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Abstract. Thermodynamic equilibrium, which involves mechanical, thermal, and chemical equilibria, 
in a multiphase porous medium, is defined and discussed, both at the microscopic level, and at the 
macroscopic one. Conditions are given for equilibrium in the presence of forces between the surface 
of the solid matrix and the fluid phases. The concept of approximate thermodynamic equilibrium is 
introduced and discussed, employing the definition of a thermodynamic potential. This discussion 
serves as the basis for the methodology of determining the number of degrees of freedom in models 
of phenomena of transport (of mass, energy, and momentum) in porous media. Equilibrium and 
nonequilibrium cases are considered. The proposed expressions for the number of degrees of freedom 
in macroscopic transport models, represent the equivalent of Gibbs phase rule in thermodynamics. 

Based on balance considerations and thermodynamic relationships, it is shown that the number of 
degrees of freedom, NF, in a problem of transport in a deformable porous medium, involving NP fluid 
phases and NC components, under nonisothermal conditions, with equilibrium among all phases and 
components, is 

NF = N C +  N P + 4 .  

Under nonequilibrium conditions among the phases, the role takes the form 

NF = NC x NP + 2NP+ NC + 4. 

In both cases, when fluid phase velocities are determined by Darcy's law, NF is reduced by NR 
When the solid matrix is nondeformable, NF is reduced by 3. The number of degrees of freedom is 
also determined for conditions of approximate chemical and thermal equilibria, and for conditions of 
equilibrium that prevail only among some of the phases present in the system. Examples of particular 
cases are presented to illustrate the proposed methodology. 

Key words: thermodynamic degrees of freedom, primary variables, porous medium thermodynamics, 
thermodynamic equilibrium, multiphase transport, surface forces. 
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Density of an extensive quantity, E. 

Density of E~ (=  E per unit volume of a-phase). 

An extensive quantity, E,  of a 7-component in an a-phase (e.g., E = 
m, m~, / /) .  

Energy. 

Rate of transfer of E from an a-phase to a/3-one, across their common 
microscopic interface per unit volume of porous medium. 

Generalized force acting on 7-component in c~-phase. 

Gravity acceleration. 

Gibbs free energy. 

Enthalpy. 

Microscopic conductive heat flux (= pu(V H - V)). 

Microscopic diffusive mass flux of a 7-component relative to the mass 
weighted velocity (=  p'Y (W - 11)). 

Microscopic diffusive flux of E. 

Microscopic diffusive mass flux of a 7-component. 

Macroscopic conductive heat flux. 

Macroscopic diffusive flux of a 7-component. 

Dispersive flux of E. 

Effective permeability of an a-phase. 

Mass. 

Mass of a 7-component. 

Mass of a 7-component in an a-phase. 

Mole fraction of a 7-component in an a-phase. 

Number of components. 

Number of constraints. 

Number of degrees of freedom. 

Number of phases. 

Number of variables. 

Pressure. 

Pressure in an a-phase. 

Radius of curvature of an a -/3-interface. 

Entropy. 

Entropy function of an element. 

Saturation of an a-phase. 

Area of surface of contact of a-phase with all other phases (denoted by/3) 
within Ho. 

Time. 

Temperature. 
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Greek Letters 
a Symbol 

/3 Symbol 

E~ Symbol 

7 Symbol 

7~;~ Surface 
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Specific internal energy of an a-phase. 

Velocity of a surface (e.g., of S~/~). 

Internal energy. 

Volume. 

Volume of domain of REV. 

Volume of a-phase in REV. 

Specific volume of mass (= 1/p). 
Mass weighted velocity of a fluid phase. 

Displacement. 

Horizontal coordinate. 

Position vector. 

Position vector of point at the microscopic level. 

Position vector of the centroid of an REV. 

Vertical coordinate (positive upward). 

for an a-phase. 

for a r-phase. 

denoting E~ per unit mass of a-phase. 

denoting a 7-component. 

tension between a- and/3-phases. 

Rate of production of E~ per unit mass of an a-phase. 

Unit tensor. 

Coefficient of thermoelasticity. 

Volumetric fraction of an a-phase ( -  U,~/Lto). 
Thermal conductivity of an a-phase. 

Coefficient of thermal conductivity of an a-phase in a porous medium. 

Lagrange multiplier for energy. 

Lagrange multiplier for mass of 7-component. 

Lagrange multiplier for volume. 

Dynamic viscosity of an a-phase. 

Bulk viscosity of an a-phase. 

Chemical potential of a 3'-component of an a-phase. 

Bulk mass density of soil. 

Mass density of an a-phase. 

Mass density of a 7-component in an a-phase. 

Stress tensor. 
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Effective stress (=  cry). 

Shear stress. Deviatoric stress. 

Porosity. 

Potential energy function. 

Thermodynamic potential. 

Mass fraction of a 7-component in an a-phase. 

Subscripts 
a Air. 

9 Gas. 

f Fluid. 

Liquid. 

s Solid. 

w Water. 

a-phase. 

/3 /3 -phase. 

A A-phase. 

Superscripts 
H Heat. 

7 7-component. 

Special Symbols 
(..)~ Intrinsic phase average of ( . . )(= 1 fUo(..) dU). 

Deviation of G from its intrinsic phase average, G~, over an REV. 

DE(..) Material derivative of (..), as observed by the E-continuum. 
D t  

1. Objective 

A rather large number of variables is required in order to describe the complete 
macroscopic (= averaged) behavior of a porous medium system comprised of mul- 
tiple multicomponent fluid phases under nonisothermal conditions (e.g., Bear and 
Bachmat, 1991; Hassanizadeh and Gray, 1979; Bear and Nitao, 1992; Coats, 1979). 
However, the actual number of variables for which a solution of partial differential 
equations is required is much smaller. The number of degrees of freedom is the 
smallest number of variables needed to fully define present and future states of a 
considered system. We shall refer to these variables as primary variables. All other 
state variables of the system can be obtained from the primary ones through the use 
of constitutive relationships and definitions. A case that requires special attention 
is when all phases and components within a system are at equilibrium, or when 
the rate of transformation o f  the system from one state to another is sufficiently 



ON EQUILIBRIUM AND PRIMARY VARIABLES IN TRANSPORT IN POROUS MEDIA 155 

slow, so that it can be assumed to be continuously close to equilibrium. Under such 
conditions, the number of primary variables is further reduced. 

Gibbs phase rule (see any text on thermodynamics) states that the state of a 
system composed of NP phases and NC components under conditions of equilib- 
rium is fully defined (at the microscopic level) by NF state variables, with NF 
determined by the relationship 

NF = N C -  N P +  2. (1) 

For example, in the case of a single fluid phase composed of a single component, 
say H20,  NF = 2. This means that the state of the system at equilibrium is fully 
defined by two independent variables, say the pressure, p, and the temperature, T. 
We could, however, select also p and the phase density, p, as primary variables, 
with the constitutive relation p = p(p, T). 

As a second example, consider two fluid phases: a liquid, consisting of a single 
component, water, and a gas, composed only of water vapor. This means that we 
have two phases and one component, and by the Gibbs phase rule, we have one 
degree of freedom. Suppose we select T as the independent variable. Because 
water and water vapor are in equilibrium, the system can exist at only one value 
of pressure at any given temperature (see any pressure-temperature diagram for a 
single substance H20). Once we know p and T, we can determine the densities of 
the two phases. 

Here, we are concerned with multiple multicomponent fluid phases in a porous 
medium. Moreover, we are interested in cases in which the phases are in motion, 
the solid matrix may be deformable, and the description of transport (of mass, 
momentum, and energy) is at the macroscopic level. Our objective is to determine 
the number of degrees of freedom for such a system. 

2. Thermodynamic Equilibrium in a Porous Medium 

A system under thermodynamic equilibrium or approximate thermodynamic equi- 
librium has a much smaller number of degrees of freedom than otherwise. The 
concept of thermodynamic equilibrium is complicated by its usage at different 
levels: the microscopic level (which is obtained by averaging over the molecu- 
lar one), and the macroscopic level (obtained by averaging over the microscopic 
one). Moreover, the term 'thermodynamic equilibrium' is often used when at least 
one of the phases present in the system is in motion. In the latter case, the term 
'local thermodynamic equilibrium' is often used. It means that each representative 
elementary volume (REV) in the porous medium domain is sufficiently close to 
the state of an identical REV that it behaves as a closed system at thermodynamic 
equilibrium. These concepts and definition will be discussed in detail below. 

Consider an REV in a porous medium domain, containing a solid matrix and 
a number of multicomponent fluid phases. A discussion on the size of an REV is 
presented by Bear and Bachmat (1991). As an upper limit to the size of an REV 
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in the case of heterogeneities resulting from gradients in microscopic variables, 
we require that the variations within the REV of these state variables be within a 
specified error level (Bear and Bachmat, 1991, pp. 20-21). The REV consists of a 
set of microscopic points, where we use the term 'microscopic point' to denote a 
point within a phase. A lower limit to the size of the REV arises from the assumption 
of local thermodynamic equilibrium at each microscopic point in the REV which 
is discussed below. 

2.1. EQUILIBRIUM AT THE MICROSCOPIC LEVEL 

The assumption of local thermodynamic equilibrium is often cited in textbooks on 
fluid mechanics in regards to the thermodynamic properties of every (microscopic) 
point in a phase (= system). 

This assumption guarantees that the standard thermodynamic properties, such 
as temperature, pressure, component density, internal energy, and entropy, can be 
defined at that point in the fluid continuum. These properties are developed from 
the theory of statistical mechanics (e.g., Reif, 1965), using averages at the mole- 
cular level. Conditions for local thermodynamic equilibrium at the microscopic 
level are discussed by Kreuzer (1981). Note that in statistical mechanics, the term 
'microscopic' is used to denote what we would call the molecular level. 

The driving force for local thermodynamic equilibrium is molecular collisions. 
Thus, how fast equilibrium can occur depends on the time, re, required for a 
sufficient number of molecular collisions to occur. Local equilibrium is violated 
only under severe nonequilibrium conditions, when changes or phenomena take 
place over a time span shorter than %, such as in shock waves. By definition, the 
size of the microscopic REV of a phase is selected such that it includes a sufficiently 
large number of molecules. This means that this microscopic REV must be much 
larger than the mean free path of the molecules. Equivalently, this size should 
be such that it enables a sufficiently large number of collisions to ensure that we 
have meaningful thermodynamic properties at the centroid of the microscopic REV 
(mentioned above). 

We recall that this is the lower limit of the REV size. The microscopic REV 
must also be much smaller than the domain occupied by the phase. Thus, if we 
have a sufficiently narrow passage or ratified gas, a microscopic REV may not 
exist, and the gas may not be treated as a continuum. We then have Knudsen gas 
flow (Bear, 1972, p. 17). 

Altogether, we may say that except for extreme cases, e.g., at the front of a 
shock wave, or in a rare gas in a relatively narrow domain, a microscopic REV can 
always be defined. By averaging the molecular behavior over the microscopic REV, 
we introduce meaningful thermodynamic variables and constitutive relations. 

Once we have determined that an microscopic REV for the considered fluid 
phase in the considered domain exists, that fluid is always at thermodynamic 
equilibrium at each microscopic point (= centroid of the microscopic REV), and we 
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always have meaningful thermodynamical variables and constitutive relations. If 
we consider multiple components, we have to require that a microscopic REV exists 
for every component, and that a common REV can be found for all components. 
Then (except for special cases like those mentioned above), all components at 
a microscopic point are in equilibrium. We say that we have 'equilibrium at a 
(microscopic) point,' or 'local thermodynamic equilibrium at the point.' 

Henceforth, we shall assume that local thermodynamic equilibrium always 
prevails at every point x ~ within every phase present in the void space, and that 
at every such point, meaningful thermodynamic variables of the phase can be 
defined. 

The temperature, T(x~), pressure, p(x~), and NC-1  mass fractions, w'~(x'), of 
the 7-component, uniquely define the thermodynamic state of a fluid at a point x' 
within the fluid phase. For a fluid in motion, we also need the velocity, V(x~), at the 
point. Thus, we have NC -t- 2 degrees of freedom for every point at the microscopic 
level. 

For a solid, we also need the displacement, w(x~), at every point, with respect 
to the initial position, raising the number of microscopic degrees of freedom to 
N C +  3. 

2.2. EQUILIBRIUM AT THE MACROSCOPIC LEVEL 

We define local thermodynamic equilibrium at a point (= centroid of an REV) 
to mean that the considered point is at approximate thermodynamic equilibrium. 
Approximate thermodynamic equilibrium is said to prevail at a macroscopic point, 
if the REV is sufficiently close thermodynamically, to an identical, but sealed, 
system in complete thermodynamic equilibrium with closed rigid boundaries. By 
identical, we mean that the configurations of all phases within the two systems are 
the same, that they both have the same mass of every component and phase, and 
that both contain the same amount of internal energy. Since the sealed system is at 
complete equilibrium, all phase velocities in the sealed system are zero. A system 
in complete thermodynamic equilibrium means that all fluxes of mass, energy, 
and momentum within the system are zero. Unless we specify 'approximate equili- 
brium,' the term equilibrium refers to 'complete thermodynamic equilibrium.' This 
includes also mechanical equilibrium, which is identical to 'no motion.' (Note that 
equilibrium should not be confused with 'steady state.' Steady state means that 
the time rate of change of all thermodynamic variables and fluid velocities is zero. 
Fluxes may still be nonzero and, hence, large gradients in thermodynamic variables, 
including pressures, temperatures, and concentrations, may still exist in a system 
at steady state.) 

To define what we mean by an 'REV in approximate thermodynamic equilib- 
rium' and by 'sufficiently close, thermodynamically,' we need to define thermo- 
dynamic potentials. We also need to examine the equilibrium of the sealed 
system. 
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It is obvious that when an REV at the macroscopic level is in complete thermo- 
dynamic equilibrium, all the potentials at the microscopic level are uniform over 
the REV and have values equal to that of the averaged potential at the macroscopic 
level. 

The microscopic balance equation for an extensive quantity, E,  of a phase, can 
be written as 

Oe 
O---t = - V  . (eV _ jE)  + F E, (2) 

where e, jE, and F E are the density, the diffusive flux, and the source of E,  
respectively, and V is the mass weighted velocity of the phase. For example, E can 
be the mass of a component. 

Following the theory of irreversible thermodynamics (e.g., Groot and Mazur, 
1972), we shall express the diffusive flux by a linear law of the form 

jE = _ � 9  ' (3) 

where q~E is the thermodynamic potential of E. In principle, the diffusive fluxes of 
the various extensive quantities transported within a system, with each extensive 
quantity having its own potential, are coupled to each other (e.g., Bear and Bachmat, 
199 !). For example, in the case of mass transport, coupling occurs among diffusive 
mass fluxes of the various components, each having its own chemical potential. 
In this case, the diffusive fluxes vanish only if the gradients of all the potentials 
vanish. We should, therefore, consider also coupling between the diffusive fluxes 
of various extensive quantities. However, for the sake of clarity, these coupled 
fluxes will not be included in our discussion. 

Thermodynamic equilibrium with respect to E is given by the requirement 

V ~  E = 0. (4) 

For E representing the mass of a 7-component, ~E is the chemicalpotential of 
7, defined by 

~ _  OG ~ r  (5) 
Orn'Y ,T,p ' 

where m "y denotes the mass of the 7-component, and 

G = H - S T  

is the Gibbs free energy, with H, and S denoting the enthalpy and the entropy of 
the considered phase, respectively. 

For E representing energy, the temperature, T, is the thermodynamic poten- 
tial. For E representing the momentum within a fluid phase, the thermodynamic 
potential is the advective velocity, V. 

For a porous medium system in mechanical equilibrium (i.e., equilibrium with 
respect to momentum), the gradients of the fluid's velocity must vanish for any 
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fluid phase within the system. Because of the no-slip condition at the solid-fluid 
boundary, assumed stationary, this implies, that the velocities of all fluids in the 
system must vanish everywhere. Since this is too restrictive, we define approximate 
thermodynamic (mechanical) equilibrium to mean that velocities are sufficiently 
small. 

Returning to the definition of macroscopic equilibrium, we shall say that an 
REV is in approximate equilibrium relative to an extensive quantity, E,  of an a- 
phase, if the corresponding thermodynamic potential, ~ ,  is sufficiently close to 
the average of the potential over the a-phase, 

<< 1, (6) 
II/X  lluoo 

where 

�9 . --= (7) 

denotes the root mean-square norm over the domain (= volume), br of the a- 
phase within the REV, of volume Uo, ~-~c~ is the average of the potential over the 
a-phase, and A ~  ~ = ~E _ ~oE, where ~o E is some typical value over the porous 
medium domain, such as the average over the domain. 

Nitao and Bear (1994) have presented a condition for this equilibrium condition 
to hold, based solely on the geometric properties of the a-phase. 

Let us supplement the definition of approximate equilibrium for an REV with 
respect to an a-phase, by introducing a definition of approximate equilibrium 
between two phases, a and/3. We start by requiring that each of the two phases 
be in equilibrium, i.e., Equation (6) is satisfied for each of them. Furthermore, we 
require that the values of the phase-averaged potentials be sufficiently close, that 
is ,  

_ r << 1. (8 )  
Irq, EIFUo 

Nitao and Bear (1994) have presented necessary conditions upon the porous 
media for Equation (8) to hold. They also proved that if all phases in an REV are 
in approximate equilibrium, so that (6) holds for all phases, then they are also in 
equilibrium with each other, so that (8) holds. 

Condition (8) indicates the important role played by the macroscopic potentials, 
-N~. Consider the energy and mass potentials, ~ -0-~ and ~M--+-~. If the deviations 

in p, T, and a/y within an REV (from their respective averages) are sufficiently 
small within the a- and r-phases, the macroscopic potentials are related to the 
microscopic ones by 

~--E ~ ~ ~6m ~ ~ ( ~ ,  Ts,  ~--~6), (9) 
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where ~ = a ,  /3, ~b~ is the value of the microscopic potential in the ~-phase, 
and ff~(..) denotes the functional relationship of the microscopic potential for the 
&phase as functions p, T, and w "~. (This expression for the energy potential is 

redundant because it reduces to T ~ ~ T 8.) 
If the equilibrium condition between the a and/3 phases is satisfied, we have 

E -~ --~ ~ (~ff(~,  T z, ~-f~). (10) ~'~ (p , T , w '~  ~ 

This expression constitutes a constitutive relationship. Later, we shall see how 
this relationship reduces the total number of degrees of freedom for an REV. 

The definition of approximate equilibrium with regards to the momentum poten- 
tial, which is velocity, requires that velocity be approximately uniform over the 
phase. For a porous medium with a fluid phase satisfying the no-slip condition at 
solid surfaces, this requires that the fluid velocity be sufficiently small with repsect 
to the coordinate frame fixed to the porous medium REV. A fluid phase that is 
not connected to to a solid phase could, theoretically have non-zero velocities and 
still be in approximate equilibrium. The corresponding relationship for (10) in the 
case of the momentum potential requires that the fluid velocities between the two 
phases be approximate equal. When all phases are in equilibrium with each other, 
the fluid velocities must be all small, since one of the fluid phases is connected to 
the solid phase. 

A question may arise with regards to whether the fluid velocity is the appropriate 
potential for momentum because the momentum balance contains the gradient of 
pressure in addition to gradients of velocity that is part of the deviatoric stress 
tensor (we assume a Newtonian fluid). We shall later show (see Equation (33)) that 
the sum of the pressure gradient plus body forces that are present in the momentum 
balance equation is equal to the sum of the potentials for energy and mass and, 
therefore, it would be redundant to carry the pressure as part of the momentum 
potential. 

3. Macroscopic Constitutive Relationships 

Approximate local equilibrium is often assumed because it leads to constitutive 
relationships between macroscopic thermodynamic variables. For example, given 
a relationship between the microscopic variables a and b in the form 

a = f ( b ) ,  

valid at all points within an s-phase, the usual assumption is that by averaging over 
the s-phase within an P~V, we obtain the corresponding relationshi ) between the 

--OL 
macroscopic variables ~ and b , 

= f(b~).  (11) 

Note that this conclusion is not necessarily correct if a constitutive relationship 
involves derivatives. 
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O --Or 

Denoting the deviation of b from its mean by b - b - b , we have 

f(b) ,~ f (b~ )+  ; d f  ~ o d2f  
d-b + (b)2 db2 6 ~" (12) 

Since, by definition, b ~ = O, it is seen that 

d2f  g~ 
-d ~ = f(b) ~ ,~ f(-b ~) + (;)2~ - ~  . (13) 

Thus, if the mean-square deviation, (~)2~, is sufficiently small within the REV, 
then the relationship in (11) holds. This condition is satisfied when the constitutive 
relationship is close to being a linear function. For example, fluid density is almost 
a linear function of pressure over a large range of pressures. However, for highly 
nonlinear constitutive relationships, it is necessary to verify that the deviations 
of the arguments are not too large. Approximate thermodynamic equilibrium is 
important because thermodynamic variables tend to be distributed approximately 
uniformly in keeping with our definition of approximate equilibrium, and, thus, 
under this condition the deviation from the mean will be sufficiently small. 

4. D e g r e e s  o f  F r e e d o m  for  a P o r o u s  M e d i u m  U n d e r  
C o m p l e t e  E q u i l i b r i u m  

4.1 .  WITHOUT SURFACE EFFECTS 

We shall start by neglecting the effect of forces emanating from solid surfaces. We 
also assume that capillary forces are so strong that the gravitational force may also 
be neglected. Thus, each phase is assumed to be microscopically homogeneous 
in that the relationships between thermodynamic variables, such as energy as a 
function of pressure and temperature, do not depend on position within the phase. 
We shall assume that each phase occupies a simply connected domain within the 
REV. 

We wish to investigate the number of degrees of freedom of a system in com- 
plete (microscopic) equilibrium, because we have defined macroscopic equilibrium 
by requiring that the REV be approximately in complete thermodynamic equilibri- 
um. 

We say that a multiphase system within an REV is in complete microscopic 
equilibrium, when there is no net flux of mass, momentum, and energy within that 
system. This means that at all points within the system (in all phases, including 
the solid), the velocity is zero, and the diffusive fluxes of the mass of component 
and of energy (heat conduction) also vanish. In the appendix, we show that such a 
system is constrained by the following conditions: 

- The temperatures are equal at any two points (x', x") within the system, viz., 
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T(x ' )  = T(x") ,  x', x" E b/so. (14) 

This means that the temperature is uniform over the system. 
- The chemical potentials of any V-component is uniform within the system, 

viz., 

#~(x) '  = #'~(x"), oe', x"  E H~o. (15) 

- For a homogeneous phase, the pressure must be uniform at all points within 
the phase. Thus, within the s-phase subdomain, 

p(x')  = p(x"),  x',  x"  E L/so. (16) 

For two phase bodies, say a and/3, with a common interface, neglecting the effect 
of gravity, we have 

p~(x')  - p;~(x") - 27a~ x' E L/so, x" E b/;~o, (17) / ~  ' 

where 7 ~  is the surface tension between the a and/3 phases, and R ~  is the 
(constant) radius of curvature of the interface between them. We recall that actually, 
1 / R~;~ = 1/R1 + 1/Rz), where R1, R2 are the principal radii of curvature. Because 
the pressure is uniform over each phase, R ~  must be a constant over the interface. 
A deviation from the constant curvature can come only from the effects of surface 
forces at the solid surface in contact with the c~/3-interface. 

Note that by averaging over the the REV, we obtain 

p ~ - p ~ = ~ - ~ -  2 7 ~  
(18) 

w h e r e / ~  is a function of the volumetric phase fractions 0a, or, equivalently, of 
the saturations S~. 

Cases exist in which each phase may occupy a number of disjoint subdo- 
mains within the REV. The pressure, p~, may then be different in the various 
a~-subdomains. The pressure within each such subdomain is uniform. We'll still 
have a pressure difference across the interfaces between adjacent phase bodies, and 
a radius of curvature of the common interface. It should then be possible to define 
the difference between the volume averaged phase pressures, and relate it to some 
averaged radius of curvature for the REV, which, in tum, will be a function of the 
phase saturations. 

Our next task is to consider the number of degrees of freedom for a porous 
medium domain. We recall that the original form of Gibbs phase rule is stated for 
a 'nonporous medium' case. It cannot account for capillarity and surface forces 
since interphase boundaries are assumed to be flat. 

Let us denote the uniform temperature, chemical potential, and pressure over 
each phase by T~, #~, and p~, respectively. Since #~ = #~ (w ~, T~, p~), the mass 
fraction, ~ ,  must also be uniform over each c~-phase. Since the temperature is 
uniform over the entire system, we have T~ = T. 
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The thermodynamic state of each phase is, therefore, completely specified by 
T, p~, and w~. Together, we have NP • NC + NP + 1 variables, where NP is the 
number of phases and NC denotes the number of components. Also, values of the 
N P -  1 radii of curvature, R ~ ,  are required in order to determine the equilibrium 
conditions for the interfaces. Together, these make up NV = NP • NC + 2NP 
variables. 

The number of degrees of freedom is defined as a subset of the NV variables 
that are independent of each other. 

The radii of curvature, R ~ ,  can be replaced by the volumetric fractions 0~. 
From the fact that ~(~)  0~ = r it follows that there are N P -  1 of the 0~ that are 
independent of each other, and the number of variables remains unchanged. 

Altogether, we have the (NP - 1) • NC constraints of the form 

T, T, 

NP constraints of the form 

(19) 

w~ = 1, (20) 

('9 

and N P -  1 constraints of the form 

2 7 ~  (21) 
P ~ - P ~ -  R~f~" 

Together, we have NE = NP • NC - NC + 2 • NP - 1 constraints. 
We conclude that the number of degrees of freedom is, therefore, 

NF = N V -  NE = NC + 1. (22) 

This is the rule determining the number of degrees of freedom in a porous medium 
domain under thermodynamic equilibrium with no fluid motion and when the solid 
is nondeformable. 

Note that the number of variables in the original Gibbs phase rule is NC - NP 
+ 2, which is N P -  1 less than the number of degrees of freedom we have found 
for a porous medium. Unlike the original Gibbs phase rule, the number of primary 
variables in a porous medium does not depend on the number of phases. A porous 
medium has NP distinct phase pressures as compared to the single pressure in a 
nonporous medium. This results in N P -  1 additional variables. 

The constraints in (19) and (20) constitute NP x NC - NC + NP equations that 
can be used to solve for some of the variables in terms of the other ones, as long as 
the resulting nonlinear system of equations is mathematically nonsingular. A set 
of (NP - 1) x NC + NP mass fractions can be solved in terms of a remaining set 
of N C - N P  mass fractions in some particular phase ao, p~, and T. This leaves NP 
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phase pressures, the temperature, and N C - N P  mass fractions within some phase, 
say a = 1, as the NC + 1 degrees of freedom: 

p~, (~ = 1 , . . . ,  NP), T, ~ ,  (7 = 1 , . . . , N C - N P ) .  (23) 

Instead of using the NP phase pressures, we can use N P -  1 volumetric fractions 
and the pressure in only one of the phases: 

Pl, 0c~(t~ = 1 , . . . ,NP) ,  T, a;~, (7 - -  1 , . . . ,  N C - N P ) .  (24) 

Numerically, this choice has advantages when two or more of the phase pressures 
are close to each other. 

4.2. WITH SURFACE EFFECTS 

Most textbooks consider thermodynamic equilibria of homogeneous phases. How- 
ever, a fluid within the void space of a porous medium can experience surface 
forces arising from charge imbalances at the solid surfaces. Such forces contribute 
to what is called the 'matric potential.' They are important either at low satura- 
tions or for fine-grained material, such as clays. Nitao and Bear (1993) discuss this 
point. 

Gravitational forces also act on the fluid. As a result, each fluid phase is micro- 
scopically inhomogeneous. This inhomogeneity implies that the basic thermo- 
dynamic equations of state become explicit functions of position, in addition to 
their dependence on pressure, temperature, and concentration. For example, ener- 
gy will depend on distance from surfaces and elevation. Also note that surface 
forces can act differently depending on the component. They also depend on dis- 
tances from the solid surfaces. Therefore, in general, concentrations will also be 
nonuniform. 

For the chemical potential, we have 

= T ,  (25) 

A particular case arises when the chemical potential can be decomposed in the 
form, 

= T, x') + (26) 

where qD~(x ~) is a potential energy function assumed to be purely a function of 
position and/2~ is the function for the fluid under the same conditions, but in the 
absence of surface and gravitational forces. This decomposition is valid only when 
the forces are conservative (i.e., have an associated potential energy function) and if 
there is no intercoupling between forces and intermolecular interactions. In general, 
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these conditions may not be true. However, we can always define a generalized 
potential field given by 

~ ( p ~ ,  T, w ~, x') = #~(p~, T, w ~, x') - /2~(p~, T, w~), (27) 

and a generalized force field, f, defined by 

f~(p,~, T, w '~, x') - -V#~(pc~, T, a~ ~, x')I~,T,p 

X t = - V ~ ( p a ,  T, ~'~, )[~,~,T,p, (28) 

where partial derivatives are taken with the variables w~, T, p fixed. Note that ~ 
includes a contribution from gravity equal to g(z - Zref), where Zref is a reference 
elevation. 

We show in the appendix that conditions for equilibrium are given by (14), 
(15), and (17). However, the condition in (16), which implies a uniform pressure 
throughout the phase, is, in general, not valid. Note that 

-y .3, G~ = ~ w~p,~. (29) 
(z) 

Thus, 

dGc~ = Z co~ d#~ 4 - Z  #c~ "~ dwc~-'Y (30) 
('y) (~) 

We also have 

dGc~ = vc~dpc~- s~dT -t- Z l Z ~  dw~ -I- Z J ~  .dr',  (31) 
('y) ('~) 

in which v~ denotes the specific volume of the ~-phase. Equating the two expres- 
sions, we have 

~ d#~ = us dp~ - ~ dT + ~ ~ .  dr'. 
(-y) (-y) 

Therefore, 

-y .-/ 

(-y) (-y) 

From (15) and (14), we have 

v ~  = 0, V T  = 0 

(32) 

(33) 

(34) 
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within the c~-phase. Thus, from (33), it follows that 

~ V p ~  + ~ ~ = 0, (35) 
(-y) 

which shows that p~ is not uniform, but its gradient depends on the generalized 
forces. 

Let us now consider the degrees of freedom of our inhomogeneous system. The 
chemical potentials and temperature are uniform over the REV. We denote their 
values by #-yo and T ~ respectively. We now show that the pressure, temperature, 
and concentrations at each point x t can be expressed in terms of these values. 
Clearly, the temperature is known from 

T(x ' )  = T ~ (36) 

The remaining NC + 1 variables, p(x t) and w'Y(x'), can be obtained by solving the 
NC + 1 equations 

~(p(Z),  T ~ ~(~') ,  z)  = ~o, (37) 

and 

~--~w'V(x')--- 1. (38) 
(-y) 

Therefore, the following functional relationships hold, 

p~ = p~(,~o, T o, x') (39) 

and 

~ =-~,,~,~""Y('"Y~ T ~ x'). (40) 

Hence, the thermodynamic state at each point depends only on the NC + 1 vari- 
ables, #'Y~ and T ~ 

Next, we show that not all of these variables are independent. For a given set 
of volumetric fractions, 06, we have from (17) the NP - 1 relationships 

"yO ;~ ( ,~ ,  T ~ x ' - ) -  pe(~,~o TO, x,+) 27~(x') 
' R~e(~')' (41) 

for each interface Sap, where x p- and x p+ denote points on the respective sides of 
the interface. Note that since the pressure is no longer uniform within a phase, the 
mean radii of curvature are no longer constant. 
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We assume, as is usually done, that the mean radius of curvature, R~p(x'), 
depends on the volumetric fraction, 06, of all of the phases (actually, it depends 
also on the past history of the saturations because of hysteresis). 

The/z "Y~ are not independent, but are related to the NP saturations through the 
above NP - 1 capillary relationships. We can eliminate NP - 1 of the #-~O,s so that 
they become functions of the NP - 1 independent saturations and the NC - NP + 1 
remaining independent #'Y~ i.e., 

#~,o = #~,o(#.vo, T o, 06), (42) 

where the indices range over A = N C -  NP + 2 , . . . ,  NC and 7 = 1 , . . . ,  N C -  
NP + 1. The degrees of freedom are, therefore, given by 

T O 

#.,/o 

06 

7 =  1 , . . . , N C -  N P +  1, 

6 = 1 , . . . , N P -  1. 

The total number of degrees of freedom is, therefore, NC + 1. This is the same 
number as in the case without surface effects or gravitational effects. The difference 
is that mass fractions and pressures are not primary variables, because they are not 
uniform over each phase. 

A familiar example is a two-phase system (a  = g, 9) with two components, 
water (w) and air (a). The degrees of freedom are T ~ #ao, and Oe. From (42), we 
need the constitutive relationship for the chemical potential of water component 
as ,  

uwo= #wo(uoo 7 o, 0e). (43) 

This relationship is, essentially, what has been called the matric potential relation- 
ship, or moisture retention function. If we assume, further, that there is at least a 
film of water around all solid surfaces and that surface forces are not important for 
the gas phase, the pressure, pg, in the gas is uniform under equilibrium conditions. 
It is then possible to replace #ao as a degree of freedom by the gas phase pressure, 
p~. The system is completely described by the degrees of freedom T ~ p~ and Oe 
and the relation in (43). This example gives a thermodynamic basis for the degrees 
of freedom assumed by the soil physics literature. 

5. Degrees of Freedom for Phases in Motion 

Next, we consider the case in which the phases are in motion, and the system 
may undergo changes in time. In a porous medium, such a system can never be in 
complete thermodynamic equilibrium. Conditions of mechanical nonequilibrium 
prevail as a consequence of the transfer of momentum from the moving fluid to 
the solid by viscous forces. This gives rise to pressure gradients at the microscopic 
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level within the REV. Temperature gradients may also occur because of viscous 
dissipation. If these pressure and temperature gradients are large, the system will 
be far from chemical and thermal equilibrium. Perhaps, more importantly, flow can 
transport components into the REV, resulting in nonequilibrium concentrations. 
For a multiphase REV, flow can cause some phases to be under nonequilibrium 
conditions, and some of the phases may be in nonequilibrium with each other. 

We always assumed that conditions hold for each phase to be in equilibrium. 
We first consider the case where the phases are not necessarily in equilibrium with 
each other. 

The degrees of freedom will be defined as the minimal number of variables 
that are needed in order to completely describe the system. All other variables are 
functions of the degrees of freedom or derivatives of the degrees of freedom. Thus, 
the number of degrees of freedom, NF, is equal to the number of variables, NV, 
minus the constitutive relationships and constraints, NE, viz. 

NF = NV - NE. (44) 

The degrees of freedom will also be called primary variables. The primary vari- 
ables, by definition, cannot solely be algebraically expressed in terms of each 
other, so they must satisfy partial differential equations, in particular, balance 
equations. 

5.1.  BALANCE EQUATIONS 

Consider a deformable porous medium domain containing a number of multi- 
component fluid phases under nonisothermal conditions. Let NP and NC denote 
the number of fluid phases and of components, respectively. Some or all of the 
components may be adsorbed on solid. In our conceptual model, we shall regard 
the adsorbed components as constituting a separate adsorbed phase. We shall 
denote it by the subscript 'ad'. The solid itself is regarded as an additional (single- 
component) phase. Storage of energy and mass on interphase boundaries is assumed 
to be negligible. 

Let 0~ denote the volumetric fraction of an m-phase. The macroscopic balance 
equation of an extensive quantity, E "y, of the c~-phase, having a density e~ (= E "y per 
unit volume of the c~-phase) obtained by averaging the corresponding microscopic 
equation (Bear and Bachmat, 1991) is 

O0~e~ 
Ot 0o( z o+jZ;) " �9 - f ~ z  + O~p~F~, 

where Jhtr'2 denotes the flux due to hydrodynamic dispersion of E 7 in ~, and 

(45) 

P 

E~ ] .E~ 7 ,'7 dS 
J S  ,~t3 

(46) 
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denotes the rate at which E "Y moves from the a-phase to all fl-phases across their 
common interface, Ss~, with ~ denoting E~ per unit mass of a, andj~ ~ denoting 
the diffusive flux of E "Y, and u denoting the velocity of ,-qs~. Note that all terms 
in (45) are at the macroscopic level, while those in the integrand of (46) are at the 
microscopic one (although the same symbols are used). 

The balance equation for the mass of a 7-component is obtained by setting 
e~ = psc~ ,  where p~ is the mass density of the a-phase. The energy balance for 

EAt 
the a-phase is obtained by inserting % - es = psus,  where us is the internal 
energy (per unit mass) of the a-phase. The momentum balance equation for  the 

E~ M Ps Vs.  a-phase is obtained by setting % - % = 
The various dispersive and diffusive fluxes are related to appropriate intensive 

quantities by dynamic constitutive relations. 

Mass of  a component. The diffusive flux of a 7-component in an a-phase within 
a porous medium is expressed as an averaged form of Fick's law which takes the 
form 

(47) 

where D *~ denotes the coefficient of molecular diffusion in the a-phase that occu- 
pies part of the void space in a porous medium domain. It takes into account the 
tortuosity of the phase within the void space. For simplicity, we have regarded the 
a-phase as a binary system. Actually, there is coupling among components. 

The dispersive mass flux of the V-component, J*~, is expressed by a Fickian 
type law, i.e., the flux is proportional to the gradient of the mass density of the 
considered component, 

J ; "  = -psn . (48) 

where D is the coefficient of dispersion of the a-phase. 
The mass balance for the solid phase takes the form 

0 0 

We neglect deformation of the adsorbed phase and diffusion of mass. 
The mass balance for the 7-component is given by 

(49) 

NPad  = (50) 

Here, -r Pad is the REV-averaged mass density of the adsorbed 7-component given 
by 

pdL/. 
Pad ~ ~oo ado 

(51) 
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where ~ "Y Dad = OadPad6dad" However, since the volume of the adsorbed phase is 
usually very small, i.e., O~d << 0s, O~d << 0~, it is more convenient to u s e  PTad as a 
variable instead of O~d and WTad. 

Thus, we have NP • NC mass balance equations for the NC 7-components 
in the NP fluid phases, NC balance equations for the NC 3' components in the 
adsorbed phase, and one balance equation for the solid matrix. We, therefore, have 
a total of (NP + 1) • NC + 1 mass balance equations. 

Heat o f  a phase. The heat flux of a phase at the microscopic level is expressed 
by Fourier's law. By averaging this law over an REV, we obtain its macroscopic 
equivalent (e.g., Bear and Bachmat, 1991), 

= VT , (52) 

where ~* denotes the coefficient of heat conduction in the a-phase that occupies 
part of the void space. 

We assume that the adsorbed phase, because of its small heat capacity, is 
in thermal equilibrium with the solid phase (T~d = Ts). Therefore, the energy 
balance equation for the adsorbed phase is not needed. This leaves NP energy 
balance equations for the phases and one equation for the solid matrix, resulting in 
a total of NP + 1 energy balance equations. 

Momentum o f  a phase. The diffusive flux of momentum of a phase is expressed 
by minus the stress tensor in that phase, a s .  For a fluid phase, the stress tensor 
can be decomposed into the sum of the shear stress, -i- and pressure, p, in the form 
cr~ = T~ -- p~6, where ~5 denotes the unit tensor. 

For a Newtonian fluid phase, the shear stress, 7-~, is expressed in terms of the 
gradient of the fluid's velocity by the constitutive relationship 

~-~ = ~ [ V V ~  + (VV~) T] + ~ ' V .  V ~ ,  (53) 

where # is the dynamic viscosity, and #~ is the bulk viscosity. Actually, Equation 
(53) expresses the constitutive equation for a fluid phase. Here, we assume, as an 
approximation, that the same form of expression is valid also at the macroscopic 
level. The coefficients have to be determined experimentally for any given porous 
medium. 

For the solid matrix, the intrinsic averaged stress in the solid, as ,  is not the strain 
producing stress, as we have to take into account the fact that each solid grain (say, 
in a granular porous medium) is almost completely surrounded by fluid(s), say, 
water and air. The pressure in the fluids produces an additional stress in the solid 
(because we refer to stress as positive for tension and to pressure as positive for 
compression, the pressure in the fluids actually reduces the stress in the solid). 

Terzaghi (1925) introduced the concept of effective stress, cry, defined for a 
single a-phase fluid ( f )  that occupies the entire void space, as 

a :  = (1 - r  - aS) ,  (54) 
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o r  

a.~ = ~,r'~ + ,r I, (55) 

(e.g., Bear and Bachmat, 1991) where r = 0s is the porosity. Note that here the 
effective stress is a phase average (i.e., per unit area of porous medium), while the 
solid and fluid stresses are intrinsic phase averages. For a multiphase system, we 
use an average stress in the fluids occupying the void space, e.g., 

o'f = ~ S&o'~. (56) 

Usually, we neglect the shear stress in the fluids, so that (55) reduces to 

' (1 q5)(o% + ;~6) ,  or  s ~ (57) 

where p~ denotes the average pressure in the fluids that occupy the void space. For 
example, we may use p~ = ~(~)  S,~p,~ where S~ is the a-phase saturation. 

For a thermoelastic solid skeleton, we may now relate the deformation to the 
effective stress by the constitutive relation 

,,'s = #'s[Vw, + (Vw, )  T] + [ , " v  . ~  - , (T~  - T0)],~, (58) 

I !  where ws denotes the displacement in the solid matrix, and r / =  (3A~' + 2#~ )aT.  

Again, constitutive relation is valid at the microscopic level, i.e., for a thermoelastic 
solid. Here we have assumed that the same form, but with different coefficients, is 
also applicable at the macroscopic level. 

In order to solve for the displacement, an additional relationship is required-one 
that relates the solid's velocity to the displacement, viz., 

Dvsws OWs 
Dt = V~, or approximately Ot - V~, (59) 

where 

Dvs(. . )  _ Ow~ 
Dt - Ot 

- -  + V s - V ( . . )  (60) 

is the material derivative of (..). 
If the inertial terms are neglected and certain simplifying assumptions are made, 

the averaged momentum balance equation for a fluid a-phase reduces to the well 
known Darcy's law, 

V~ - Vs = - OMza (Vp~  + p ~ g V z ) ,  (61) 
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in which ks is the effective permeability of the a-phase, and #a is its dynamic 
viscosity. 

5.2.  DEGREES OF FREEDOM UNDER NONEQUILIBRIUM CONDITIONS 

The balance equations assume approximate equilibrium with in  each phase present 
in the REV, but not be tween  phases. The balance equations provide information on 
the following state variables: 

Kind Number of equations 

c~d 

0a, 0s NP + 1 

T ~ , T s  N P + I  

p~ NP 

v~,vs N P + I  

ws 1 
where a --- 1 , . . . ,  NP. The total number of variables is 

NV -- NC • NP + NC + 4NP + 4. (62) 

We have not listed the phase internal energies, us, and the densities, p~, as they can 
be related to the other variables through appropriate constitutive relations, assuming 
macroscopic thermodynamic equilibrium within each phase. For example, 

~-~-~ = tS~(~--d ~, T~-~, ~--~-~), (63) 

where t3~ is the same constitutive function as for the microscopic value of 
density. 

The actual number of independent variables is much smaller due to various 
constraints. There are NP + 1 constraints on these variables due to the following 
relations: 

NP 

0~ + 0~ = 1, (64) 
o~=1 

and 

~ w ~  = 1. (65) 
(-y) 

In addition, we have to take into account the NP - 1 capillary pressure relation- 
ships, 

Pl = Pc~ - Pclc~(06, Tl3, co~), ol = 2,. . . ,N-P. (66) 
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The total number of constraints is 

NE = 2NP. (67) 

The number of degrees of freedom is equal to 

NF = NV - NE = NC • NP -t- NC + 2NP + 4. (68) 

To solve for these primary variables, we have the following NB = NV - NE = 
NC • NP + NC + 2NP + 4 = NF number of partial differential equations: 

Kind Number of equations 

NC x N P + N C +  1 

N P +  1 

N P + I  

1 

The set of primary variables is, in general, not unique. An example of a set of 

Mass balances 

Energy balances 

Momentum balances 

Definition of ws 

NF primary variables is: 

Kind Range 

co~ 7 =  
t Y ~  

P~d 7 = 

1 - e) 
Pc~ a = 

Ts 

v~ 

Ws 

1 , . . . , N C -  1 

1 , . . .  ,NP 

1 , . . .  ,NC 

1 , . . . , N P  

1 , . . .  ,NP 

1 , . . .  ,NP 

Number 

(NC - 1) • NP 

NC 

1 

NP 

NP 

1 

NP 

1 

1 

Let us show how the other variables can be solved in terms of these primary 
variables. For example: 

- We first solve for the 0~ (c~ = 2 , . . . ,  NP) in terms of the Pc~, using the capillary 
relationships in (66). 

- We then solve for 01 in terms of the other 0n and 0s, using (64). 
- Finally, we solve for a~p, using (65). 

At low volumetric fractions, the volumetric fractions may not be a unique 
function of pressure, and we may need to use volumetric fractions instead of 
pressure (see Nitao and Bear, 1993). Thus, another possible set of primary variables 
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TABLE I. degrees of freedom and primary variables for nonequilibrium case 

Deformable Darcy's Isother- NF Primary variables 

solid law mal (7 '  = 1 , . . . ,  NC - 1; 

7 = 1 , . . . , N C ;  

ce = 1 . . . .  , NP) 

Yes No No 

Yes Yes No 

No Yes No 

No No No 

Yes No Yes 

Yes Yes Yes 

No Yes Yes 

No No Yes 

N C •  Pa, w~',  p'v V,~, V~, 
w~,O,,T,~,T, 

NC • NP + NC + NP -t- 4 p~,  w~ 7',  Pad~ Vs~ Ws, 

08, T,~,T~ 
N C x N P + N C + N P + I  p~, w~', 7 T~, T~ Pad, 

"v ~ p'V Vc,, Y~, N C x N P + N C + 2 N P - I - 1  pc,, w~ ,  ~a, 

T~ 
N C x N P + N C + N P + I  p~, w~', p7 Va, V,, ad~ 

Ws~ Oa 
"l t 7 N C x N P + N C + 3  pc,, w~ , P~a, Vs, w~, 

0, 
NC x NP + NC p~, w T', "Y Pad 
NC x NP + N C  + NP p~, w~', "~ Pad~ Vo~ 

is obtained by replacing the p~'s by the set, Pl, 0~ (a  = 2 , . . . ,  NP). In this case, 
the p~, (a  = 2 , . . . ,  NP) are obtained as functions of the 0~ and Pl using (66). 

Note that within an REV, the number of phases may change as phases may 
disappear or appear. Thus, the actual number and type of primary variables may 
change with time. 

The primary variables will also depend on the type of problem that is being 
modeled and the simplifications involved, e.g., whether or not the solid is assumed 
to be deformable. In the latter case, the variables Vs, ws, and 0s are not needed, 
and NF is reduced by three. Other cases are when the problem is isothermal, so 
that Ts = T~ --- initial temperature. In this case, the temperatures are not needed 
as primary variables, and NF is reduced by NP + 1. If there is approximate thermal 
equilibrium between phases, T~ - T~, and only the temperature, say T~, is needed, 
then NF is reduced by NP. When Darcy's law is valid, the phase velocities V~ can 
be expressed in terms of the other primary variables so they should not be counted 
as primary variables. These special cases are summarized in Table I. 

If the phases are in thermal equilibrium with each other, the T~ = T~ and the 
T~'s can be removed from the set of primary variables and NF is reduced in all of 
the above cases by the amount NP. If the components on the absorbed solid are in 
chemical equilibrium with the fluid phases, then the "Y Pad are no longer needed as 
primary variables and NF is reduced by NC. 
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5.3. DEGREES OF FREEDOM UNDER APPROXIMATE CHEMICAL AND THERMAL 

EQUILIBRIUM 

Suppose that at every point within the domain, and at every instant of time, the 
system is assumed to be in approximate thermodynamic equilibrium, i.e., the system 
is in chemical and thermal equilibrium with (15) and (14) holding approximately. 
Here, 'point' means 'macroscopic point,' i.e., the centroid of an REV, and the 
equilibrium is between the averaged (over the REV) behavior of the phases and 
the components at that point. 

Under equilibrium, we assume that adsorption isotherms take the form, 

P~d/Pb = f~(w~p~), (69) 

where Pb is the bulk density of the solid matrix (assumed constant), with 

Pb =- Uo Ps dL/. (70) 
$ o  

We start with the same NV = NC x NP + NC + 4NP + 4 variables as above. 
We have the following constraints: 

0~ + E(~)0~ = 1 1 

E(~)w~ = 1 NP 

T~ = T~ NP 

#~ =/z~ ( N P -  1) • NC 

p d/p  = N C  

capillary pressure NP - 1 

The number of constraints is NE = NP • NC + 3NP. The number of degrees of 
freedom is 

NF = N V -  NE = NC + N P  + 4. (71) 

The mass balance equations for all components may be summed over all the 
phases to give NC component balance equations. The exchange fluxes cancel since 
f v  = _f~__+~. This leaves NC mass balance equations for the 7 component 
and one mass balance equation for the solid matrix. Similarly, the exchange fluxes 
cancel when the phase energy balance equations are summed over all the phases 
within an REV, resulting in a single energy balance equation. 

We now count the number of balance equations. 

- Mass balance NC + 1 

Energy balance 1 

Momentum balance NP 

Definition of ws 1 
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TABLE II. Degrees of freedom and primary variables for equilibrium case 

Deformable Darcy's Isother- NF Primary variables 

solid law mal (7 = 1 , . . . , N C -  NP; c~ = 1, . . . ,NP) 

Yes No No N C + N P + 4  pa, w~, V~, V~, ws, 0~, Ts 
Yes Yes No N C + 4  p,~, w~, V~, ws, 0~, T. 
No Yes No NC + 1 p~, Wl 7, T~ 
No No No N C + N P +  1 p~, w~, V~, T~, 
Yes No Yes N C + N P +  1 p~, Wl 7, V~, Vs, w~, 0s 
Yes Yes Yes N C + 3  p~, w~, V~, w~, 0~. 
No Yes Yes NC p~, w~ 
No No Yes N C + N P  p~, w~, V~ 

The total number of equations is 

NB = NC + NP + 4. (72) 

This is also equal to the number of degrees of freedom, NE 
A possible set of primary variables is p~(a  = 1 , . . . ,NP) ,w~(  7 = 

1 , . . . , N C  - NP), T~, V~ (c~ --- 1 , . . . ,NP) ,  V,, w~, 08. Solution of the 0~ in 
terms of the primary variables is described above for the nonequilibrium case. It 
is obvious that the T~'s are obtained through T~ = T~. The values of w~ (c~ = 
2 , . . . ,  NP; 7 = 1 , . . . ,  NC - NP) are found through solving the equations 

tt~(w~, p~ T~) "Y ~ T1). = # l ( W l '  Pl~ (73) 

The remaining w~ (a  = 1 , . . . ,NP;  7 = N C -  N P +  1 , . . . , N C ) a r e  found by 
solving 

NC NP-NC 

E w~ = 1 -  E w~, 
"v=NC-NP+I -y=l 

(74) 

where the right-hand side is known and the left-hand side contains the variables to 
be solved for. The p~d'S are obtained from (69). A number of particular cases are 
considered in Table II. 

It is obvious that for isothermal problems, T, is no longer a primary variable and 
that NF is reduced by one. For a nondeformable, isothermal system with Darcy's 
law, we have NF = NC. 

5.4. PARTIAL PHASE EQUILIBRIUM 

It is possible that the exchange of certain extensive quantities between NPE phases 
(1 < NPE < NP) occurs sufficiently fast, so as to establish equilibrium between 
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them, with respect to the considered quantities. The other N P -  NPE phases are not 
in equilibrium with respect ot the same quantities. This means that the potentials 
associated with the considered quantities are approximately constant over the NPE 
phases. It is then clear that the number of degrees of freedom is smaller than in the 
case where all phases are not in equilibrium with each other. In particular, consider 
the case where NPE phases are in equilibrium with each other with respect to the 
mass and energy of the NC components. Then, we have the (NPE - 1) x NC 
constraints from the equality of chemical potentials between the NPE phases, and 
NPE - 1 constraints for the equality of temperatures, for a total of NPE • NC - 
NC + NPE - 1 additional constraints. Adding these to the NE (=  2NP) constraints 
that correspond to the case of complete nonequilibrium, we obtain 

NE = 2NP + NPE x NC - NC + NPE - 1 

constraints. Since the number of variables is NV = NC • NP -4- NC + 4NP + 4, 
the number of degrees of freedom is 

NF = NV - NE = NC • (NP - NPE) - NPE + 2NC + 2NP + 5. 

8 (6 1 , . . . , N C  NPE), w~,(7 A possible set of primary variable is w~o -- - = 
1 , N C  1) ,  -r , ' "  - Pad (7 = 1 , . . . , N C ) ,  0~, p~, T~,, Ts, V~, ws, where a = 
1 , . . . ,  NP, ~' = 1 , . . . ,  N P -  NPE denotes all the phases that are not in equilibrium, 
and O~o is one of the NPE phases. 

5.5.  EXAMPLES 

CASE A 
Phases: Liquid (g), deformable solid (8). 
Components: Water (w). 
Degrees of freedom: NF = 4. 
Example of primary variables: Pe, T, lie, V~. 
Balance equations to be solved: 

Mass balance for w-component. 
Momentum balance for g-phase (or use Darcy's law). 
Energy balance for the porous medium. 
Momentum balance for porous medium (e.g., equilibrium equation). 

CASE B 
Phases: Liquid (g), gas (g), deformable solid (8). 
Components: Water (w), air (a). 
Degrees of  freedom: NF=6. 
Example of primary variables: Pe, Pg, T, Ve, Vg, Vs. 
Balance equations to be solved: 

Mass balances for w-component. 
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Mass balances for a-component. 
Momentum balance for the g-phase. 
Momentum balance for the g-phase. 
Momentum balance for the porous medium. 
Energy balance for the porous medium. 

It may be of interest to note the relations among the various molar fractions of 
the components in this example. 

p~ + p~ : pe, 

n~ + n~ ~ = 1, 

7Z w 

~ ' -  T) ,  

p~ + p;~ : p~. 

a +  ~ = l .  ng n9 

?z a 
: ~;,~(p~, p~, ~). 

n~ 

Hence, assuming the K;'s to be independent of the n's, we have 

n~--  ~ - - - - w  ~ -- a w " K.g,~ - K.g,e Eg,e - K.g,e 

CASE C 
Phases: Liquid (g), gas (g), nondeformable solid. 
Components: Water (w), air a, dissolved/volatile component, (7). 
Degrees of freedom: NF = 6. 
Example of primary variables: Pc, Pg, T, Ve, Vg, w'~. 
Balance equations to be solved: 

Mass balance for 7-components. 
Mass balance for w-component. 
Mass balance for a-component. 
Momentum balance for the g-phase. 
Momentum balance for the g-phase. 
Energy balance for porous medium. 

6. Conclusions 

We have developed expressions for the number of degrees of freedom, or primary 
variables, for a variety of cases of flow of multiple multicomponents phases in a 
deformable porous medium under nonisothermal conditions. Our results require 
that the phases and the components be in thermodynamic equilibrium. We have, 
therefore, analyzed the meaning of chemical, thermal, and mechanical equilibria 
among phases and components, both at the microscopic level and the macroscopic 
one. We have presented a number of examples to demonstrate the usefulness of the 
results. The proposed expressions for the number of degrees of freedom represent 
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the equivalent of Gibbs Phase rule for the case of a porous medium in which 
phenomena of transport are modeled at the macroscopic level. 
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Appendix A. Conditions for Thermodynamic Equilibrium in a 
Porous Medium 

A.  1. CONDITIONS WITHIN A PHASE 

We derive conditions for equilibrium within a fluid a-phase that occupies the 
subdomain Ho~ within the void space of a porous medium domain. Surface forces 
are included among the forces fields that act on the fluid. 

If the considered subdomain is in thermodynamic equilibrium, we may replace 
its boundary by a rigid closed boundary without changing the thermodynamic state 
of the system. The second law of thermodynamics applies to a closed system. 
It states that the total entropy of a closed system is maximized with respect to 
variations in the thermodynamic state of the system. 

In order to apply this law, we first subdivide the phase domain into volume 
elements Hk such that the size of each element is sufficiently small to ensure that 
thermodynamic properties are essentially uniform within it. Let x~k denote the center 
of the kth element, of volume H (x~), m "y (x~) denote the mass of the 7-component 
in the element, and g(x~) denote the internal energy in the element. 

The total entropy of the kth element is a function of the mass of component, 
internal energy, and volume. Because of surface forces and other force fields, it 
also depends on the location of the center of the element. Denoting this function 
by the symbol S*, the entropy of the kth element is 

S(x~) = S*(ra'Y(x~), g(x'k), H(x~), x~). (75) 

The total entropy of the phase domain is given by the sum 

S~ = ~ S*(m'~(x~), g(x~), H(x'k) , x'k). (76) 
(k) 

This entropy is maximized with respect to variations in the internal energy distri- 
bution, g(x~), while keeping ra'Y(x~) and H(x~) fixed. Because Ho~ is a closed 
system, variations in internal energy are subject to the constraint that the total 
energy is a constant, s That is, 

$(x~) = g~. (77) 
(k) 
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The method of Lagrange multipliers is used to eliminate this constraint by introduc- 
ing an auxiliary variable, or multiplier, which we call As. Instead of maximizing 
the entropy, the new functional, 

F = S~ + Ae ( ~  g(x~) - g,~) (78) 

is maximized subject to variations in s not constrained by (77). 
The first-order variation, ~F, of F must vanish at the maximum. We find that 

~F = y~ O-~g m.,,u(X~)t~g(x~) + Ae y~'~6g(x~) + ~Ae (~_,g(x~) - s 
(k) (k) (k) 

= ~ T':-" & ~E(x~) +,~As E(x~)- & , 
(k) \ (k) 

(79) 

where we used the well-known result, 

1 OS (80) 
- ~ ,~-,,U,x," T 

In order for the first-order variation to vanish, we must have 

T(x'k) 
Ae = 0. (81) 

Therefore, T must be constant over L/o~. 
A similar argument holds by varying the mass of 7-component, m'V(x~). The 

functional to be maximized is 

(82) 

The variation is 

(k) (k) 

where the chemical potential #'Y is defined as 

- -  , (84) 
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An equivalent definition in terms of the Gibbs free energy, Ga, is 

#.y OG E,u,~"r - O r e : ,  " (85) 

Hence, for the first-order variation in F to vanish, we must have 

#'Y(x~) _ A ,~  = 0. (86) 
T 

Therefore, #'~ must be constant throughout the phase domain, b loa .  

The volume, H(x~), of each element can also be varied. However, this cannot 
be done without moving the centers, x~, of the elements. This, in turn, will affect 
the entropy function, S*, since it depends explicitly on x t due to force fields. The 
argument that we have just used does not apply. Howver, when no force fields exist, 
we may proceed as before and maximize the entropy. The constraint is 

L/(x~) = L/o~, (87) 
(k) 

where L/o~ denotes also the total volume of Uo~, which is a constant since the outer 
boundary was replaced by a rigid one. The functional to be maximized is 

F=S~+Au(~~bt(x'~)-bto,~)., (k) (88) 

Using the relationship 

p O S  (89) 
T - ~ m,,u,x,' 

the variation in F is 

~F = ~-'~ (P(~'k)(k) Au) 6H(x~)+6Au(~-~H(x~)-Ho~),\ (k) (90) 

which implies that 

P(X'k) - Au. (91) T 
Therefore, in the absence of force fields, the pressure must be uniform over the 
phase domain. 

The above arguments may be extended to the entire REV domain and not 
just to a given phase domain. The above steps still hold when the fluid domain 
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within the REV, including the space within interphase boundaries (--_ interface), 
is subdivided into subelements. The explicit dependence of the entropy function 
upon the microscopic point x~ accounts not only for inhomogeneity in the force 
fields, but also for changes in the form of the function for different phases. We 
conclude that chemical potentials and the temperature must be uniform within the 
entire fluid portion of the REV, inclusive of interfaces. Pressures, however, are 
uniform only within phases and, then, only when there are no force fields. 

A.2. CONDITIONS ACROSS INTERPHASE BOUNDARIES 

From the above discussion, it follows that the chemical potential and temperature 
are uniform across interphase boundaries. Let us now derive the conditions for 
pressure across such boundaries. 

Consider a volume element, F, within an REV, which contains an a-phase, a 
/3-one, and the interface between them. Since, at equilibrium with its surroundings, 
there exist no fluxes across the boundaries of F, we replace the element by an 
identical element that is thermodynamically isolated, and derive conditions for the 
isolated element. 

The size of the element is made sufficiently small so that any variations in 
thermodynamic properties over the element, including those due to external force 
fields, are negligible. At the same time, the element must contain the interface. 
The size of the element must be much larger than the thickness of the interface in 
order for the interface to be treated as an infinitely thin surface. Any force field 
emanating from the interface must have a limited range, one that is much smaller 
than the element size so that those portions of the a and fl phases are affected are 
so small that they can be neglected and considered as part of the interface. 

The entropy of each )~-phase ()~ = a,  /~) can then be expressed as a function 
of the mass ra~, of the 7-component, the internal energy, g:~, and the volume 

L/;~ by 

S~ = S~(m~, g,x, Lt,x). (92) 

All the outer boundaries of the element are rigid, so that changes in the phase 
volume can result only from displacement of the interface. Also note that pressure, 
temperature, and concentrations are uniform over each respective phase within the 
element. 

We now find the first-order variation in the total entropy, S, of the element, as 
a result of displacing the interface while fixing the internal energy and the number 
of component mass, 6g = ~m "~ = 0. Because the entropy is a local maximum at 
equilibrium, the equilibrium conditions can be obtained from finding its first-order 
variation and setting it equal to zero. 

The total variation in entropy is a sum of entropy variations of the constitutive 
parts. Hence, 

~S = ~S~ + ~S~ + ~S~;~, (93) 
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where 6S~;~ is the entropy variation of the interface. From the first and second law 
of thermodynamics, it is well known that 

~5S;~= TA ' A = a ,  ft. (94) 

In the above expression, the term ~5WA is the work done by the A-phase as the 
interface is displaced. 

Let ~5r denote the displacement vector defined on the interface. The work done 
by the A-phase is 

~5W;~ = [ ~5r. (crA �9 u;~) dS,  (95) 
J S  

where u~ is a unit vector normal to the interface that is outward to the A-phase, 
and ~r;~ is the stress tensor in the k-phase. 

Therefore, the total change in entropy of the A-phase is 

1 
6r .  (o',x �9 v; , )S .  (96) 

The change in entropy of the interface is given by the change in interfacial 
energy associated with the surface tension, %5,  between the oe and fl-phases, so 
that 

~S~ a - 7 ~ ~  (97) 
T 

The change in surface area can be expressed in terms of displacement (Landau 
and Lifshitz, 1959) by the expression 

f s  6r .  u ~  )G as, 
c,/~ AlP 

(98) 

where R~;~ is the mean radius of curvature of the S~/~-surface. It can be expressed 

in terms of the principal radii of curvature, R(/~ )-- and _R!~,'-" in the form 
OQ) t ip  

2 1 1 
_g~O - R(1) + u(2-----y. 

It follows that 

1 [ &. u~;3 

(99) 

(100) 
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The  en t ropy  var iat ion is, therefore,  

1 ~r. ~ r ~ - - o - ~ +  . u ~ p d S ,  

J. BEAR AND J. J. NITAO 

(101) 

where  cr~ and a~ are the l imit  values o f  the stress tensors as the interface is 

approached.  In order  for  the variat ion to vanish,  we  mus t  have  at every point  on 

"the interface 

o '~ �9 v ~  + 7 a ~ / / ~  = o-~. g ~ .  (102) 

I f  we  n o w  neglec t  shear  stresses in the fluids, we  obtain o '~ = - p ~ ,  and 

- = (103)  

The  above  a rguments  can be extended to give condi t ions  also across the interface 

be tween  a fluid phase  a and a sol id phase  s, 

cr~ �9 u = o 's  �9 ~'. (104) 
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