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ABSTRACT.  In the framework of set theory we cannot distinguish between natural and 
non-natural predicates. To avoid this shortcoming one can use mathematical structures 
as conceptual spaces such that natural predicates are characterized as structurally 'nice' 
subsets. In this paper topological and related structures are used for this purpose. We 
shall discuss several examples taken from conceptual spaces of quantum mechanics ('or- 
thoframes') ,  and the geometric logic of refutative and affirmable assertions. In particular 
we deal with the problem of structurally distinguishing between natural colour predicates 
and Goodmanian predicates like 'grue' and 'bleen'.  Moreover the problem of characteriz- 
ing natural predicates is reformulated in such a way that its connection with the classical 
problem of geometric conventionalism becomes manifest. This can be used to shed some 
new light on Goodman's  remarks on the relative entrenchment of predicates as a criterion 
of projectibility. 

1. INTRODUCTION 

As is well known there are many more sets than properties, but set 
theory does not give us a tool to distinguish properties, i.e., natural 
predicates, from non-natural ones (cf. Quine 1969, p. 118). This inad- 
equacy of set theory is demonstrated rather spectacularly in the para- 
doxes of Hempel  and Goodman: from a set-theoretical point of view 
the predicate 'non-raven'  is as good as the predicate 'raven'. Having 
conceded this, Hempel 's  paradox arises because now a non-black non- 
raven (e.g., a green frog) corroborates the law 'All ravens are black'. 
In a similar vein we may construct non-projectible Goodmanian predi- 
cates as 'grue' and 'bleen' that, from a set-theoretical point of view, 
are as good as their (interdefinable) cousins 'blue' and 'green' (cf. 
Goodman 1983, Chap. III). 

To avoid these and similar shortcomings, instead of set theory we 
need specific frameworks that are better  adapted for the logical recon- 
struction of fragments of (natural and scientific) language. 

G~irdenfors (1990) uses the framework of structured conceptual spaces 
to cope with predicates like 'grue' and 'bleen'.  He claims that generally 
'natural '  or 'projectible' predicates like 'blue' and 'green' can be repre- 
sented by convex subsets of conceptual spaces, whereas non-natural 
ones like 'grue' and 'bleen' cannot. I would like to show that this is 
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incorrect. In many cases G~irdenfors's concept of convexity is flawed 
and does not yield a helpful criterion to distinguish between natural 
and non-natural colour predicates. 

In the case of conceptual spaces for colour predicates, (more basic) 
topological structures like connectedness and closedness serve better. 
We can get what we want, i.e., the distinction of natural from non- 
natural colour predicates, at a lower price. Whereas convexity pre- 
supposes that the conceptual space is endowed with a linear or at least 
a metric structure, the concepts of closure and connectedness only 
make use of a topological structure that is weaker. Thus, even granted 
that the convexity' criterion works, following a principle of structural 
economy the use of topological criteria should be preferred. The appeal 
of topological criteria is made even greater by pointing out that there 
is an important class of conceptual spaces for which the problem of 
distinguishing between natural and non-natural predicates lies in using 
topological structures, to wit, the frames of quantum and similar logics. 

In the framework of conceptual spaces the problem of distinguishing 
between natural and non-natural predicates can be reformulated in such 
a manner that its connection with the classical problem of geometric 
conventionalism becomes manifest. Set in this context, Goodman's 
riddle loses at least some of its sceptical appeal and can be partially 
defused. More precisely, the connection with geometric conven- 
tionalism may be used to shed some new light on Goodman's remarks 
on the relative entrenchment of predicates as a criterion of projectibility 
(cf. Goodman 1983, Chap. IV). 

Before we go into the details, some general remarks on the role and 
function of conceptual spaces are needed. 

(1) On the one hand the structure of a conceptual space can be used to 
enrich the language fragment considered. With the aid of a topological 
structure we can speak about continuity, e.g., a continuous change of 
colour. If we only had the language of sets at our disposal this would 
be impossible. Concepts like continuous change crucially depend on 
the topological structure of the conceptual space: they cannot be ex- 
pressed if we consider the conceptual space solely as a set. 

(2) On the other hand the structure of a conceptual space can be used 
to restrict the profusion of admissible predicates: a predicate repre- 
sented by a topologically 'nice' subset of C, e.g., a closed connected 
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subset, appears to be more natural than a predicate that is represented 
by a topologically 'wild' subset. More generally, the structure of a 
conceptual space C can be used to define symmetries and invariances 
in such a way that only the predicates that are represented by symmetric 
or invariant subsets of C are considered as natural predicates that allow 
for an empirical interpretation. I 

(3) Large parts of the structure of conceptual spaces may not corre- 
spond to any elements of reality whatsoever (cf. van Fraassen 1987, 
1989). For example, taking the real line as a conceptual space of the 
colour spectrum, the distinction between rational and irrational points 
is empirically pointless and without significance. The sets of rational 
and irrational numbers do not correspond to any reasonable partition of 
reality. Conceptual spaces can only be partially empirically interpreted. 

(4) The linguistic surface behaviour may be explained by quite different 
conceptual spaces. Generally the available linguistic and behaviouristic 
data do not completely suffice to determine the underlying conceptual 
space. As we shall see in what follows this applies for the language 
fragment of colour sentences that can be explained by various concep- 
tual spaces. Furthermore, for different conceptual spaces different pred- 
icates may turn out as natural. 

Partiality and plurality of conceptual spaces lead to a principle of 
structural economy that advises us to use as few structure as possible. 
For example, consider a language fragment concerning temperature. It 
deals with sentences like 'X is hotter than Y', 'Z is rather cold', etc. 
We may explain its logical structure by the assumption that it is based 
on a conceptual space, the basic ingredient of which is a numerical 
scale based on the real numbers R. Then the principle of structural 
economy advises us to consider R as an ordered set rather than as an 
ordered additive group or a Lie group. Otherwise we would have 
to look for an empirical interpretation of the additive or even the 
differentiable structure of R in terms of temperature. As is well known 
this is a futile task, since temperature is not an extensional quantity. 
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2. C O N C E P T U A L  SPA C E S OF C O L O U R  L A N G U A G E  

In this section, I would like to consider various conceptual spaces 
for colour predicates and discuss how their structure may be used 
to distinguish between natural and non-natural colour predicates. In 
particular it will be shown that for many spaces, convexity - as defined 
in G~irdenfors (1990) - is an ill-defined and unstable concept. 

Let us start with the colour circle, the simplest conceptual space 
discussed in G~irdenfors (1990, p. 85): 

(2.1) yellow 

green orange 

blue 

violet 

red 

Fig. 1. The colour circle C. 

According to G~trdenfors (1990, p. 88), "a convex region is charac- 
terized by the criterion that for every pair st and s2 of points in the 
region all points between sl and s2 are also in the region". If we took 
this literally the only convex region of the circle that contains at least 
two different points would be the circle itself! At  the first sight one 
might be tempted to repair this defect by redefining a convex region 
as a set that, containing any two points sl and s2, always contains the 
shortest line connecting Sl and s2. But this is hardly an acceptable way 
out. 

For example, according to the new 'improved' definition a natural 
change of colour, which comprises all colours from, say, yellow via 
orange, red up to blue does not turn out as natural since for many pairs 
(si, s2) it does not contain the shortest line connecting sl and s2. 

Moreover, the 'improved' definition is at odds with the concept of 
complementary colours, i.e., colours like Y (yellow) and V (violet) or 
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G (green) and R (red), that are directly opposed to each other. Accord- 
ing to the ' improved'  definition, non-trivial convex sets that contain 
pairs like G and R or Y and V do not exist. There is, however, no 
reason why these pairs should be considered as exceptional. 

We can avoid these shortcomings if, instead of convexity, we use the 
more basic topological concept of pathconnectedness. It can be used 
to conceptualize the concept of a continuous process as follows. 

D E F I N I T I O N  2.2: Let  C be a conceptual space with a topological 
structure and I the unit interval [0, 1]. Let  So and Sl be elements of C. 

(1) 

(2) 

pathconnected 

A path from So to s~ is a continuous map f: I --~ C with f(O) = 
So and f(1) = %. 
A subset S of C is pathconnected iff for any two elements 
So and sl of S there is a path f in S that connects So and Sl, 
i .e.,  

f: I--~C, f (0 )=So ,  f ( 1 ) = % ,  f(I) C S  

not pathconnected 

Fig. 2. 

Contrary to convexity, connectedness can be defined for any topological 
space whatever, and not just for metrical or linear spaces. Furthermore,  
we don' t  become involved in any quarrel about shorter or the shortest 
lines. Defining natural predicates for colour spaces by connectedness, 
we have no problems with complementary points. Thus, in the case of 
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violet red 

violet 

Fig. 3, 

conceptual spaces of colour languages, connectedness can cope with 
the distinction of natural and non-natural predicates at least as satisfac- 
torily as convexity. 

Before we move on to the discussion of more complex conceptual 
spaces of colour languages let us note that even on this elementary 
level different conceptual spaces yield different natural predicates. If 
we had used the real line instead of the colour circle as a conceptual 
space, as is done in van Fraassen (1980, p. 201), the colour 'reddish 
violet' would not  count as a natural predicate since 'red' and 'violet' 
are located at different ends of the spectrum and do not form a convex 
set. Using the circle, however, reddish violet comes out as a natural 
predicate (regardless of whether we use convexity or connectedness). 

The line and the circle, however, are by no means the only conceptual 
spaces used in language fragments concerning colours. Rather,  they are 
just the simplest ones, often replaced by more complex ones. 

If we introduce saturation of colours as a further dimension, this 
results in embedding the colour circle C into the colour disk D, D has 
C as its circumference, its middle point, Z, represents the 'non-colour'  
grey. 

In D the arc connecting B (blue) and G (green) no longer counts as 
convex since it does not contain the chord connecting B and G. Thus 
the new definition of convexity has the drawback of being unstable. 

One might object to this argument against convexity that the em- 
bedding of C in D should be conceived in a different manner: the 
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B 

Fig. 4. The  cotour disk D. 

G 

Fig. 5, 

counterpart  of the arc BG in C is not the arc BG but rather the sector 
BZG.  

It is obvious that B Z G  is convex, hence, the move from C to D 
would not have violated convexity. However ,  this procedure hardly 
seems acceptable: the substitution of C by D is motivated by the desire 
to introduce a further conceptual dimension into the discourse about 
colour. For example, we want to speak of a 'saturated blue' and a 'not- 
so-saturated blue' as natural predicates. If we accepted only sectors of 
the colour disk as natural subsets, this would be impossible. Obviously, 
sectors of D and arcs of C are in one-one correspondence,  thus nothing 
would be gained by moving from C to D. 

A different argument against the alleged instability of convexity might 
object to the fact that we have chosen the standard Euclidean metric 
on the colour space. If we had taken a spherical metric, considering 
the disk D as a half sphere with 'Grey '  as the North Pole, we could 
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maintain the original (flawed) criterion of convexity, i.e., a set that is 
convex in C would remain convex if considered as a subset of the larger 
space D. But in this case as welt, the criterion of connectedness scores 
better. Since the underlying topology is the same, regardless of whether  
we endow D with the Euclidean metric or with the spherical metric, in 
both cases the same sets come out as connected. Thus, following the 
principle of structural economy we can remain neutral with respect to 
the problem which metric is the correct one. 

In summary, we may say that for conceptual spaces of colour theories 
the criterion of connectedness scores at least as well as the criterion of 
convexity: it achieves the same at a lower price since it does not depend 
on a disputable convex structure. 2 

3. C L O S U R E  S T R U C T U R E S  A N D  N A T U R A L  P R E D I C A T E S  

In this section we now consider some examples of conceptual spaces 
for which the class of nice subsets is characterized by the topological 
concept of closure structures, to wit, the frames of quantum and similar 
logics. Then we show that closure structures can also be used in the 
case of colour theories to distinguish non-natural (Goodmanian) predi- 
cates, like 'grue' and 'bleen',  from natural ones. 

DEFINITION 3.1: Let  X be a set, and PX its power set (set of all 
subsets of X). A closure structure on X is defined by an operator  J: 
PX-- ,  PX with the following properties (Y, Y'  subsets of X): 

(J1) Y C J(Y) (reflexivity) 
(J2) J (J(Y))  = J(Y) (transitivity) 
(J3) If (Y C Y' )  then (J(Y) C J(Y') )  (monotony) 

A set Y C_ X is called closed (with respect to J) iff it is invariant with 
respect to J, i.e., J (Y)  = Y. The pair (X, J) is called a closure space. 3 
A set Y C_ X is called open (with respect to J) iff it is the set-theoretical 
complement of a closed set. 

Let  (X, J) and (X',  J ')  be two closure spaces. A map f: X--+ X'  is 
called a closure map iff the following holds: 

f (J(Y))  = j , ( f ( y ) )  

A closure structure is slightly weaker than a topological structure. As 
is well known the existence of a topological structure is equivalent to the 
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existence of a closure operator Jt that satisfies the following additional 
condition: 

(t-closure) Jt(Y U Y') = Jr(Y) tO Jt(Y') 

Now we would like to discuss some well-known examples of concep- 
tual spaces endowed with a closure structure that is used to single out 
their nice properties. First we deal with quantum logics. Then we 
consider the distinction of refutative and affirmative properties, and 
finally we treat Goodmanian colour predicates. 

Quantum Logics. The conceptual spaces of quantum logics are called 
orthoframes. They are defined as follows (cf., for example, dalla Chiara 
1986): 

DEFINITION 3.2: (a) An orthoframe is a relational structure F = 
(U, R), where U is a non-empty set (called the set of worlds to be 
interpreted as the set of physically possible situations), and R (called 
the accessibility relation) is a binary reflexive and symmetrical relation 
on U, i.e., R C U x U and for all i, j E U, the following conditions 
hold: 

(1) (i, i) E R 
(2) (i, j) ~ R ¢:~ (j, i) E R 

(b) For any set of worlds X C U the orthocomplement X* of X is 
defined as follows: 

X* := {it for all j(j E X ~  (i,j) ~ R)} 

The following lemma is well known: 

LEMMA 3.3: Let (U ,R)  be an orthoframe. Then the operator 
J: PU ~ PU defined as J(X) := X** is a closure operator on U. 

As is common in possible world semantics we identify a proposition 
with the set X of worlds where it holds. That means we consider it as 
a property a world has (or does not have) (cf. Lewis 1986, pp. 53-54). 
Not all propositions in this general sense turn out to be nice ones, i.e., 
can be considered as meaningful from the point of view of quantum 
theory. Rather,  we have to restrict our attention to closed propositions, 
that is, sets X of worlds that satisfy X = X**. 
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Fig. 6. 

The set of closed propositions is closed under set-theoretical intersec- 
tion and orthocomplementation '*'. It defines a so-called 'minimal 
quantum logic', MQL, based on the conceptual space (U, R) (see dalla 
Chiara 1986, pp. 433ff.). 

Thus, in the case of quantum logic the problem of distinguishing 
natural from non-natural predicates is solved with the help of the 
closure operator **. We shall see that in the case of colour predicates 
we can tackle this problem in a quite similar manner. 

Refutative and Affirmative Properties. Most properties encountered in 
nature are instantiated to varying degree of typicality. For example, 
concerning the property 'is a bird' most people consider that property 
being instantiated typically by a robin but not by, say, a penguin. 
Somewhat more generally, we may assume that for each property we 
have a class of definite and typical instantiations, and a class of not so 
typical or borderline cases. These considerations are illustrated in the 
figure above. 

They are made precise in the framework of topology as follows. 

DEFINITION 3.4: (i) An open neighbourhood U(x) of x is an open 
set containing x. As is well known a set U of a topological space X is 
open iff it contains for each of its elements an open neighbourhood. 
(ii) Let V be a subset of the topological space X. The closure cl(V) of 
V is the smallest closed set that contains V (cf. Davey and Priestley 
1990, p. 36): 

cl(V) := N {W: W closed and V C_ W} 
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(iii) x is a boundary point of V iff x cl(V) - V. The set of boundary 
points of V is denoted by bd(V).  Evidently bd(V) = 0 iff V is closed. 

The following lemma is well known. 

L E M M A  3.5: Let  W be a subset of the topological space X. x is a 
boundary point of W iff every open neighbourhood U(x)  of x has a 
non-empty intersection with W: 

x E bd(V) ¢=) for all U(x): U(x) n W 4:- 0 

The element of an open neighbourhood U(x) of x may be considered 
as elements that are (more or less) similar or near to x. Or, in other 
words, y E U(x) may be considered as a (more or less small) variation 
of x, 

Expressed informally, x is a boundary point of U if x does not belong 
to U but any slight variation of x yields an element of U. Thus, if we 
consider U as the extension of some property,  we may consider the 
boundary points of U as borderline cases of U. The topological concept 
of a boundary point gives rise to the following two extreme strategies 
to deal with the problem of borderline cases. 

(1) We may consider the assertion 'a has property P' as true for all 
borderline cases. Then the subset P C_ C, which represents that prop- 
erty, satisfies cl(P) = P, i.e., P is closed. In this way an assertion 'a has 
property P' can be definitively refuted by showing that a does not belong 
to the set P. For  example, if we take this option and we find something 
that is not a bird, i.e., is located outside of P, we may vary it slightly 
thereby still staying outside P. 

(2) The other extreme strategy is to consider the assertion 'a has prop- 
erty P' as false for all borderline cases. Then the representing subset 
P _C C is considered to be open since for its complement CP we get CP = 
cl(CP). In this way an assertion 'a has property P' can be definitively 
confirmed by showing that a does belong to the set P. If we opt for this 
choice and find something that is a bird, i.e., belongs to P, we may 
vary it slightly, and it still remains belonging to P. This is expressed 
topologically by asserting that the set representing P is open (or, equiva- 
lently, that the complement CP is closed). 
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In this way we get the following topologically based classification of 
properties: 

(a) 
(b) 
(c) 

Refutative properties,  represented by closed subsets of C. 
Affirmative properties,  represented by open subsets of C. 
Properties that are neither refutative nor affirmative, repre- 
sented by subsets neither closed nor open. 4 

Following a Popperian 'methodology,  according to which the refut- 
ability of (scientific) assertions is to be considered as a virtue, we would 
consider refutative properties as natural. On the other hand it can be 
shown that for a "logic of finite observations" (cf. Vickers 1989) the 
class of affirmable properties should be considered as natural. 

It does not seem advisable to insist dogmatically that once and for 
all we have to embrace one class of predicates as natural ones and 
oppose the other as non-natural. Rather,  we may say that it depends 
on the case in question which class should be chosen. 

Thus, the closure structure (or, more generally, any other  convenient 
structure) of a conceptual space does not uniquely determine which 
predicates are to be considered as natural. Rather, it enriches our  
language enabling us to distinguish between several classes of natural 
predicates. In a second step we have to find out their respective advan- 
tages and drawbacks. 

Natural Colour Predicates. Let C be a conceptual space with a product 
structure, i.e., C = C1 x C2, for example, C1 = {blue, g r e e n , . . . }  and 
Cz = T (time), as G~irdenfors's colour cylinder. Then a closure structure 
on C is defined as follows. 

Let  Z C_ q x C2, and let Mz  be the set of all A x B with Z C_ A x B, 
A C_ C1, B C_ C2. Label the elements of Mz  by an index set I, and: 

(3.6) Mz := {Ai x Bi;i  ~ I} 

Now we can define a closure structure on C depending on the specific 
product structure C1 x C2 as follows: 

(3.7) J(Z) := n Mz 
= n A i  X Bi = n A i  x n Bi : =  Az × Bz 

One can easily check that the following holds. 
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green 

blue 

1900 2000 2100 
Fig. 8. 

1900 2000 2100 

L E M M A  3.8: On C the operator (3.7) defines a closure structure in 
the sense of 3.1. 

A set Z _ C is closed with respect to J iff it is a 'rectangle parallel 
to the axes C1 and C2 of the coordinate system', i.e., Z =  
Z1 × Z2, Zi C Ci. 

Now we are in a position to prove that the notion of closedness may 
be used to distinguish between 'natural' and 'not-so-natural' predicates. 

PROPOSITION 3.9: In the colour cylinder the predicates 'grue' and 
'bleen' are represented by non-closed sets, whereas 'blue' and 'green' 
are represented by closed sets. 

Proof: We just display the relevant parts of the colour cylinder C 
(cf. G~rdenfors 1990, p. 89). 

However, one may doubt whether 3.9 can really be considered as a 
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'solution' to the grue-bleen paradox. Defining a 'Goodmanian'  colour 
cylinder in the obvious way we get the following. 

PROPOSITION 3.10: Let C i = {bleen, grue . . . .  } and C2 = T(time). 
Define the 'Goodmanian'  colour cylinder by C' = C i x Ca. Then the 
following holds: if C' is provided with its natural closure structure, 
'grue' and 'bleen' are represented by closed subsets of C' ,  whereas 
'blue' and 'green' correspond to non-closed ones. 

Since the selection of the conceptual space seems to be arbitrary and 
so "everybody can pick his own conceptual space thereby making his 
favorite predicates to come out as natural" (G~rdenfors 1990, p. 9t),  
it seems we have gained nothing by moving from one's favourite pairs 
of predicates (('blue', 'green') or ('grue', 'bleen')) to one's favourite 
conceptual space (C or C'). 5 However, this is not the case: the shift 
from predicates to conceptual spaces is definitively a turn to the better, 
and this is what I would like to argue in the following sections. 6 

The appeal of Goodman's riddle largely lies in the fact that the pairs 
(blue, green) and (grue, bleen) on the one hand appear to be totally 
symmetric, whereas on the other hand we want to give them a totally 
different epistemological status (cf. Mulhall 1989, p. 169). In the follow- 
ing section, I want to argue that the reformulation of the riddle in the 
framework of conceptual spaces enables us to elucidate this apparent 
paradox in a new way not accessible if we remain on the level of 
predicates. For this purpose we connect the topic of projectible predi- 
cates with the problem of geometric conventionalism. Thus, even if the 
framework of conceptual spaces does not lead to a definitive 'solution' 
to the problem of projectibility (it seems doubtful that problems of this 
kind have one), it points to some interesting connections with other 
important philosophical problems. 

4. S T R U C T U R A L  C O N V E N T I O N A L I S M  

It is not the aim of this paper to go into the matters of geometric 
conventionalism in any greater depth (for this compare Griinbaum 
(1973), Putnam (1975), and McKie (1988)). For our purposes it is 
sufficient to describe a special kind of geometric conventionalism fav- 
oured especially Grfinbaum as the thesis that the metrical structure of 
physical space is a matter of convention, i.e., physical space is metrically 
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amorphous and may be metrically structured in many different ways, 
and all these metrical structures have equal rights. I want to characterize 
structural conventionalism as the corresponding generalized thesis con- 
cerning the structure of conceptual spaces. Structural conventionalism 
claims that conceptual spaces, e.g., those of the colour language, are 
structurally amorphous, i.e., it is a matter of convention which structure 
is imposed on them. 

Geometric conventionalism has been vigorously criticized by Putnam 
(cf. Putnam 1975, pp. 164-65; or McKie 1988, p. 85). 

The aim of this section is to provide a formal basis for a similar line 
of criticism of structural conventionalism, thereby resolving or at least 
defusing the destructive scepticism spread by Goodmanian and other 
non-natural predicates. 

For this purpose we have to work out further our formal apparatus, 
which we have developed this far, in order to prove the following 
proposition. 

PROPOSITION 4.1: Let C be the 'natural' and C' be the 'Good- 
manian' colour cylinders defined in the previous section. Concerning C 
and C' the following hold: 

(i) 
(ii) 

(iii) 

C and C' are isomorphic as sets. 
C and C' are not isomorphic as closures spaces, i.e., (C, J) 
and (C', J ')  are not isomorphic. 
There is a conceptual space Co with two non-equivalent 
closure structures Jo and J6 defined on it such that (Co, J0) 
and (C, J) are isomorphic (as closure spaces) and (Co, J6) 
and (C, J') are isomorphic (as closure spaces). 

Proof: ad (i): This claim is essentially nothing but the assertion that 
the pairs (blue, green) and (grue, bleen) are interdefinabte. Explicitly, 
an isomorphism from C to C' is defined as follows: 

u ~(bleen, t), t <2000 
(4.2.) (blue, t) ~ L(grue, t), t ) 2000 

u >~(grue, t), t < 2000 
(green, t) L(bleen, t), t ~ 2000 
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The inverse V: C' --~ C is defined in an analogous manner, interchanging 
'natural' and 'Goodmanian' terms in (4.2). 
ad (ii): The set-theoretical isomorphism U does not preserve the clos- 
ure structures of C and C' since {blue × T} is closed in (C, J) but 
U({blue × T}) is not closed in (C', J'). 
ad (iii): Define the conceptual space Co by the following equivalent 
definitions: 

(4.3) Co := {{x, U(x)}; x @ C}, Co := {{y, V(y)}, y ~ C'} 

Since U and V are isomorphism, obviously Co is isomorphic to C and 
C', by the following natural isomorphisms: 

M K N L C t 
(4.4) C ~ Co ~ C', C ~ Co 

M({x, U(x)}) := x, N(x) := {x, U(x)} 
K({x, U(x)}) := V(x), L(y) := {y, V(y)} 

Define operators Jo and J;  on PCO as follows (A C_ Co): 

(4.5) Jo(A) := N(J(M(A))),  J;(A) := L(J ' (K(A)))  

When we check the definitions we obtain the following: 

(i) Jo and J;  are closure operators on Co. 
(ii)l (Co, Jo) and (C, J) are isomorphic as closure spaces. 
(ii)2 (Co, J;) and (C', J') are isomorphic as closure spaces. 
(ii)3 (Co, Jo) and (C', J'), respectively (Co, J;)  and (C, J), are not 

isomorphic as closure spaces since (C, J) and (C', J') are not 
isomorphic. 

This proves Proposition 4.1. 7 

It may be elucidating to consider the analogue of 4.1 in the case of 
conceptual spaces (frames) of possible world semantics: suppose we use 
a frame (U, R) to explain our modal intuitions. For example, for a 
proposition p we may explain the truth conditions of the proposition 
'It is possible that p' by stating that 'It is possible that p' is true iff 
there is an (R-)accessible world i' to the actual world io where p is true. 

Now suppose somebody comes along and proposes a new frame 
(U', R') interdefinable with U in the sense that U and U'  are isomorphic 
as sets. According to 4.1 we may construct frames and (Uo, Ro) and 
(Uo, R6) such that (U, R) and (Uo, Ro) as well as (U', R') and (Uo, 
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R6) are isomorphic as frames. Moreover, U, U' ,  and Uo are isomorphic 
as sets. Considering propositions as sets of possible worlds, the isomor- 
phisms between U, U' ,  and Uo provide us with faithful translations. 
Thus one might be tempted to consider the conceptual systems based 
on (Uo, R0) and (Uo, R6) as equivalent. But this contention would 
probably turn out to be wrong: the truth values of the proposition 'It 
is possible that p' would differ in (U, R0) and (U, R6) since we disre- 
garded the accessibility relations R0 and R6. Hence the frames (Uo, Ro) 
and (Uo, R6) are non-equivalent notwithstanding the fact that both are 
based on the same set of possible worlds U0. 8 

That frames (U, R) and (U, R') with different accessibility relations 
R and R' are to be treated as different, is of course, a truism of 
possible world semantics. In the case of modal discourse, nobody would 
subscribe to fully fledged structural conventionalism that affirms that 
the logical space U of possible worlds is 'amorphous' with respect to 
accessibility relations R in such a way that frames (U, R) and (U, R') 
with different accessibility relations could be considered as equivalent. 

5 .  N A T U R A L  P R E D I C A T E S  A N D  S T R U C T U R E S  O F  

C O N C E P T U A L  S P A C E S  

Let us evaluate what we have achieved so far with respect to the 
task of distinguishing natural from not-so-natural predicates: we have 
constructed a conceptual space Co that can be considered as a common 
background space. 9 On Co we can define closure or topological struc- 
tures such that natural predicates are represented by subsets that are 
invariant or - more generally - natural with respect to these structures. 
A given predicate may be natural with respect to a structure $ and non- 
natural ( 'Goodmanian')  with respect to another structure $'. Thus we 
are left with the problem of choosing the 'right' structure on Co. 

The thesis that everybody can choose his own conceptual structure 
(to make his preferred predicates come out as natural) can be reformu- 
lated as the radical conventionalist thesis asserting that all structures 
on Co are on an equal footing, i.e., it is a matter of convention if we 
choose $ or $' just as it is a matter of convention if we use the unit 
'metre' or 'yard' for measuring length. 

Putnam has directed a powerful criticism against this kind of geomet- 
ric conventionalism: 
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The conventionalist fails precisely because of an insight of Quine's. That is the insight 
that meaning, in the sense of reference, is a function of theory, and that the enterprise 
of trying to list the sentences containing a term which are true by virtue of its meaning, 
let alone to give a list of statements which exhaust its meaning is a futile one. (Putnam 
1975, pp. 164-65) 

Thus in the case of conceptual spaces the meaning of terms like 
'naturalness' of predicates, defined on Co by the structures $ (or $'), is 
n o t  exhausted by a short list of axioms (in our case the axioms J1-J3) 
of a closure structure, rather it is a function of an extended net of 
empirical knowledge: that is, we do n o t  fix the reference of the term 
'natural predicate of Co' by convention but by coherence. 

The fixation of projectibility by coherence means that the task of 
determining which of the subsets of Co represent natural predicates is 
not achieved by defining simple structures like closure or topological 
structures on Co, rather it involves large parts of scientific (and cultural) 
background knowledge. To make this claim plausible let us take the 
concept 'metric of physical space' that was considered by Putnam 
(1975). 

The coherential fixation of the term 'metric of physical space' pro- 
ceeds in a series of approximations. A first step for the fixation of a 
physically meaningful metric of physical space is to impose the condition 
that a measuring rod is to remain the same length when transported. 
This condition is not sufficient to determine the metric of physical space 
uniquely, but at least it excludes certain contrived candidates that satisfy 
the metrical axioms but can hardly count as physically meaningful. 
Further steps of the approximation process may take into account 
constraints concerning the form of physical theories, e.g., invariance 
principles and the relations with other conceptual systems (theories) 
based on other conceptual spaces. 

Now let us consider an example of a coherentist fixing of the concept 
of projectibility in the case of colour theories. For this purpose we may 
consider the neurobiological theory of colour vision that is based on 
the fact that the human eye possesses three different types of visual 
cells (let us call them cells of type B, G, and O) specifically adapted 
for the colours blue, green, and orange, respectively, such that every 
physiological colour is realized by a mixed stimulus of these three cell 
types (cf. Hubel 1988, Chap. 8). 

The relation between this neurobiological theory of colour vision and 
the various 'common-sense' colour theories based on conceptual spaces, 
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like the colour circle, the colour disks, etc., may be quite intricate, but 
in a first approximation it may be described by 'bridge principles' of 
the following kind. Let  x be a 'colour event': 

x is (seen as) blue iff x preferably stimulates cells of type B. 
x is (seen as) green iff x preferably stimulates cells of type 
G. 

For the Goodmanian predicates we get analogous assertions but more 
complicated disjunctive assertions: 

x is (seen as) bleen iff x preferably stimulates cells of type 
B when t < 2000, 
or x preferably stimulates cells of type G when t >~ 2000. 

Since according to the neurological theory of colour vision there 
are no Goodmanian cells (preferably stimulated by bleen or grue, 
respectively), the predicates 'bleen' and 'grue' are certainly more com- 
plicated, and are to be considered as contrived. In this way the symme- 
try between traditional and Goodmanian predicates is broken. Hence,  
if we rely on a coherentist approach for fixing the meaning of 'natural ' ,  
this counts as strong evidence against the Goodmanian predicates - the 
traditional ones are far better  entrenched in the global system of our 
conceptual framework. 

Of course this argument is not to be understood in the dogmatic 
sense that a set of traditional predicates is beyond any doubt  - under 
certain circumstances we may be forced or, at least, be inclined to revise 
our conceptual system thereby changing what we regard as 'natural '  and 
what we do not. Perhaps, contrary to the case of metrical structure of 
physical space, the problem of selecting natural predicates for a given 
conceptual space generally does not possess a clear-cut solution. Evi- 
dence for this conjecture is the fact that up to now many structurally 
very different colour spaces are in use and different spaces select differ- 
ent predicates as natural ones. As was pointed out in Section 2 this 
already occurs for the quite elementary spaces of the colour circle and 
the colour line. 

Moreover,  as is shown by the example of refutative and affirmable 
predicates, the definition of naturalness may be characterized by dis- 
junctive criteria of the form: 
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P C__ C represents a natural predicate iff P satisfies either 
condition A or condition B. 

It may be the case that some predicates satisfy both conditions. Thus, 
some predicates turn out to be more natural than others. This would 
be in line with David Lewis's remark "that  the distinction between 
natural properties and others admits of degrees" (cf. Lewis 1986, p. 
61). 

In other words, a kind of approximation process has to take place if 
we want to fix the term 'natural'  with respect to a conceptual space. 
For example, for the colour cylinder Co (Co, × Co2) it is obvious that 
closedness in the sense of 3.9 may be a necessary condition that a 
subset Z is to represent a natural property. Surely it is not a sufficient 
one since it does not impose any restriction at all on the factors Zl ,  Z2 
of Z = Z1 x Z2. In fact, condition 3.9 may be satisfied by arbitrarily 
'ugly' sets Zl  and Z2 for which we would never be prepared to accept 
Zl  × Z2 as natural. Thus, closedness is not the solution to the problem: 
in order  to sieve out the natural predicates it must be supported by 
further structural restrictions on the factors C0t and Co2. As was shown 
in Section 2 plausible restrictions are that the factors Zl and Z2 of 
Z1 × Z2 are open, closed, connected, or otherwise topologically well- 
behaved sets with respect to suitable factor topologies on Col and Co2. 

In any case the problems of distinguishing natural and non-natural 
predicates cannot be solved by a priori considerations or formal con- 
structions. What is needed is a detailed structural description of the 
conceptual space in question and its relations with other conceptual 
spaces since projectibility is not - so to speak - in the possession of an 
insulated conceptual space but is specified by the whole of our concep- 
tual apparatus, which is based on a great many number of conceptual 
spaces. Thus, the following approach of 'structural enrichment'  to the 
problem of projectible predicates seems to be promising: conceptual 
spaces are structured sets, geometrically, topologically, or otherwise - 
the more structure we impose on them the better  we can distinguish 
natural from not-so-natural predicates. 

Even if we cannot exhaust the meaning of 'natural'  by imposing an all- 
embracing final structure on the conceptual space in question, we can 
approximate it step by step, thereby eliminating more and more Good- 
manian predicates of various degrees of sophistication. 
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This structural approach leads to a kind of 'mathematical epistemol- 
ogy' based not on the unspecific and general framework of set theory 
but on specific frameworks of appropriate mathematical theories, e.g., 
topological and geometrical ones. 

N O T E S  

For the role of symmetries and invariances of models in science, see van Fraassen 
(1989, Part lII). 
2 This result should not be interpreted as the sweeping thesis that convexity is of no use 
whatsoever for the distinction of natural and non-natural predicates. It may well be the 
case that for certain conceptual spaces, e.g,, the conceptual spaces of states in quantum 
mechanics (cf. Beltrametti and Cassinelli 1981, Chap. 9), convexity is useful. It is, 
however, to be understood as an argument for the plurality of naturality criteria. 
3 It is easy to see that G~rdenfors's approach, based on the criterion of convexity, is just 
a special case of the topological approach: given a set M of a conceptual space C endowed 
with a convex structure we can form the convex hull cv(M) defined as the intersection 
of all convex subsets of C that contain M. cv(M) is the smallest convex set containing 
M. As is well known the operation of forming the convex hull is a closure operator in 
the sense of Definition 3.1. 
4 It can be noted that there may be properties that are refutative as well as affirmative. 
These are represented by subsets of C that are closed a n d  open ( 'clopen'). Although for 
the usual topologies of metric spaces there are no non-trivial 'clopen' sets, for many 
topologies, especially adapted for logics and theoretical computer science, there are non- 
trivial clopen sets (of. Viekers 1989). 
s To avoid the resulting relativism we can rely on the following evolutionary argument: 
projectible predicates are the basic ingredients of valid inductions. In order to survive 
we must have been able to make valid inductions (at least more often than not). Thus, 
we have onty a rather limited freedom in choosing the structure of our conceptual spaces. 

I do not think that this sweeping argument is fundamentally wrong, but of  course it 
already works on the predicate's level ((blue, green) vs. (grue, bleen)). It does not justify 
the step from the level of predicates to the level of conceptual spaces. 
6 Evidently the latter are more holistic concepts and following Quine's "third milestone 
of empiricism" (Quine 1981, pp. 70ft.), it could be argued that the shift to more holistie 
concepts in general provides an epistemological improvement.  
7 We may interpret 4.I as the assertion that the traditional and the Ooodmanian frame- 
works are analogous to as wel l  as  different from each other: they are analogous since 
they are set-theoretically isomorphic, and they are different with respect to their closure 
structure. 

In Mulhall (1989) the author points out that Goodman's  riddle can arise only if the 
conceptual framework based on the predicates 'grue' and 'bleen'  is "analogous to as wel l  

as different from the framework of our colour concepts" (Mulhall 1989, p. 169); he claims 
that this is impossible and therefore Goodman's  riddle is no riddle at all (ibidem, p. 172). 
This thesis is not supported by our formal reconstruction 4.l .  
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8 An analogous thesis holds of course for orthoframes (U, R) and (U, R') of quantum 
logics with the same logical space U but different accessibility relations R and R'. 
9 In our case, Co is simply a set but generally it may well be a structured set. The 
important thing is that Co may be endowed with further structure. 
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