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Abstract. The assumption of Vertical Equilibrium (VE) and of parallel flow conditions, in general, 
is often applied to the modeling of flow and displacement in natural porous media. However, the 
methodology for the development of the various models is rather intuitive, and no rigorous method 
is currently available. In this paper, we develop an asymptotic theory using as parameter the variable 
RE = L/f lv/-~/kH. It is rigorously shown that the VE model is obtained as the leading order 
term of an asymptotic expansion with respect to 1/R 2. Although this was numerically suspected, 
it is the first time that it is theoretically proved. Using this formulation, a series of special cases 
are subsequently obtained depending on the relative magnitude of gravity and capillary forces. In 
the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), 
Yokoyama and Lake ( 1981) and Lake and Hirasaki ( 1981), on immiscible and miscible displacements. 
In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive 
the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and 
transverse dispersion. 
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Nomenc la ture  

C concentration,  dimensionless  

D dispersion tensor [L2T-  1 ] 

f fractional flow 

g gravity acceleration [LT  -2] 

H reservoir  thickness [L] 

h d imensionless  front location 

k mean  permeabi l i ty  [L 2] 

K permeabi l i ty  [L 2] 

L reservoir  length [L] 

M viscosi ty  ratio, dimensionless  

NCT transverse capillary number  

N c  gravi ty  number  
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NTD 

P 

q 

RL 
S 

T 

t 
u 

v 

X 

x 

Y 
w 

transverse dispersion number 

dimensionless pressure 

flow velocity [LT -1] 
VE parameter 

saturation 

time IT] 

dimensionless time 

dimensionless horizontal velocity 

dimensionless vertical velocity 

horizontal coordinate [L] 

dimensionless horizontal coordinate 

dimensionless vertical coordinate 

dimensionless vertical velocity 

Greek 
o~ dispersivity [L] 

7 interfacial tension [MT -2] 
/~ permeability ratio, dimensionless 

E aspect ratio, dimensionless 

|  gravity number 

~; dimensionless permeability 

)~ dimensionless mobility 

# viscosity [ML-1T -1] 
II dimensionless pressure 

p density [ML -3] 

~b porosity, dimensionless 

~b normalized mobility, dimensionless 

Subscripts 
a air 

c capillary 

H horizontal 

L longitudinal 

o oil 

or residual oil 

r relative 

T total 
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V vertical 

w water 

wr residual water 

0 leading order 

1. Introduction 

The description of displacement processes in oil reservoirs or water aquifers is 
often greatly simplified when the reservoir is narrow and long and the flow almost 
parallel. This is typically the case in many applications. Approximations under 
such conditions have been postulated by many researchers. In general, a Vertical 
Equilibrium (VE) is typically assumed (Figure 1). Depending on the strength of 
gravity, the various approaches can be classified in two categories: one in which 
viscous forces and heterogeneity are predominant on the distribution of phases, 
and another in which the phases completely segregate due to gravity. 

The first category is intended to capture primarily the effects of viscous forces 
and their interaction with heterogeneity (Figure 2). It has been studied by several 
authors including Coats et al. (1971), Yokoyama and Lake (1981), Zapata and Lake 
(1981 ), and more recently by Pande and Orr (1989) and Lake et al. (1990). A useful 
discussion of VE using physical arguments can be found in Lake (1989). Since 
gravity is unimportant, the term vertical here is meant to denote the direction along 
the transverse coordinate, in which case Transverse Equilibrium (TE) would be a 
most appropriate terminology. In most of these studies a two-layer description is 
taken, using rather intuitive, although correct, in retrospect, arguments. Extensive 
numerical simulation has verified the validity of the various approaches, particu- 
larly as it regards the dimensionless parameter R L ~--- L/Hv/-~- /kH,  which must 
take large enough values for the VE to be applicable. Along the same lines must be 
considered the work by Lake and Hirasaki (1981) on tracer dispersion in stratified 
systems, as well the various phenomenological viscous fingering models, such as 
Koval ( 1963 ), Todd and Longstaff (1972) and Fayers (1984). While they have only 
an empirical basis, the numerical evidence is in many cases supportive of their 
applicability. 

The second category emphasizes gravity in addition to viscous forces and it 
should be more applicable to systems of higher permeability. Not surprising, the 
original contributions in this direction were made in connection with groundwater 
aquifers, where the so-called Dupuit assumption was introduced (see Bear, 1972). 
Viscous, two-phase flow was studied by Dietz (1953), and elaborated by Le Fur 
and Sourieau (1963), Beckers (1965) and others. A complete segregation of the 
immiscible phases is assumed, a sharp macroscopic interface separating the two 
regions (Figure 3). Recently, Fayers and Muggeridge (1990) extended this approach 
to tilted reservoirs with dip. 
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Fig. 1. Schematic of heterogeneous reservoir for VE. 

Fig. 2. Schematic of viscous fingering in VE. 

While the two classes seem to derive from the same conditions, no effort has 
been taken to treat them in a uniform fashion. In fact, it is not entirety clear which 
are the relevant parameters in the parameter space that demarkate the two regimes 
and where do the various approximations hold. At present, most of the available 
evidence is numerical. While this may be sufficient under certain conditions, a 
rigorous derivation would be nonetheless desirable to clearly identify the various 
approximations and assumptions. This is particularly the case for layered systems, 
where presently available formalisms are awkward and difficult to extend to many 
layers. 

The objective of this paper is to provide a unified approach based on a rigorous 
asymptotic expansion of the flow equations in systems where the VE is expected to 
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"watt  "oil" 

Fig. 3. Schematic of gravity-segregated displacement. 

apply. These include isotropic reservoirs which are narrow and long, or anisotropic 
reservoirs with a large kv/kn ratio. First, the fundamental asymptotic analysis 
is developed for a model immiscible, two-phase displacement. In the absence of 
gravity or capillarity, an extension of the classical Buckley-Leverett equation, that 
also includes cross-flow (viscous mixing) terms, is obtained. This equation is then 
applied to a layered system of arbitrary number of layers. A hyperbolic non-linear 
system results that describes the interaction between the layers. Weak effects of 
capillarity and gravity are next introduced. The problem for miscible displacement 
is formulated in a subsequent section. Tracer dispersion in a layered system is 
analyzed leading to the results of Lake and Hirasaki (1981). Finally, we consider 
strong gravity and capillary effects that lead to segregated flow. The conditions 
for the latter are specified and we derive generalized expressions for the Dupuit 
and Dietz approximations. Flow segregation due to gravity-capillary equilibrium 
is also discussed. 

2. Asymptotic Analysis 

Consider the constant rate immiscible displacement of 'oil' by 'water' in a two- 
dimensional reservoir of t h i c k n e s s / / a n d  length L, and denote E - H/L. The 
latter does not necessarily have to be small. For simplicity, the reservoir has no 
dip (for an extension to the case with dip see Yortsos, 1992). We take in general 
an anisotropic, heterogeneous system, with different permeabilities in the principal 
directions taken to coincide with the 'horizontal' ( / / o r  X)  and the 'vertical' (V or 
Y) directions, respectively 

KH = knnu (X ,  Y); Kv  = kv~v(X,  Y). (1) 
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Here, KH, Kv  denote the two permeabilities, which can be further normalized 
by their mean values kH, kv. The spatial dependence is thus on the normal- 
ized permeabilities ai > 0, (i = / / ,  V) which are dimensionless and such that 

f n  ai dY = H,  when the x-dependence is neglected. Otherwise, the latter con- 
straint is not satisfied. We normalize 'horizontal' and 'vertical' scales, X and Y, 
by L and H,  respectively: 

x = X / L ;  y = Y / H ,  (2) 

and scale all velocities by the injection velocity q, time by L/q,  and the fluid 
pressure by Lq#o/kH. If S denotes a 'water' saturation, the dimensionless balances 
become 

[+os 10vw 
EL Ot + Ox ] + Oy =0 '  

e O  (uw + Uo) + ~---~(Vw + Vo) = O, 

(3) 
~, Opi . 

u i = - a n ( x ,  y) ~ x '  i = o ,  w, 

" [Opi ep i kvg] .  
= - a v ( x ,  t o y  + - , i =  o, 

Here we defined 5 - kv/ki-i, we have taken the y coordinate to increase upwards, 
and we have used ui and vi to denote the 'horizontal' and 'vertical' components, 
respectively, of the dimensionless velocity of fluid i. In the absence of capillarity 
and gravity, ui and vi can be expressed in terms of the total velocities u -= Uw + Uo 
and v -_ Vw + Vo, with the use of the fractional flow function fw(S), 

Uw = U fw( S); Vw = V fw( S). (4) 

In the presence of gravity (4) is also rate-dependent, and we shall treat this case 
in a subsequent section. In our notation, )~T is the total mobility, )~T -- )~w + ;~o, 
where )~w - #o/#wkrw and )% - kro, thus fw = )~w/)~T. We, then, obtain 

e r  + (Ufw) + (Vfw) = 0, 

Ou Ov 
E +N=o, 

(5) 

u = --aH(x , y)~T~x , 

Op 
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The above suggests the further substitution v = ew, which yields 

os Ofw Ofw 
r + + w-b- y = o, 

Ou Ow 
o - - ; + N  : o ,  

Op 
U = --/~T/'~H(Z, y) O---x' 

1 Op 
- - W  ~ .  L -aw, v(X, y)N. 

(6) 

It follows that the relevant dimensionless group is RL, defined as RL = x/~/e = 
L / H v / - ~ / k  H, in addition to the standard dimensionless functions fw, AT and the 
permeability variables. The dimensionless parameter RL is precisely the parameter 
used in justifying the use of VE (Zapata and Lake, 1981; Lake, 1989). To obtain 
the appropriate VE model, we expand in a regular asymptotic expansion 

1 
U ----- U 0 - 1 -  ,~ l t  I + , 

1 
- -  ~ ~ w = wo + R ,  + ", 

1 
P = Po + - ~ P l  + "" ", 

" ~'g 

1 S 
S = SO + R----~L 1 + ' " .  

(7) 

and take the limit R 2 >> 1. Substitution into (6) yields to leading order, 

OSo Ofw 
r + uo-~z + wo = O, 

Ouo Owo = O, 
0--~ + -Oy 

. Opo 
uo = --ATgH(X, y) -~X' 

Opo 
- -  O .  

Oy 

(8) 

Equation (8) dictates P0 = p0(x, t), i.e., the pressure is independent of the 
transverse coordinate, which is the fundamental assumption of VE, rigorously 
derived here in the limit R 2 >> 1. Numerical evidence suggests that VE is satisfied 
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quite well when RL/> 10, although good results with values as low as 2 have been 
reported (Lake, 1991). This is consistent with our asymptotic expansion, where 
the next order enters at O (1/R2), hence the error made by retaining only the first 
term should be of order 1%. The rigorous identification of the parameter RL as the 
relevant variable for the validity of VE represents the first result of this paper. 

Unless otherwise noted, we shall omit for convenience subscripts 0 and H. The 
next step is to eliminate Op/Ox by integrating (8e) along the y-coordinate. Since, 
by definition, f l  u dy = 1, we obtain after some algebra 

a~(s).(x, y) 
= (9) fl ~(s)~(~, y)dy' 

where we have assumed a constant injection rate (although the extension to a 
variable rate is also straightforward). Subsequently, we eliminate w by integrating 
(8b) 

fro y Ou w = - ~ dy, (10) 

where no-flow boundary conditions at y = 0, 1 were used. Substitution into (8a) 
yields the final result ~, J...~ 

ot + dy Ox - -  = o .  ( 1 1 )  

This equation represents the second result of this paper. The equation is a first- 
order, hyperbolic PDE, but in two spatial dimensions (x, y), and it contains only 
the saturation S as the dependent variable. More importantly, (11) contains a 
viscous mixing (cross-flow) term (third term in the LHS), which arises from VE. 
This term is fundamental to VE and it is absent from the corresponding case of 
non-communicating layers, where v = 0. In this sense, the VE approximation and 
particularly its subsequent extension to include transverse dispersion or capillarity, 
bears a relation to the typical boundary layer approximation for flow over a flat 
plate. When ~; and S are independent of y, it naturally reduces to the traditional 
1-D Buckley-Leverett (B-L) equation 

os 8fw = 0 .  (12) 
r oz 

In this sense, Equation (11) is a 2-D generalization of the B-L equation under 
the conditions of VE. We must point out, however, that because of the absence of 
capillarity, Equation (11) does not satisfy all boundary conditions, thus it is not 
expected to hold near all boundaries. The capillary correction is discussed later in 
the paper. 



A THEORETICAL ANALYSIS OF VERTICAL FLOW EQUILIBRIUM 115 

Before we proceed, let us recall the conditions for the validity of the above. It 
was derived in the limit RL >> 1 in the absence of gravity and capillarity. The first 
condition can be obeyed in systems where r is O(1) or smaller, but e << 1 (which 
also includes isotropic, but narrow and long systems), or where ~ is large and e 
is O(1). The latter condition requires that the gravity terms in (3d) are small, or 
that 

NG << 1 (13) 

where the gravity number was defined, NG -- HkHg(pw - po) /L#oq (note the 
difference in notation with Fayers and Muggeridge, 1990). This allows for the two 
Equations (8d) and (9) to remain valid. However, in order for gravity and capillarity 
to be also absent from (4) and (11), one needs the stronger constraints (see also 
below) 

1 
NG << ER----~ and NeT << e, (14) 

where the transverse capillary number was defined NCT -- V / - ~ / l I N e a  (see 
Yokoyama and Lake, 1981). As pointed out in the introduction, under these con- 
ditions, Equation (11) is a VE approximation that emphasizes viscous cross-flow 
and heterogeneity. It is expected, therefore, to control viscous fingering in such 
systems. 

The validity of VE rests on the hypothesis that in (6d) the group w / Ar~v is 0 (1), 
namely that it is not too large. We expect, therefore, that VE would be violated when 
AT becomes very small (as could be the case for a very large viscosity contrast, but 
not when a phase is at its residual, as only the total mobility is involved), when w 
becomes very large (which, as seen from (9) and (10), is possible near very sharp 
fronts), or when the vertical permeability vanishes somewhere. In all such cases, 
a boundary layer correction must be introduced. These complications, although 
quite important, will not be discussed further in this paper (see Yang and Yortsos, 
1995). 

3. Layered Reservoirs 

While the full solution of (11) is possible (Yang and Yortsos, 1995), sometimes it 
can be more practical to consider a discrete treatment. For example, this would be 
the case of a layered reservoir, where we may take 

- - < y <  ~ ;  i =  1, N. (15) 
y) __ N 
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Here, N is the number of equal thickness layers of the system. For simplicity, 
we shall denote r = ATn/ f~  ATn dy. We may then integrate (11) over y from 
(i - 1 ) /N  to i /N ,  to obtain the system 

OSi ~x  0 i 
i - ~  + r - (fi - fi_l)-~x E Cj = O; i = l ,  N. 

1 

(16) 

and 

OS AOS On 
-0-7+ U~ =B~,  (17) 

where S = [S1, $2, . . . ,  SN] T and n = [nl, /r T are (N • 1) vectors. 
A = [aij] and B = [bii] (i, j = 1, N)  are N • N square matrices with the 
following coefficients. Matrix A consists of two terms A = D - E, where 

di~ - r k OS J i' 

d~j = O, it j, 

e i j  = 
(fw(S~)- fw(S~_,)) n (0~)  

~" ~ i  )~T(Sm)nm; j ~< i - 1, 

1 i-1 - -~ E1 AT(Sm)nm; j /> i, 

where, 1 ~< i ~< N, and elj ---- 0. The inhomogeneous matrix B has coefficients 

b i j  = ( f w ( S i )  - -  fw(Si-1)),'~T(~j) 
r z 

1 ~--]N AT(Sm)nm; j ~< i -  1, 

___~ ~ - 1  AT(Sm)nm; j /> i. 

In the above we have denoted A = 1 / N ~ N / ~ T ( S m ) n m  . 

This general formulation in discrete form is free of empirical arguments and 
represents a rigorous result, apparently also obtained here for the first time. 

We observe the following: 

(18) 

(19) 

(20) 

Here, we have approximated y-integrals by sums, have denoted fi =- fw(Si), r = 
r  hi) and defined fo = 0. We may recast (16) in terms of a hyperbolic 
system 
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(1) Matrix A is neither diagonal nor symmetric. This is because of the coupling 
between adjacent layers of different properties. The coupling is due to the 
variation of the mobility with saturation. 

(2) When the layer permeabilities also depend on position (On/Ox ~ 0) a source 
(sink) term arises on the RHS of (17). Thus, in this case, heterogeneity acts in 
the form of a reaction term. This feature is also due to the coupling between 
the layers and it is absent in the single layer case. 

(3) When all layer properties are the same, the system reduces to the B-L equation, 
as expected. 

(4) For a two-layer system, we may further simplify (A = AT(S1)n 1 ~- )~T($2)/~2) 
to obtain 

~T(Sl)/~I ('Ofw'~ (21) 
dll - q~lA \ 0S J l ' 

AT(S2)g2 (Ofw'~ (22) 
d22 = q~2A \ OS ,] 2' 

d12 = d21 = 0, (23) 

ell = el2 = 0, (24) 

1 ( f w ( S 2 ) - f w ( S 1 ) )  ( - ~ )  
e21 = 2 \ ~7  - ~  /~l/g2 1 ,~T(S2), (25) 

1 ( ' fw(S2) -  fw(S1)) (0AT~ AT(S,), (26) 
e22 = --~ \ q52A 2 /~1/~2 \ ' - ~ - J 2  

hi1 = 0, hi2 = 0, (27) 

1 { f w ( S 2 ) -  fw(S1)'~ )~T(,5,1)~T(,5,2)/~2, (28) 

1 

b22 = - 2  \ ~b2A 2 j AT(S1)AT(S2)/~I. (29) 

The above contains the formulation of Zapata and Lake (1981) and Pande and 
Orr (1989), but it is here also augmented by permeability heterogeneity along the 
x-direction. The latter result is also new. 

4. Effects of Capillarity and Gravity 

When the injection rates are low enough for capillary and gravity effects to be of 
some importance, but not very low for the phases to be segregated, Equations (4) 
must be reformulated. We obtain 

NCT . . 0IIc 
Uw = 

(30) 
Vw = Vfw(S)+avAofw{NcTO~--ff c 'NG},E 
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where IIc is the dimensionless capillary pressure, that can be expressed in terms 
of a J-function representation (e.g. IIc = d(S)/x/-k-ff). Equations (5), (11) are 
appropriately modified. For instance, (5a) becomes 

0S 0 ( ]VeT . , 0IIc'~] 
" + -fix ufw + j 

0 [Vfw+mvAofw{NCTOIIc !NG}]  = 0 .  (31) 
+ -~y Oy 

We may proceed in exactly the same way as before, by substituting v = ew, 
identifying the large parameter as R~ = ,5/e 2 and expanding appropriately. In 
order for the flow not to be segregated, condition (13) must still hold, NG << 1. 
The longitudinal capillary term can be neglected, except near sharp fronts, much 
like in the classical Buckley-Leverett problem. However, transverse capillarity and 
gravity should be retained, if the following conditions are met, NCT ~ O(E) and 
NG ~ 0 (1/R2L). Then, the following equation is obtained 

OS ATt~ Ofw O [fo~AT~dy ] Ofw 
r + f l  0 ATtr dy Ox Ox ATN ~ Oy 

0 ~;vAofw R~NG . (32) =-Oy e Oy 

The relative importance of gravity over capillarity depends on the dimensionless 
ratio 

,RgNo gApHe'ff 
NCT 7 

(33) 

which is rate-independent. For thin beds of low vertical permeability, capillarity 
dominates. Then, if the typical assumption is made about IIc as a single function of 
S, the RHS above represents capillary spreading (one should keep in mind, how- 
ever, that permeability heterogeneity is likely to also imply capillary heterogeneity 
as well, see Yortsos and Chang, 1990, and Chaouche et al., 1993. This case is of 
interest but will not be considered in this study). As shown below in the case of 
miscible displacement, capillary spreading can be equivalently represented in terms 
of a macro-dispersivity. Capillary effects in VE were considered by Yokoyama and 
Lake (1981). 

When gravity dominates over capillarity in (32), then 

OS /~TI~ Ofw 
r + f l  0 ATt~ dy Ox 

0 [f~Aw~dy] Ofw 
oy _ _  _ + O ~ o ~ [ ~ v A o f w ] ,  (34) 
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where we defined 

/ ;kvg ( p w -  po). O G -  H#oq 

In the discrete (layer) formulation, the contribution of the gravity term can be 
shown to act as a source/sink. Then, Equation (17) must be modified as follows 

OS A0S : B0a 
0----[ + Ox Ox + G, (35) 

where the ith element of the G vector is 

= NOc[ VAo(&)fw(&) - (36) 

When the flow rates are quite low, such that NG ~ 0 (1), the phases are likely to 
be segregated. This case is described in a later section. 

5. Miscible Displacement 

Consider, next, a first-contact miscible process in the limit of negligible gravity, 
NG << 1. The mathematical description consists of Equations (5b)-(5d), where the 
total mobility is now a normalized inverse viscosity, AT(C) = #*/#(C), and where 
the dimensionless concentration C is the dependent variable. The latter satisfies an 
advection-dispersion equation, which reads in dimensionless notation 

{ oc uOC,  oc , o 
e k, Ot + Ox J + v O----y - qL Ox 

[ OC r 0yC 1 
CDll0--x--x + - - e  

1 0 [ OC r 
q - ~ - ~ y  CD21~x q- - -  e -b--y-y ' 

(37) 

where the dispersion tensor has the following form (see Zimmerman and Homsy, 
1991) 

D -  q [ OILu2 + O~Tv2 uv(O~L - O~T) ] (38) 

UV(OI L -- O~T) O~L v2 q-- O~T u2 " 

Here we have taken the standard approach to describe dispersion, based on a 
passive tracer in a random medium (although this can lead to several complications, 
see Yortsos and Zeybek, 1988), and we have further assumed that mechanical 
dispersion is dominant over molecular diffusion. Equation (37) is the analogue 
of (5a) for miscible displacement. In the above, we have denoted by aL and aT 
the longitudinal and transverse dispersivities, respectively. An order of magnitude 
analysis shows that in (37), the last term on the RHS dominates over the other 
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dispersion terms. Thus longitudinal and off-diagonal dispersion can be neglected 
(except near sharp fronts). 

To obtain asymptotic results we follow the same procedure as above to get the 
final result 

Ot + f l  A~ dy Ox Ox L f6-- dyJA~ Oy 

(39) 

where, subscript T was omitted for simplicity. In (39) we have assumed that 
NTD ----- aT/e  H remains finite in the limit of small e. When transverse dispersion 
is neglected, the previous equation (11) is recovered, if the identification is made 
S +-+ C, AT +-+ A, and fw +-+ C. Comments on dispersive effects are given in the 
next section. 

In the absence of dispersion, the equivalent of (17) reads 

0C A 0 C  0~ 
Ot + ~ = B0~x' (40) 

where C = [C1, C 2 ,  �9 �9 � 9  CN] T. The representation becomes simpler if we take the 
approximate mobility dependence ),(C) = e re ,  where r measures the mobility 
ratio, r = g n M .  Then, for constant r = r which can subsequently be absorbed 
in the dimensionless time, the coefficient matrices reduce to the following 

dii =- di = 
gi erCi 

• EN1  jerc  ' N 

1 N �9 �9 

e i j =  r ( C i - C i - 1 ) d j  - ~ i  dm, 3 <~ ~ -  1, 
1 i -1 �9 �9 - ~  ~1 din, ~ <~ 3, 

(41) 

where 1 ~ i <<. N, eli = O, and 

bij = e i j .  (42) 
r g j  

One notes the interesting property that the sum of all the elements of each row of 
N e ' "  E vanishes, Ej= 1 ,3 = 0. 

When the solute is not passive, an exact solution to the system is not available. 
Some interesting remarks can be made in the two limits where r ~ +0o (unstable 
displacement, M >> 1) or when r --+ - c ~  (stable displacement, M << 1). In 
these two cases it can be shown readily that the matrix C becomes diagonal and, 
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furthermore, that the only element with non-zero velocity is the layer with the 
highest (7" --+ c~) or the lowest concentration (r ~ -oo) ,  respectively. To show 
this, consider (41a) and rearrange as follows 

t~ i 
di = ~ ~1 " '~'~'E't;jer''-e' ) . (43) 

It is then straightforward that, in the limit r ~ oc, then di --+ 0 for all i, except 
for i = max, where Cmax is the maximum concentration, hence dmax --+ N. 
The opposite applies for the case r --* ec, in which di --+ 0 for all i, except for 
i = min, where Crnin is the minimum concentration, hence drain ---+ N. In summary, 
in the case of very unstable displacement (M >> 1), the highest concentration 
travels the fastest, in accord with viscous fingering notions. While, for very stable 
displacement (M << 1), it is the lowest concentration that travels the fastest, also 
as expected. Besides this simple result, however, Equation (40) contains a much 
richer structure (see Yortsos, 1992 and Yang and Yortsos, 1995). 

6. Tracer Dispersion 

In the passive solute case, where the viscosity is constant (r = 0), the off-diagonal 
terms eli vanish and we obtain the linear system 

OCi OCi _(Ci  Ci_ 0 (~i ) 
O--T- q- I~i OX - -  - -  1 ) ~ X  /~m , (44) 

where, in the above t;i is to be interpreted as normalized with the average perme- 
ability of a cross section. When O~i/Ox = 0, this has the solution 

Ci = H(tni  - x), (45) 

where H(z )  is the step function. In the continuum limit 

N 

C =  lim 1 ~ C i  (46) 
N--+oo N -  

1 

we further get 

L 
,Nmax 

= f ( n ) H ( n t  - x) dn, 
mi n  

(47) 

where f ( n )  is the pdf of ~. If we define the cumulative distribution P(n) = 
fffm~, f(t~) dn, then we may rearrange to get 

(48) 
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For a more general result in the case atq/Ox = 0, we consider transverse 
dispersion. We shall make use of the continuum formulation (39) and write (for 
q5 = const, and neglecting the velocity dependence) 

OC OC 02C (49) 
+ t~(y) '~- x = NTD o-7 Oy--y. 

This equation represents Taylor-Aris dispersion as applied to porous media 
flows (Lake and Hirasaki, 1981). However, it must be stressed that in arriving 
at (49) we have neglected the velocity dependence shown on the RHS of (39) 
(effectively taking u = 1, w = 0). Strictly speaking, the more complicated 
dependence shown in (39) must be considered. Under this restrictive condition, 
and by using a coordinate moving with the average speed ( = x - t, one gets 
(Taylor, 1953) 

OC ~ _ 0 2 C  
(/g(y) -- 1)--~- = JVTD Oy2 ,  (50) 

which can be integrated to 

C - j.VT D O~ (t~(y 't) -- 1) dy" dy'. (51) 

In the moving frame of reference the mass flux over a cross section is 

o~(~(y) - 1)C dy 

N.TD (N(y)  -- l) (n(y") - 1) dy" dy' dy .  OC (52) 
- 0~'  

thus, yielding the macro-dispersion approximation 

0C _ 020 
0_ffQ + ~ z  = O m ~ x 2 '  (53) 
Ot 

where 

_ l f f  iv F' 
Dm - NTD (t~(y) -- 1) d0 ,/0 (t~(y';) -- 1) dy :/dy t dy. 

In dimensional notation, the macrodispersity is expressed as 

= H T(k.)2 kH) 

(54) 
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jo 
y /.yt 

J0 (g.(y")-kH)dy" dy' dy. (55) 

A result similar to the above was first derived by Lake and Hirasaki (1981) by dif- 
ferent means. A different result is expected when the full structure of the dispersion 
in (39) is considered. This is outside the present scope. 

7. Gravity Segregated Flow 

Consider, next, the case where the gravity terms in (3) are strong, NG ~ O (1). Here, 
the approach is somewhat different. Gravity effects must be also considered in the 
distribution of pressure, not only in the equation for the mass balance. Consider, 
first, immiscible displacement with negligible capillarity. The general expression 
for the vertical flow velocity was derived before 

] ~v = - n v  AT + NG(),wfiw + Aofo) , (56) 
k uy 

where fii =- Pi/(Pw - Po). In view of the fact that v = ew, the VE condition 
becomes 

Op 
+ No( wZw + Ao o) = o (57) 

thus gravity terms must be considered in the distribution of pressure. However, 
the fluids now become segregated and the previous analysis is not necessary. To 
show that flow segregation occurs we consider (30b) in the absence of capillary 
effects 

Vw = e [ W f w ( S ) -  nvAofwNoR~].  (58) 

All terms above must be O (1) or less. However, since we assumed NG ,'~ O (1), 
the last term on the RHS would diverge at large RL, resulting into a contradiction 
unless t~v Aofw vanishes, namely unless 

Aofw --+ 0 (59) 

The solution of Equation (59) is either Ao = 0 or fw = 0, showing that there cannot 
be simultaneous flow of the two fluids, or equivalently that the flow is segregated. 
Under the further assumption that under this condition any other configuration 
would be gravitationally unstable, we further conjecture the full segregation solu- 
tion 

S =  [Swr ;  h < y <  1, 

[ 1 -- Sor; 0 < y < h ,  
(60) 
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where the location of the 'macroscopic interface' h ==_ h(x ,  t) is to be determined 
as a function of position and time (Figure 3). This is the classical case of gravity 
tonguing which as shown above, holds under the conditions RL >> 1, NG ~ O (1). 
The first is a geometric condition, while the second also involves flow rates. To our 
knowledge, this is the first time that flow segregation was proved analytically. 

To obtain the evolution of h, one needs to consider an integral balance. For this, 
equation (5a) is integrated over y between 0 and 1 to yield 

0 % 1 1 ~X (Ufw) 0. r JO S dy + ~ dy= (61) 

Next, we use (57) to solve with respect to p. We obtain 

o[/1 ] Op _ Y (Awfiw + Aofio) dy + _ _  (62) 
Ox NG A T OX' 

where II - lI(x,  t) is the pressure at y = 1 and depends on x and t only. Our 
ultimate goal is to obtain an expression for u. By subsequent substitution of (62) 
into (3b) and (61), we finally get 

q~L 1 1 a Y (AwPw+ Ill Ot~ SdY+]I 0---x{~HATfwO(NGfl \ ~TA~176 dyl_ } 

dy = 0. (63) 

Next, the total mass balance is considered. In a straightforward manner it can 
be shown that the following equation results 

Nc~ 10-~ {nnATO(NGfU( Awpw+A~176 d y l -  I I ) }  dy = 0. (64) 

The two equations must be solved in conjunction with the distribution (60). We 
illustrate this application below. 

8. The Dupuit and Dietz Approximations 

Under the full segregation assumption, consider first the case in which the displaced 
fluid is 'air' (switch for a moment to subscript a) so that we may take/z a ( ( / z  w and 
II = const. This conveniently eliminates the last terms in (63) and (64). Expression 
(60) can be used to evaluate all the integrals. For example, we have 

Aw/Sw -l- Aa/~a _ f / ) a ;  h < y < 1, 

AT [f iw;  0 < y < h .  
(65) 
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Hence, 

f~ { (y- 1)Za; 
Y[] dy' = (h 1)fia q- (y - h)fiw; 

h < y < l ,  

O < y < h ,  
(66) 

thus, 

/l ild ={ ~ OX (/~a - O h .  
- p w ) ~ ,  

h < y <  1, 

O < y < h .  
(67) 

Proceeding similarly with the evaluation of the other integrals the final result is 
obtained 

-~- G ~  x ~Ia(x, y) d Y ' ~ x  , (68) 

where N~ = N ~ / M  and M is the ratio of the mobilities of the displacing to 
the displaced phase, (here M = (#wkra (Swr) / (#a ]Crw(1  - S a t ) ) ) .  T h i s  is  the stan- 
dard, non-linear diffusion equation used in the water infiltration literature, where 
water infiltrates an unsaturated porous medium. It usually arises under the so- 
called Dupuit approximation where ~;H = 1 (see Bear, 1972). Here, it was derived 
explicitly and rigorously. 

In the more general case, where the displaced fluid is viscous, a similar approach 
applies. The evaluation of the various integrals is much simplified, if generalized 
functions (like step and delta functions and their derivatives) are used. For instance, 
we can take 

AT = H ( y -  h) + M H ( h -  y), (69) 

so that the integral in (62) is expressed in the compact form fio(Y - 1)H(y - h) + 
(fio(h - 1) + fiw(y - h ) )H(h  - y), etc. The properties of the generalized functions 
needed are H'(z)  = 5(z) and zS'(z) = -6(z ) ,  where 5(z) is the delta function 
of z. Without going into the considerable details, we shall only present the final 
results. The total mass balance yields 

(9 x t~ H dy + ~ -  ~H dy " -~x = O, (70) 

while the 'water' mass balance becomes 

0h] 0[ 0h oH] 
Ot + M N ~  ~H dy .  -~x Ox ~H dy .  ~x  = O. (71) 
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Here, M -= (#o krw(1 - Sot)/(#wkro(Swr)). We can integrate (70) once with respect 
to x to get 

NG t~S dy .  ~x  - t~H dy + ~ aH dy ~ x  -= C, (72) 

where C = l, without loss, and then eliminate OII/Ox between (71) and (72) to 
obtain the final equation 

CN+N h f; dy + -h dy 

= NGO--xx [fo h t;Hdy + 1 f2 nn dy~XX (73) 

This is the generalization of the well known parallel flow approximation, derived 
by Dietz (1954) for the case of constant permeability. The process can be approxi- 
mated as an 1-D displacement with equivalent 'saturation' 2~ = Swr + h(1 - Sot - 
Swr), equivalent relative permeabilities given by krw = krw(1 - Sot)fh ~;n dy 
and kro = kro(Sor) f l  nH dy, and a straight line 'capillary pressure' with disper- 
sion coefficient NG (Lake, 1989). The pseudofunctions become straight-lines when 
the permeability is constant (Dietz, 1953). In any other case, they are non-linear 
functions of S, and, in fact, they may also vary with position x. Clearly, because 
of the integral form, the order of the layers affects drastically the shape of the 
pseudofunctions (Lake el al., 1990). 

9. Capillarity-Gravity Segregation 

When the dimensionless ratio in (33) is not large, capillarity is also of importance. 
The equivalent of (58) is now 

Vw=e[Wfw(S)+t;v)~~ TOIlC Oy NGR~) ] (74) 

Following the same arguments as before, when NCT and NG are not small, we are 
led to the capillary equilibrium condition 

01Ic ~ NG, (75) 
NCT Oy -- c 

which can be integrated to yield 

6NG (76) 
IIc = IIco + y eNcv'  
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where IIco is the capillary pressure at y = 0. If IIc is assumed to be a single function 
of saturation, the above determines the vertical distribution of saturation, given its 
value So(X, t) at y = 0. 

Again, an integral approach is needed. However, the problem here is quite 
simpler. Indeed, it can be readily shown that the 'water' pressure is hydrostatic, 
such that 

Pw = -NG/)w(Y - 1) + II(x, t), (77) 

hence, the total flow rate u is described by expression (9) (assuming negligible 
capillarity along the x-direction). Thus, we can use directly Equation (61) to get 

s dy + l fo S) dy 
(78) 

Equations (76) and (78) completely specify the problem. For example, all inte- 
grals in (78) can be explicitly calculated from the solution of (76), in terms of 
So(x, t), the evolution of which can be obtained from (78). The result would be 
an equivalent to the Buckley-Leverett equation, this time in terms of So(x, t). 
Whether, however, appropriate pseudofunctions can be defined for this problem is 
unclear. 

Finally, if capillarity predominates in Equation (76), the saturation profiles along 
the vertical direction follow the capillary heterogeneity. Specifically, if kv does not 
vary greatly with y, then the saturation profile is flat, S : S0(x, t), and Equation 
(78) becomes the Buckley-Leverett equation in the absence of capillarity (12). 

10. Summary 

In this paper, using a formal approach, the various manifestations of Vertical Equi- 
librium were derived. Key to the analysis was the identification of the parameter 
RL as the proper asymptotic variable and the development of a formal asymptot- 
ic method in terms of 1/R~. The analysis confirms previously known numerical 
results and, for the first time, it rigorously establishes their validity in the limit of 
large R 2. Because the condition is geometric-structural it applies independently 
of flow and process parameters, hence it can be used regardless of the particular 
displacement process. Due to the ensuing reduction in the dimensionality of the 
problem, the process description is facilitated significantly. To our knowledge, this 
is one of the few cases in multiphase flow in porous media where such a reduction 
is possible. 

The formal approach presented has many advantages, as it allows for a plethora 
of special cases to be readily derived. An analysis along these lines is also possible 
for any EOR process (Yortsos, 1992). In all cases, heterogeneity is the key variable 
and it is only the relative interplay of viscous to other forces that dictates the various 
approximations. Viscous, gravity and capillary effects were considered in the case 
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TABLE I. 
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Viscous Gravity Capillarity Conditions Equations Comments 

Strong Negligible Negligible Nc << ~ ,  Ncx << e (11) and (17) 

Strong Moderate Moderate NG ,,~ ~ ,  NCT "~ e (32) and (35) 

Moderate Strong Negligible NG ,-~ 1, Ncx << ~ (68) and (73) 

Moderate Strong Moderate NG ,,~ 1, Ncx ,,~ 6_ (78) 
C 

Moderate Strong Strong NG ,-~ 1, NCT >> ~- (12) 

Viscous Fingering 

Viscous Fingering 

with Dispersion 
Gravity Tonguing 

(Dietz) 
Gravity-Capillary 

Equilibrium 
Capillary Equilibrium 

(Buckley-Leverett) 

of immiscible displacement. The classification of the various regimes depends 
on the relative importance of these forces, as described by the dimensionless 
parameters. A summary is given in Table I. A similar table can be constructed 
for miscible displacement, where the role of capillarity is played by transverse 
dispersion. We should point out that the above can be extended to include a second 
'horizontal' dimension by appropriate modifications (Yortsos, 1992). 

Many of the results obtained here are new, in the sense that they extend previous 
approximate analyses. Thus, Equations (11) and (17) are an extension of Zapata 
and Lake (1981), Equations (32) and (34) extend the work of Yokoyama and 
Lake (1981), Equations (40) and (53) are extensions of Lake and Hirasaki (1981), 
and Equations (68), (73) and (78) extend the Dupuit and Dietz approximations. 
In addition to their formal aspects, our results also offer insight on effects of 
viscous cross flow, as in (11), (18)-(20), and they suggest directly the relevant 
pseudofunctions for each case. Finally, it is the hope that a more detailed analysis 
of equations (11 ) and (40) would lead to improved approximations and to rigorously 
establishing the validity of the various empirical viscous fingering models (such as 
Koval, 1963, Todd and Longstaff, 1979 and Fayers, 1984). 
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