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ABSTRACT. A system whose expected state changes with time cannot have both a 
forward-directed transtationally invariant probabilistie law and a backward-directed trans- 
lationally invariant taw. When faced with this choice, science seems to favor the former. 
An asymmetry between cause and effect may help to explain why temporally oriented 
laws are usually forward-directed. 

1. THE P R O B L E M  

Much has been written about laws that say that some quantity increases 
with time in the evolution of systems of a certain type. The second law 
of thermodynamics is the most famous example. Such laws are said to 
embed an asymmetry between earlier and later. In this paper, I want 
to discuss a rather different property of laws. Laws can allow us to 
calculate the future from the past or the past from the future. 2 Laws 
that do one of these but not the other, I will call wmporally oriented. 

The strict second law is not temporally oriented. If I observe the 
present entropy of a closed system, I can infer that the entropy will be 
no less in the future and that it was no greater in the past. A law that 
posits a monotonic increase (or nondecrease) in a quantity permits 
inference in both directions. 

Non-probabilistic laws that describe a conditional relationship be- 
tween earlier and later are not temporally oriented. A law of the form 
'If the system is in state E at an earlier time, then it will be in state L 
at a later time' supports inferences in both directions. A gtimmer of 
the asymmetry we seek is to be found in the idea of conditional proba- 
bility. A law that assigns a value to a probability of the form 'Pr (the 
system later is in state L/the system earlier is in state E)' permits 
forward-, but not backward-, directed inferences. 3 And, of course, 
precisely the opposite will be true if conditioning and conditioned prop- 
ositions are reversed. 4 

In saying that 'Pr (the system later is in state L/the system earlier is 
in state E)' permits a forward, but not a backward, inference, I set to 
one side the possibility of using this law in a Bayesian format wherein 
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prior probabilities plus the forward-directed taw allow one to compute 
Pr (the system earlier is in state E/ the system later is in state L). The 
point is that the forward-directed law, by itself, permits no such infer- 
ence. Bayesians insist that priors are always available; their critics 
disagree. However, for the purposes of investigating the concept of a 
temporally oriented law, this controversy may be bracketed. 

Are scientific laws often temporally oriented? Among laws that are 
temporally oriented, are more of them oriented to the future than to 
the past? When a law is temporally oriented, is this an artifact of our 
interests or does it reflect some objective feature of the world? These 
are the sorts of questions I wish to investigate. 

2. A P R O O F  

Consider any three times tl, t2, and t3, which occur in that order, and 
which are equally spaced. Let  'Pr(ti = x)' denote the probability that 
the system at time ti is in state x (i = 1, 2, 3; x = 0, 1, 2 . . . .  ). The laws 5 
governing the evolution of the system will be given by conditional 
probabilities of the form Pr(ti = x/tj = y). I will say that the law is 
forward-directed if i > j and backward-directed if i < j.6 

A forward-directed law is invariant under time translation if Pr(t2 = 
x/t1 = y ) =  Pr(t3 = x/tz = y), for any equally spaced tl, t2, t3 and for 
any x and y. That is, the 'date' at which a temporal interval begins or 
ends is irrelevant to calculating the probability of the system's state 
after some fixed amount of time has elapsed; all that matters is the 
system's (undated) initial state (specified in the conditioning proposi- 
tion) and the amount of time that elapses between it and the end state. 7 
Likewise, a backward-directed law is time translationally invariant if 
Pr(tl = x/t2 = y ) =  Pr(t2 = x/t3 = y), for any equally spaced t~, t2, t3 
and for any x and y. 

It is worth noticing two features of this definition of time translational 
invariance. The definition requires that two conditional probabilities be 
equal, for any fixed amount of spacing between the three times and for 
any states that the system may occupy at a time. To see what these two 
constraints amount to, let us consider models in population genetics 
that relate the gene frequencies at one time in a population to some 
probability distribution of gene frequencies in the population some time 
later. An example is provided by models of neutral evolution, in which 
gene frequencies evolve by random walk (Crow and Kimura 1970; 
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Kimura 1983). These models are time translationally invariant in the 
strong sense defined. First, the fixed amount  of spacing between the 
three times may be any number  of generations you please. Second, the 
model applies to all possible initial gene frequencies. That  is, the theory 
of neutral evolution is time translationally invariant in the following 
sense: 

For  any starting time t, for any number of generations n, 
and for any pair of gene frequency distributions i and j, 
Pr(Populat ion is in state j at time t + n/Populat ion is in state 
i at t) = Pr(Populat ion is in state j at time t + 2n/Population 
is in state i at t + n). 

This strong concept of time translational invariance will be assumed in 
what follows, although weaker notions of invariance are certainly pos- 
sible. A law might be invariant for some amounts of spacing between 
the three events but not others; and it might be invariant for some 
possible states of the system but not others. A consequence of weaken- 
ing the definition will be considered in due course. 

I now will show that a system whose expected state 8 changes with 
time cannot have both a forward-directed time translationally invariant 
law and a backward-directed time translationally invariant law. If we 
assume that laws must be translationally invariant, 9 then this simplifies 
to: if a system's expected state changes, then it cannot have both a 
forward-directed probabilistic law and a backward-directed probabilistic 
law. 

I'll begin by assuming that the system must be in one of two states 
(0 or 1) at any time; I'll dispense with this assumption shortly. 

If the system possessed a backward-directed translationally invariant 
law, the following equality would have to hold: 

(B) Pr( t l  = l/t2 = 0)/Pr( t l  = 0/t2 = 0) = Pr(t2 = l/t3 = 0)/ 
Pr(t2 = 0/t3 = 0). 

Bayes'  theorem allows (B) to be expanded into the following: 

Pr(t2 = 0/re = 1)Pr(t l  = 1)/Pr(t2 = 0/tl = 0)Pr( t t  = 0) = 
Pr(t3 = 0/t2 = 1)Pr(t2 = 1)/Pr(t3 = 0/t2 = 0)Pr(t2 = 0). 

If the system possessed a forward-directed time invariant law, it would 
be true that: 
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(F) Pr ( t /  = 0/tl = 1)/Pr(t2 = 0/tl = 0) = Pr(t3 = 0tt2 = 1)/ 
Pr(t3 = 0It2 = 0). 

If we assume (F) and that the ratios mentioned in it are well defined 
but not zero, then the Bayesian expansion of (B) simplifies to: 

(C) P r (h  = 1)/Pr(tl  = 0) = Pr(tz = 1)/Pr(t2 = 0). 

This last statement means that the expected state of the system does 
not  change with time. 

The proof  easily generalizes to any finite number  of states. Let  "x' 
and 'y' be variables that take states (0, 1, 2 . . . )  as values. Parallel 
reasoning then entails that for any x and y: 

P r ( h  = x)/Pr( t l  = y) = Pr(t2 = x)/Pr(t2 = y). 

If each pairwise ratio of this form must remain constant, then the 
expected state of the system cannot change. ~° 

To say that the expected state does not change with time differs from 
saying that the state can be expected not to change. A particle doing 
a random walk on an open line has the same expected position through- 
out its history; on average it goes nowhere.  11 But this does not mean 
that we expect the particle to stay at the same location. Proposition (C) 
implies a lack of directionality in the system's probability trajectory. ~2 

This result does not rule out evolution in the expected state of a 
system when the system has a forward-directed law for one set of  
properties and a backward-directed law for some other set of  properties. 
Note that the argument considered forward- and backward-directed 
laws with respect to the same set of properties (ti = 0, 1, 2 . . . ) .  The 
point is that for each set of properties,  a choice must be made between 
a forward-directed law and a backward-directed law, if laws are to 
be time translationally invariant and the system's expected state is to 
evolve. 

The above argument cannot be carried through for systems all of 
whose transition probabilities are either 0 or 1; for in such cases the 
ratios in (F) either will equal zero or will not be well defined. The 
asymmetry we have established does not apply to deterministic laws (in 
at least one sense of that term). 13 

In the process here described, the effect of what happens at tl  is 
itself the cause of what happens at t3. But the idea that one and the 
same event is both effect and cause is not essential to the proof just 
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offered. Consider, for example, the causal relationship between smok- 
ing (S) and dying of lung cancer (D). Smoking at one time causally 
contributes to dying sometime later; but dying at one time does not 
contribute to subsequent smoking. Even so, it is easy to show that our 
proof applies. Two applications of Bayes' theorem yield the following 
equation: 

P ( - S / D )  LP(D/ -S) J  LP(-S)J  

The left side of the equation describes a ratio of backward-directed 
conditional probabilities. The first product term on the right describes a 
ratio of forward-directed conditional probabilities. Suppose this forward 
ratio is time translationally invariant. Then the ratio on the left side of 
the equation is time translationally invariant only if P(S) /P( -S)  is as 
well. I conclude that forward-directed and backward-directed con- 
ditional probabilities cannot both be time translationally invariant, if 
the probability of the cause (smoking, in this case) changes. 

I mentioned earlier that my argument makes use of a rather strong 
concept of time translational invariance. It is worth considering the 
effect of weakening it in a certain way. Instead of considering time 
translational invariance as covering all amounts of spacing between 
the three times, let us consider the weaker idea of time translational 
invariance with respect to the temporal interval k (where k is a con- 
stant). If the forward- and backward-directed laws are both time transla- 
tionally invariant with respect to k, then we can deduce that for any 
states x and y 

Pr(h = x)/Pr(tl = y) = Pr(t2 = x)/Pr(t2 = y), 

where tl and t2 are any two times separated by a temporal interval that 
is k units in length. In such a case, we cannot conclude that the system's 
expected state never changes, but only that it has the same value every 
k units of time. That is, with this weakened notion of invariance, we 
may conclude that the system's expected state is constant or that it 
cycles with period k. Not surprisingly, a weaker result is obtained for 
a weaker notion of invariance. 
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3. B R E A K I N G  T H E  S Y M M E T R Y  

It is fairly clear that science finds it natural to think in terms of forward- 
directed probabilities. We talk of the half-life of uranium. This is the 
amount of time it takes for the radioactivity of a sample to drop to half 
its initial value; it reflects a forward-directed probability that is assumed 
to be translationaUy invariant. In population genetics, Mendelism is a 
process by which parental genotypes confer probabilities on offspring 
genotypes; this, too, reflects a forward-directed probability assumed to 
be translationally invariant. 

This temporal asymmetry in scientific concepts is also present in 
the concepts we use in everyday life. Roads are dangerous; skies are 
threatening; people are friendly. These familiar dispositional concepts, 
once they are understood probabilistically, 14 can be seen to describe 
forward-directed probabilities. 

The proof of the previous section shows that we must choose between 
forward-directed and backward-directed laws. It appears that science 
and common sense have opted for the former. Is there some general 
feature of the world that explains why this should be so? 

The probability of getting cancer if you smoke has changed through 
time, because other causal factors (for example, the amount of asbestos 
in the environment) have also changed. But once these other causal 
factors are held fixed, the conditional probability of getting cancer 
relative to them seems like it should be translationally invariant.ls 

The probability of having been a smoker, given that you have lung 
cancer, has also changed with time. But if we hold fixed the other 
effects of smoking (emphysema, for example), there is no reason to 
expect that the backward-directed conditional probability is temporally 
invariant. 

One (rough) formulation of (forward-directed) determinism is the 
thesis that the state of the universe at time ti is incompletely specified 
by a law, if the law assigns an intermediate value to a probability of the 
form Pr(tj = x/ti = y) (where i < j). The idea that completely specified 
causes generate time translationally invariant forward-directed laws 
makes no such deterministic assumption; the idea is that such probabili- 
ties should be stable under time translation, not that they should have 
values of 0 or 1. 

Imagine an experimenter who runs a series of trials on an experi- 
mental setup one day, then waits a week and runs a second series of 
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trials. Suppose that the two series of trials show markedly different 
frequency distributions. The experimenter reasons that although it is 
possible that the two series were generated by the same underlying 
probabilities, it strains one's credulity to think so. So the experimenter 
infers that the probabilities of outcomes have changed from one week 
to the next. 

The natural inference to make here is n o t  to attribute the change in 
probabilities to 'the passage of time' and let things go at that. Rather, 
what the experimenter will look for is a physical change in the experi- 
mental setup. Each series of trials is to be specified by its own con- 
ditional probability; the relevant conditioning propositions must differ. 
The problem is to find out how. We see here a practical consequence 
of accepting the idea that completely specified forward-directed proba- 
bilistic laws must be time translationally invariant. 

The slogan 'same cause, same effect' is a common expression of the 
idea of determinism. I suggest that a vestige of this principle survives 
the dismantling of determinism; it is the idea of 'same cause, same 
probability of effect'. The slogan's converse - 'same effect, same 
cause' - was not much cited by those who accepted a deterministic 
world picture, though perhaps it should have been, since Newtonian 
physics is time symmetric. In any event, its probabilistic analog - 'same 
effect, same probability of cause' - is evidently not a plausible constraint 
on stochastic model building in the sciences. 

So the preference for forward-directed laws reflects the assumption 
that 'same cause, same probability of effect' is true, but 'same effect, 
same probability of cause' is not. In each case, sameness of cause or 
of effect must be understood in terms of a complete specification; 
without this rider, neither principle is plausible. 

I do not claim that the choice of forward-directed over backward- 
directed laws is explained by the acceptance of one of these principles 
but not the other. Rather, our preference for forward-directed laws 
and our opting for 'same cause, same probability of effect' are two 
expressions of the same underlying idea. Is there some basic feature of 
the world that explains both sorts of choices? 

Let us look carefully at the example of Mendelism and describe with 
more care how probabilities are defined there. Consider a one-locus, 
two-allele example. There are three genotypes (AA, Aa, and aa) pos- 
sible in each sex, so there are, in principle, nine possible parental pairs; 
if we ignore the sex of each parent and consider only the genotypes 
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they contribute, then there are six pairs. For each pair we can say how 
probable it is that an offspring should have a particular genotype. The 
rows and columns denote the parental genotypes and the cells provide 
the probabilities of offspring genotypes, conditional on their coming 
from a particular CROSS: 16 

Male 

Female 
AA Aa aa 

AA I(AA) I/2(AA); 1/2(aa)  l (Aa)  
Aa - II4(AA); l /2(Aa);  l/4(aa) l l2(Aa); l/2(aa) 
aa - - l(aa) 

Notice that the Mendelian process does n o t  allow you to compute 
probabilities for parental genotypes from the genotypes of offspring. If 
the sons and daughters are heterozygotes, how probable is it that the 
parents were also heterozygotes? This question is unanswerable, until 
prior probabilities are given for the genotypes of parental pairs. 17 The 
asymmetry under consideration can be illustrated as follows: 

Genotype of Parental Pair + Mendelism [ • Probability of Offspring Genotype 
I 

Probability of Parental Genotypes < / [Mendelism + Genotype of Offspring ] 

As noted before, an assumption of completeness is needed here. If 
there is unequal mortality among offspring genotypes and if the off- 
spring genotypes are censused sometime after the egg stage, then the 
predicted Mendelian ratios for the offspring will be violated. The as- 
sumption, therefore, is that no such interferences impinge. 

Let us now look at this asymmetry from a different angle. Suppose 
that two heterozygote parents produce two heterozygote offspring. We 
can think of the parental pair as the common cause of two effects, or 
we can think of the offspring pair as the common effect of two causes: 

Parents Offspring 

Aa 

A a ~  i -- I 
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The genotype of the parental pair not only confers a probability on the 
offspring genotypes; in addition, the genotype of the parental pair 
renders the genotypes of the two offspring (Oi and 02) independent 
of each other: 

Pr(O~ is Aa & Oa is Aa/parents are Aa) = Pr(O~ is Aa/par- 
ents are Aa)Pr(O2 is Aa/parents are Aa). 

That is, the common cause forms a conjunctive fork  with its two effects 
(Reichenbach 1956). 

In contrast, the two offspring genotypes do not render the genotypes 
of the two parents (PI and P2) statistically independent of each other: 

Pr(PI is Aa & P2 is Aa/offspring are Aa) 4: Pr(P~ is Aa/ 
offspring are Aa)Pr(P2 is Aa/offspring are Aa). 

I believe that this Mendelian asymmetry is typica! of a larger pattern: 
a common cause often forms a conjunctive fork  with its joint effects, but 
a common effect rarely forms a conjunctive fo rk  with its" joint causes 
(Sober and Barrett 1992). In the next section, I'll defend this pair of 
claims. For the present, I want to show how this asymmetry, if true, 
explains why temporally oriented laws are usually forward-directed. 

If I want to describe the probability of an offspring's genotype, given 
the genotype of its parents, I do not have to take into account what else 
is true simultaneously with that offspring. I do not need to know what 
that offspring's sibs are like; I also do not need to know the prior 
probability of offspring genotypes. This is a consequence of the fact 
that the first fork displayed above is conjunctive. 

In contrast, if I wish to describe the probability of a parent's geno- 
type, given the genotypes of its offspring, I must take into account facts 
that pertain to the parental generation. I need to know the pattern of 
mating (random or assortative) and the prior probability of parental 
genotypes. This is a consequence of the fact that the second fork is not 
conjunctive; the genotypes of the offspring do not render statistically 
irrelevant all other facts simultaneous with the parent's having the 
genotype it does. 

Because the second fork is not conjunctive, the probability of a cause, 
given its effects, cannot be pureiy a matter of law. The happenstance 
of what else is true simultaneously with the cause must also be taken 
into account. In contrast, the probability of an effect, given its causes, 
may be a matter of law, since the happenstance of what else is true 
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simultaneous with the effect may be ignored, if the fork is a conjunctive 
one. My suggestion is that laws are temporally oriented towards the 
future because of this asymmetry between forks. 

In the example just discussed, I have treated the rules of Mendelism 
as providing a law governing the reproductive behavior of the organisms 
in a population. There is room to quarrel with the idea that organisms 
obey Mendelian rules purely as a matter of law. After all, the popula- 
tion is the result of evolution and it is perfectly reasonable to see its 
conformity to Mendelian patterns as a consequence of that evolution. 
This makes Mendelism a matter of happenstance, not a matter of law 
(Beatty 1981). 

Although this raises interesting questions about the role of laws in 
evolutionary theory, it does not undermine the main point I wish to 
argue for here. In a Mendelian system, one can describe a forward- 
directed conditional probability that does not depend for its correctness 
on the prior distributions of genotypes at either time or on the system 
of mating; this cannot be done for the backward-directed conditional 
probability. If the prior distributions (or the system of mating) are not 
matters of law, then forward-directed conditional probabilities may be 
laws, but backward-directed conditional probabilities cannot be. 

4. FORKS 

Reichenbach (1956) advanced two theses that together entail an asym- 
metry between future and past. First, he maintained that if A and B 
are simultaneous and correlated events, they must have a common 
cause that renders them conditionally independent of each other. Reich- 
enbach's second claim is that if A and B have a common effect, this 
common effect will 'usually' form a conjunctive fork with A and B. 
What is not allowed is that A and B lack a common cause but form a 
conjunctive fork with a common effect. That is, Reichenbach main- 
tained that of the three possible patterns that conjunctive forks might 
display, the first two are common, whereas the third is impossible: 

E E 

A B A B A B 

C C 

(i) (ii) (~) 
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As Reichenbach put it, (conjunctive) forks open to the future are 
possible, whereas forks open to the past are not. 

Reichenbach's first claim, which he called the principle of  the common 
cause, is incompatible with results stemming from quantum mechanics 
(van Fraassen 1982). In addition, it conflicts with a perfectly 'classical' 
probabilistic phenomenon: two causally independent processes may be 
correlated because each shows a monotonic increase in some quantity 
(Sober 1988). Yet consistent with these corrections, a rather Reichen- 
bachian thesis can be advanced concerning common causes and their 
joint effects: quantum mechanical phenomena aside, a complete speci- 
fication of the causes must render the effects conditionally independent 
of each other. 

Reichenbach's second claim is also off the mark. Conjunctive forks 
open to the past are not impossible. Even so, joint causes (whether 
they share a common cause) only rarely form conjunctive forks with 
their common effect (Sober and Barrett 1992). 

To see why, let us schematize the problem as follows. A and B are 
joint causes of E. First, I define the four conditional probabilities of 
the form Pr(E/_+A&_+B) as follows: 

Vr(E/-) 
B - B  

A w x 
- A  y z 

I'll call these probabilities the efficacies of  the causes. They are all 
forward-directed (assuming that cause precedes effect); no assumption 
will be made as to whether they are invariant over time, The four 
probabilities of the form Pr(_+A&+_B) I'll call the probabilities of 
combinations of  causes. 

AEB is a conjunctive fork if and only if the following equality is 
true: 

Pr(A&B/E) = Pr(A/E)Pr(B/E).  18 

Bayes' theorem allows these three conditional probabilities to be ex- 
pressed as follows: 
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Pr(A&B/E)  = Pr (E/A&B)Pr(A&B)/Pr (E)  
= wPr(A&B)/Pr(E)  

Pr(A/E)  = Pr (E/A)Pr(A) /Pr (E)  
= [Pr(E/A&B)Pr(B/A)  

+ Pr(E/A&- B)Pr(- B/A)]Pr(A)/Pr(E) 
= [wPr(B/A) + xPr ( -B /A) ]Pr (A) /P r (E)  

Pr(B/E) = Pr(E/B)Pr(B)/Pr(E)  
= [Pr(E/A&B)Pr (A/B) 

+ Pr(E/-A&B)Pr(-A/B)]Pr(B)tPr(E) 
= [wPr(A/B) + yPr ( -A/B) ]P r (B) /P r (E)  

So the fork is conjunctive precisely when: 

wPr(A&B) = [wPr(A&B) + xPr(A&-B)] [wPr(A&B) 
+ yPr ( -A&B)] /Pr (E) .  

This simplifies to: 

(*) wz/xy = P r ( A & - B ) P r ( - A & B ) / P r ( A & B ) P r ( - A & - B ) .  

Note that the left-hand side of (*) describes a relationship among the 
efficacies of the causes, while the right-hand side describes a relationship 
among the frequencies of the causes. 

The frequencies of causes often undergo change; so do the efficacies 
of causes (at least when the causes are incompletely specified). My 
claim is that when the frequencies and/or efficacies of causes change, 
the changes are almost never coordinated so as to keep (*) true. If 
AEB is a conjunctive fork at a given time, this is a mathematical 
accident that is soon canceled by changes in the system at hand. 

So even though Reichenbach's conjectured fork asymmetry is not 
correct, another can be substituted in its stead (Sober and Barrett 
1992). Reichenbach claimed that (i) and (ii) are common patterns 
displayed by conjunctive forks, whereas (iii) is impossible. I have argued 
that (ii) and (iii) are both possible - but are very rare - and that (i) 
requires hedging only because of quantum mechanical phenomena. 

I now want to apply this general schema to the Mendelian case 
discussed before. Reichenbach's exposition and the result just described 
assume that the events in the fork are dichotomous. But in the simplest 
of Mendelian cases, this isn't so. The parental pair has six possible 
states and each offspring has three. Yet it is clear enough how to 
generalize Reichenbach's idea to cover this situation. 
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I'll begin with the forward fork formed by a common cause and its 
two effects. The two parents are heterozygotes and we wish to describe 
the probabilistic relationship between them and their two offspring, 
whom we'll assume are heterozygotes as well. The parental pair is the 
cause and the two offspring are the effects. 

The conjunctive fork idea requires that the different possible states 
that the parental pair might occupy each render the offspring's geno- 
types independent of each other. Focusing on the case in which both 
parents are heterozygotes, this means that: 

(FOR) Pr(Off l  = Aa & Off2 = Aa/Par  = Aa&Aa)  = Pr(Offl  = 
Aa/Par  = Aa&Aa)Pr(Off2 = Aa/Par  = Aa&Aa).  

It is quite clear that (FOR) is a standard assumption in models of the 
Mendelian process. 

Let us turn now to the backward fork formed by a common effect 
and its two causes. We wish to determine under what circumstances the 
genotypes of the offspring form a conjunctive fork with the genotypes of 
the two parents (P~ and P2). For simplicity (but without loss of gen- 
erality), I'll focus on the case of a single heterozygous offspring whose 
two parents are heterozygotes as well. 

If the fork is to be conjunctive, the different possible states of the 
offspring must each render the parental genotypes independent of each 
other. That is, the fork will be conjunctive only if: 

(BACK) Pr(P1 = Aa & P2 = Aa/Off  = Aa) = Pr(P~ = Aa/Off  = 
Aa)Pr(P2 = Aa/Off  = Aa). 

I prove in the Appendix that (BACK) is true if and only if: 

(**) Pr(P2 = Aa/P~ = Aa)/Pr(P2 = n a )  = 1/[2Pr(Off = aa) ] .  

The left side of (**) describes the degree of assortative mating that 
occurs among parents; it tells you how much the choice of mates 
departs from randomness. The right side describes the frequency of 
heterozygotes among the offspring. Notice that for any degree of as- 
sortative mating, there is exactly one point-value for the offspring 
frequency of heterozygotes that satisfies the requirements for a conjunc- 
tive fork. 

If like always mates with like, then the assortative mating is said to 
be perfect and heterozygosity declines to zero. If the positive assortative 
mating falls short of this absolute degree, then heterozygosity declines 
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until it reaches an equilibrium value (Crow and Kimura 1970, p. 144). 
And of course other evolutionary forces besides pattern of mating can 
modify the frequency of heterozygotes. 

If the assortative mating is perfect, (**) reduces to 

2 = Pr(P2 = Aa)/Pr(Off = Aa) 

and indeed it is a property of this system of mating that heterozygosity 
is halved in every generation. So the requirement provided by (**) is 
satisfied in this case. However, the conjunctive fork idea imposes other 
demands. In particular, the other possible offspring genotypes must 
render the parental genotypes independent of each other: 

Pr(P1 = Aa & P2 = Aa/Off = AA) = Pr(P1 = Aa/Off = 
AA)Pr(P2 = Aa/Off  = AA). 

This will not be true when there is perfect positive assortative mating. 
It is not impossible for a population experiencing positive (though 

imperfect) assortative mating to satisfy (**) over the long haul. What 
is required is that the intensity of positive association between mates 
should adjust itself so as to satisfy a criterion specified in terms of the 
offspring frequency of heterozygotes. The rarer heterozygotes become, 
the more monomaniacally must like mate with like (all this in accord- 
ance with an exact quantitative formula). Rube Goldberg devices for 
achieving this coordination are not ruled out a priori, but it is not 
surprising that no living system happens to possess one.19 

The above argument about the backward fork focuses on the case in 
which two parents have a single offspring. What is the effect of increas- 
ing the number of offspring? If the parental pair has an infinite number 
of offspring, the likelihood terms (the probability of offspring genotypes 
conditional on the genotypes of the two parents) approach 1 or 0, and 
the fork becomes conjunctive degeneratively. But short of this limiting 
case, the conclusion that conjunctive forks are hard to come by remains 
in place. 

Correlation between sibs is the inevitable outcome of Mendelian 
reproduction (in a segregating population). Correlation between par- 
ents is not inevitable, but is the familiar pattern that is called assortative 
mating. When sib genotypes are correlated, it is easy to explain why 
this is so by invoking a model that says that each parental pair forms 
a conjunctive fork with the children it produces. A model that says that 
a child forms a conjunctive fork with its two parents allows one to 
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deduce the pattern of association found between the parents. One 
reason for claiming that this model is not an explanation is to insist that 
later events don't explain events that happen earlier. But, in addition, it 
is worth noting that the purely probabilistic relationships invoked in 
such a model are rarely if ever satisfied in nature. 

5 .  CONCLUDING REMARKS 

The concept of law naturally carries with it the idea of time translational 
invariance. This requirement, by itself, induces no temporal orientation 
in the laws we posit. The same can be said of the idea of probability. 
That a law should be stochastic, and that it should say of certain systems 
that their expected state changes with time, also induces no temporal 
asymmetry. But these two ideas, each of them innocent when taken 
singly, require that temporal symmetry be broken when they are taken 
together. 

It is a separate question which way the symmetry is broken. If proba- 
bilistic laws were backward-directed about as often as they are forward- 
directed, we might not expect there to be a single underlying explana- 
tion for why symmetry is broken in the way it is. But if most (or all) 
temporally oriented laws are forward-directed, the suspicion arises that 
there is a single explanation of this fact. I have floated the idea that 
the source of the bias in favor of forward-directed laws is to be found 
in an asymmetry concerning causality. We can talk of the probability 
of an effect, given a cause, and also of the probability of a cause, given 
an effect. With incomplete descriptions of both cause and effect, neither 
of these conditional probabilities can be expected to be time transla- 
tionally invariant. However, when the causal facts are completely cir- 
cumscribed, it is plausible to maintain that the forward-directed con- 
ditional probability is time translationally invariant. The same cannot 
be said for the backward-directed probability when the description of 
the effects is rendered complete. The reason for this, I suggest, is that 
(completely specified) common causes often form conjunctive forks 
with their joint effects, but (completely specified) common effects rarely 
form conjunctive forks with their joint causes. This may go some way 
to explaining why temporally oriented laws are forward-directed. 

At the beginning of this paper, I raised the question of whether the 
temporal asymmetry described here is an artifact of our interests or an 
objective feature of the world. Different aspects of my argument answer 
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this question in different ways. The proof  with which I began owes 
nothing to our  interests; it is a mathematical fact that systems of the 
kind specified cannot have both forward-oriented and backward-ori- 
ented laws, if laws must be time translationally invariant. I then argued 
that science opts for forward-directed laws because conjunctive forks 
open to the future are common while forks open to the past are rare. 
This difference between forks derives, in part,  from the fact that the 
efficacies of causes are not tightly coupled with their frequencies, and 
again I take this relative independence to be an objective feature of 
the world. But what of our  choice of descriptors? What  entitles us to 
carve up the world into efficacies and frequencies that are not tightly 
coupled? Could not a 'gruification' of familiar terminology produce a 
vocabulary in which efficacies and frequencies are bound together,  thus 
ensuring that conjunctive forks open to the past are as common as dirt? 
Having pursued the question of objectivity back this far, I will not 
attempt to pursue it farther. For  now my conclusion will be a conditional 
one: given the descriptors we use of the probabilities and efficacies of 
causes, it is an objective feature of the world that temporally oriented 
laws are oriented towards the future. 

A P P E N D I X  

I want to prove that 

(BACK) Pr(P~ = Aa & P2 = Aa/Off---  Aa) = Pr(P~ = Aa/Off  = 
Aa)Pr(P2 = Aa /Of f  = Aa) 

is true if and only if 

(**) Pr(P2 = A a / P I  = Aa) /Pr(Pz = Aa) = l / [2Pr(Off  = Aa)]. 

Bayes' theorem allows (BACK) to be rewritten as: 

1/2[Pr(P~ = Aa & P2 = Aa)] /Pr (Off  = Aa) = [Pr(Off = 
Aa/Px = Aa)Pr(P1 = Aa) /Pr (Of f  = Aa)] 2. 

Note that: 

Pr (Off  = AalP1 = Aa) 
= Pr (Off  = AalP2 = AA & Pt = Aa) 

x Pr(P2 = AA/P1 = Aa) 
+ Pr (Off  = Aa/P2 = Aa & P1 = Aa) 
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x Pr (Pz  = Aa/P1  = A a )  
+ P r ( O f f  = Aa /P2  = aa & Px = Aa )  
x Pr(P2 = aa/P1 = Aa)  = 1/2. 

This allows ( B A C K )  to be fur ther  simplified to  

1/2[Pr(P1 = A a  & P2 = A a ) P r ( O f f  = A a ) ] /  
[Pr(P1 = a a ) P r ( P i  = Aa) ]  = 1/4, 

f rom which (**) follows. 

NOTES 

1 My thanks to Martin Barrett, James Crow, Carter Denniston, Etlery Eetls, Malcolm 
Forster, Richard Lewontin, and the anonymous referees of this journal for useful com- 
ments. 
z Or neither. But I'll ignore laws of simultaneous compossibility. 
3 One can infer the later state of the system using this conditional probability if the 
conditional probability is high or low, once one has observed that the conditioning 
proposition is true. And even if the probability is middling, the conditional probability 
plus the observation allow one to assign a probability to the conditioned proposition. 
4 The idea of a law's subserving one sort of inference but not the other will be clarified 
presently. 
5 Nothing very demanding is implied by talk of 'laws' here. Issues about the modal status 
of laws don't  matter, for example. 
6 A forward-directed law, thus defined, can permit a backward inference based on 
likelihood, not probability. Suppose one observes that the system is presently in state s; 
this supports the hypothesis that it was earlier in state i better than it supports the 
hypothesis that it was earlier in state j, if Pr(system is now in state s/system was earlier 
in state i) > Pr(system is now in state s/system was earlier in state j). 
7 In the theory of Markov processes, such laws are said to be time stationary. 
8 By 'expected state', I mean the state's mathematical expectation. In general, the mathe- 
matical expectation of a quantity is not the value we would expect the quantity to have. 
Consider a population in which half the parents have one child and half have two. The 
expected number of offspring of a parent drawn at random from this population is 1.5, 
although we would not expect any parent to have that number of children. 
9 Earman (1986) describes a number of writers who hold to this principle. He does not 
dissent from it. If laws describe causal variables, then the principle embodies the idea 
that the date of an event is not a causal variable. I do not claim that this idea is an a 
priori constraint on our concept of law, plausible though it is in scientific practice. 
10 Kemeny and Snell (1960, pp. 26, 105) point out that if a forward process is a Markov 
chain, the backward process will not generally be a Markov chain. They note that 
symmetry is restored if the process begins at equilibrium, 
11 See Berg (1983) for details. The same point holds for random genetic drift. The initial 
gene frequency is the expected value throughout the population's evolution; yet, the 
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probability of the gene's  going to an absorbing state (0% or 100%) increases with time. 
See Crow and Kimura (1970). 
t2 To see what is involved in this claim, consider a random walk on an open line, with 
the marker beginning at position 0. After  a unit of  time elapses, there is a chance of 
moving one unit to the left and an equal chance of moving one unit to the right. The 
process may continue for as long as you please. What is the expected location of the 
marker on the line from + ~ to - ~  after n units of time elapse? The expected location 
is at location 0. The longer the process continues, the less probable it is that the marker 
is at location 0. Yet this remains its expected position. 

Suppose the first step of this process, during one of its realizations, has the marker 
move one step to the left. Its expected position thereafter,  conditional on this fact, is 
+1. But earlier, its expected position was 0. Isn't  this a case in which the expected 
position has changed? 

No - not in the sense intended. Conditional on the position of the marker at any time 
(for example, the beginning of the process), we can ask what the expected position is 
after n moves. The point is that the answer to this question does not depend on n. It is 
in this sense that the expected position is the same throughout the process. 
13 In the language of the theory of Markov processes, the above result applies to systems 
that are ergodic: for each pair of states i and j that the system might occupy, there is a 
nonzero probability that a system beginning in state i will remain there and a nonzero 
probability that it will go into state j. I believe that the result also applies to Markov 
chains that are nonergodic, but decomposable; this is the case in which the state space 
can be divided into regions, between which there is no chance of passing, but within 
which each state is accessible to every other. 
14 I suggest that dispositional concepts like solubility should be understood probabilis- 
tically. If indeterminism were to imply that a lump of  sugar emersed in water under 
normal conditions has a tiny but nonzero probability of  not dissoIving, I don ' t  think we 
would conclude that sugar is not water soluble (Sober I984). 
15 See EeUs (1991) for discussion of this point. 
16 I am here ignoring the phenomenon of meiotic drive; that would complicate the 
example, but  would not affect the main point. 
,7 The probability of a parental pair is itself a result of two factors: the probabilities of  
genotypes within each sex and the system of mating. 
18 The conjunctive fork idea also requires that P r ( A & B / - E )  = P r ( A / - E ) P r ( B / - E ) ,  
but the argument would not be affected by considering this condition separately. 
i9 Although there is dispute among population geneticists about how assortative mating 
ought to be represented mathematically, one standard model postulates that a fraction r 
of each genotype pairs up with like individuals and the remainder (1 - r) mates at random 
(Crow and Kimura 1970, p. 144); r is here said to be the coefficient of  assortative mating. 
Under  this arrangement 

Pr(P1 = Aa & P2 = Aa) = rPr(Pt  = Aa) 
+ (1 - r)Pr(P1 = Aa) 2. 

If we let p = Pr(P1 = Aa) be the population frequency of Aa in the current generation 
and p'  be the frequency in the next generation, then the condition for a conjunctive fork 
(**) becomes: 
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r + (1 - r)p = p/2p'. 

The frequency of heterozygosity in the next generation can be expressed as a function 
of the heterozygosity in the previous generation 

p' = rp/2 + (1 - r)po, 

where po is the frequency of heterozygosity at the beginning of the process. This allows 
(**) to be restated as: 

r + (1 - r)p = p/2p' = p/[rp + 2(1 - r)p0]. 

As in the simpler treatment provided in the text, it is extremely improbable that an 
evolving population should satisfy this requirement. 
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