ( ~ o ( p )  - t o . ,  q ~ . ( p )  - -  to, ,)  

+ a(to. ,  cp.(p) - tO.) - a"( to. ,  go , , (p) -  to,,) (A.8) 

Let us note now that from the exactness of the Gauss-Lobat to quadrature 
formula we get that 

V~, ,~P . / z (A) ,  (~,,to'., ( qg , , (p ) - to . ) ' )=(a , , t o ' . ,  (r (A.9) 

so that 

a( to., q) . (p  ) -- to.) - a ' (  to., (p.(p ) -- to,,) 
= ( ( ~  - -  ar t )  torn, ( q ) n ( P )  - -  t o n ) )  - -  ((0~ - -  O~n) torn, ( ( P n ( P )  - -  t o n ) ) n  

and using now (A.8) yields 

[q~.(p)-- to . l ,  <.~.c(Iqg(p)--to,,[l + [Ot--a.]L~(A) [~.[1) (A.10) 

It is standard to note that there exists an element a.  such that 

k 
I~--~.IL~(A) <~ cn -k ~ I~(J)IL~(A) 

j=0 

hence, from (A.10) and (A.7), we derive that 

l ~ ( p ) - - f p n ( P ) ] t ~ c n  -1 b(p,p)t/2+ OlO~(J)lrco(A) 1 (P(iO)[ 1 

and (5.19) is an easy consequence of (A.6). 
Let us turn now to the proof of (5.20), We shall use a standard duality 

technique and first define an element ~ in H ~ ( A )  as follows: 

V v ~ H ~ ( A ) ,  a(z ,  v ) = b ( q ~ ( p ) - ( p , , ( p ) ,  v) (A.11) 
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It  is an easy ma t t e r  to derive 

b( (p(p ) - q%,(p ), r ) - r ,,(p ) ) 

-= a(z  , (P(P) - r 

= a (z  - 7z~/2 Z, q~(P) - q~.(P)) + a(Tr 1./2Z, ~P(P) - cp.(p)) 

a (z  1 
= - -  TCn/2Z , f R ( P )  - -  q ) n ( p ) )  + (an  - -  a)(rc~/2Z , r 

Let us examine the last te rm on the r ight -hand side of this last equality; 
using (A.9) one more  t ime we write 

(a" - a)(gl /2z,  ~o.(p)) = ((cr - cr 1./2Z) ', r  

"}- ( (0~ - -  O~n)(~ln/2Z) t, ~o n ( p  ) t )  

so that  

hence 

b(q)(p) - q~n(p) ,  ~o(p )  - q o . ( p ) )  = a ( z  - ~ / 2 Z ,  qo(p)  - q % ( p ) )  

+ ( ( ~  1 , , 
- ~ . ) ( ~ n / ~ z ) ,  ~ . ( p )  ) .  

+((c~ 1 , - c~.)(~n/2z),  q~~ 

bCo(p) - q ~ . ( p ) ,  ~o(p)  - q ~ . ( p ) )  ~ c Ix - ~ L / z z l ,  Iq~(p)  - ~o~(p ) [ ,  

2 

+ cn -2 ~ I ~ < J ) l ~ + < ~ ) I ~ o / : z l ~  I ~ ( p ) l l  
j=O 

~< c Ix - r c ' . /2z l ,  I~0(p)  - ~ 0 . ( p ) l  1 

2 

+ cn 2 2 [~(/)[L+(A)[Ttln/2ZI1 Iq),(p)ll 
j = 0  

Using now Coro l la ryA.1  and (A.11), we derive (after bounding  
Z~=o I~<g>IL+<A> by a cons tant )  

[b(~o(p) - ~o.(p), ~o(p) - ~on(p))] ~/2 ~< c(n -1 I~o(p) - ~o.(p)[ ~ + n -2 [~o.(p)[ 1) 

thanks  to the stability of  ~o.(p) with respect to p, we derive (5.20) from 
(5.19). 
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