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The question to be addressed in this paper is whether we need a 
special theory to explain the mechanisms of scientific discovery, or 
whether those mechanisms can be subsumed as special cases of the 
general mechanisms of human problem solving. One of the authors 
has previously .published several papers arguing for the latter posi- 
tion. t The main evidence adduced in those papers for the thesis that 
scientific discovery is problem solving was the behavior of some 
computer programs that, using simple problem-solving heuristics and 
selective search, were capable of discovering patterns in simple 
sequences of symbols. 2 Much stronger evidence has now been pro- 
vided by the performance of D. B. Lenat's AM program, 3 which 
discovers mathematical concepts and conjectures theorems, and P. 
W. Langley's BACON programs, 4 which discover invariants in bodies 
of empirical data. It is a main purpose of this paper to review this new 
evidence and its implications for the theory of scientific discovery. 

Of course there are several respects in which scientific discovery is 
obviously different from other instances of problem solving. First, 
scientific inquiry is a social process, often involving many scientists 
and often extending over long periods of time. Much human prob- 
lem solving, especially that which has been studied in the psy- 
chological laboratory, involves a single individual working for a few 
hours at most. 

A second way in which scientific inquiry differs from much, but not 
all, other problem solving is in the indefiniteness of its goals. In 
solving the Missionaries and Cannibals puzzle, we know exactly what 
we want to achieve: we want a plan for transporting the missionaries 
and cannibals across the river in the available small boat without any 
casualties from drowning or dining. Some scientific discovery is like 
that: The mathematicians who found a proof for the Four-color 
Theorem knew exactly what they were seeking. So did Adams and 
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Leverrier when they detected Neptune while searching for a celestial 
object that would explain anomalies in the orbits of the other planets. 

In most scientific inquiry, however -  and especially in what Kuhn 
has called "revolutionary sc ience"- the  targets are less sharp. What 
was Darwin seeking that was more definite than a way of putting 
order into the complex, confusing data of biological diversity and 
fossil geology? Toward the end of the eighteenth century, just prior to 
the work of Lavoisier, how would one have defined the "problem of 
combustion"? 

In spite of these differences between scientific inquiry and other 
problem solving, it is quite possible that the component processes, 
which when assembled make the mosaic of scientific discovery, are 
not qualitatively distinct from the processes that have been observed 
in simpler problem-solving situations. Solving complex problems 
generally involves decomposing them into sets of simpler problems 
and attacking these. It could well be the case (and we will argue that it 
in fact is) that the component problem solving involved in scientific 
discovery has no special properties to distinguish it from other 
problem solving. 

Our paper will be concerned with describing and explaining 
scientific discovery rather than with providing a normative theory of 
the process. Indeed, the very possibility of a normative theory has 
been challenged by many philosophers of science. 5 However, if we 
succeed in producing a credible explanation of discovery, that 
explanation will itself also constitute a first approximation to a 
normative theory. Especially is this true if the explanation is 
constructive- if it exhibits a set of processes that, when executed, 
actually make scientific discoveries. The explanation we shall propose 
is of this constructive kind. 

The paper is divided into three major parts. The first part will 
comment on the anatomy of scientific discovery - perhaps it would be 
more modest to call it the taxonomy. There is no unitary activity 
called "scientific discovery"; there are activities of designing 
experiments, gathering data, inventing and developing observational 
instruments, formulating and modifying theories, deducing con- 
sequences from theories, making predictions from theories, testing 
theories, inducing regularities and invariants from data, discovering 
theoretical constructs, and others. All of these activities that make up 
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the scientific enterprise must be put in perspective, and that is what 
we shall try to do in the first part of the paper. 

In the second part of our paper we will describe a computer 
program, called BACON.4, that constitutes a constructive theory of 
some important kinds of scientific discovery. We will support this 
claim by examples of the performance of BACON.4 when it is placed 
in various historical situations, that is, when it is confronted with the 
same sorts of empirical data that were available to physicists and 
chemists during certain critical episodes in the eighteenth and 
nineteenth century histories of those sciences. 

In the third part of the paper, we will describe, more briefly, a 
program, AM, that makes discoveries of a rather different kind from 
BACON.4's, using theory-driven instead of data-driven processes. 
We will also comment more generally on what part of the spectrum of 
scientific activity is illuminated by the BACON.4 and AM programs. 

P R O C E S S E S  O F  D I S C O V E R Y  

The scientific enterprise is dedicated to the extension of knowledge 
about the external world. It is usually conceived as being made up of 
three main kinds of interrelated activities: gathering data, finding 
parsimonious descriptions of the data, and formulating and testing 
explanatory theories. Sometimes the second (description) and third 
(explanation) categories are merged. Usually these activities are con- 
ceived as occurring in cyclical fashion. Theories are formulated, from 
these predictions are made, data are gathered, and the theories are 
tested by confronting their predictions with the data. Failure of data 
to support theories leads, in turn, to the formulation of new theories. 
It is generally agreed, however, that the actual sequences of events 
are less regular. Data may be gathered without clear theoretical 
preconceptions, and theories may be retained, especially in the ab- 
sence of viable alternatives, even after some of their predictions have 
been disconfirmed. 

Some Comments on Taxonomy 

Whether or not data gathering, description, explanation, and theory 
testing are strictly cyclical, each of these activities can be subdivided 
further. Data may be gathered by observation of natural events or by 
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'producing' phenomena through experimentation. If the data are to be 
obtained by experimenting, the experiments must be designed; and in 
the cases both of experiment and observation, data-gathering instru- 
ments must be invented and improved. 

Data are seldom reported in wholly raw form. They must usually be 
digested and summarized. Summarizingrequires detecting regularities 
and invariants- that is, developing descriptive generalizations, which 
may or may not be dignified by the iabel 'theory'. 

Descriptive generalizations or theories may, in turn, be derivable 
from explanatory theories. We will have more to say presently about 
how a line might be drawn between these two categories of theory. 
Whether or not there is, indeed, such a boundary, science includes a 
whole collection of 'theoretical' activities: inventing theories, deriving 
theorems from them (including predictions and derivations of des- 
criptive from explanatory theories) as well as directly predicting 
observations. 

Finally, another collection of activities comes under the general 
heading of testing theories. Here are included the whole range of 
statistical techniques for comparing theoretical statements with data 
and making judgments of 'significance'. 

The diffusion of scientific discoveries and expository writing about 
them are usually regarded as meta-activities of science. Yet we must 
remember that Mendeleev discovered the periodic table while plan- 
ning the arrangement of topics for an elementary chemistry textbook. 

Strong and Weak Methods in Discovery 

By and large it is characteristic of all of these activities of scientific 
inquiry - with some partial exception for hypothesis testing - that they 
are usually carried out in a relatively unsystematic and only partly 
organized way. There is no powerful factory me thod -no  assembly 
l ine - fo r  the manufacture of scientific truth. In fact, indications in 
any domain of science that problem solving can be accomplished 
systematically and routinely causes that activity to be classified as 
'mere' development or application rather than basic scientific inquiry. 
Even if the activity falls far short of complete systematization and 
routinization, if its 'do-ability' is nearly predictable, it falls under 
Kuhn's rubric of 'normal' science rather than the more prestigious 
'revolutionary' science. In fact, methodologists of science sometimes 
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hint that the fundamentality of a piece of scientific work is almost 
inversely proportional to the clarity of vision with which it can be 
planned. 

Similar gradations and distinctions in degree of systematization are 
made in theories of problem solving. Expert problem solving in any 
domain is characterized by the system~itic application of powerful 
methods, each adapted to a recognizable subdomain. The expert does 
not have to seek and search; he recognizes and calculates. Problem 
solving by novices, on the other hand, is characterized by tentative- 
ness and uncertainty. The novice frequently does not know what to 
do next; he searches and tests; he uses crude and cumbersome 
methods because he is not familiar with the powerful tools of the 
expert. 6 

It is understandable, if ironic, that 'normal' science fits pretty well 
the description of expert problem solving, while 'revolutionary' 
science fits the description of problem solving by novices. It is 
understandable because scientific activity, particularly at the rev- 
olutionary end of the continuum, is concerned with the discovery of 
new truths, not with the application of truths that are already well 
known. While it may incorporate some expert techniques in the 
manipulation of instruments and laboratory procedures, it is basically 
a journey into unmapped terrain. Consequently, it is mainly charac- 
terized, as is novice problem solving, by trial-and-error search. The 
search may be highly select ive- the selectivity depending on how 
much is already known about the domain - but it reaches its goal only 
after many halts, turnings, and backtrackings. 

By necessity, problem solving in novel domains makes use of weak 
methods-problem solving techniques of quite general application 
whose generality is assured by the fact that they do not use or require 
much prior knowledge of the structure of the problem domain. 
Problem solving in well-understood domains uses strong methods- 
powerful techniques that are carefully tailored to the specific struc- 
ture of the domain to which they are applied. Of course strong 
methods are almost always more powerful than weak methods, but 
they are simply not available, by definition, when entirely new ter- 
ritory is to be explored. 

The commonest weak problem solving methods are generate-and- 
test, heuristic search, and means-ends analysis. The generate-and-test 
method employs one process to produce candidate problem solutions 
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while another process tests each candidate to determine whether it 
meets the criteria of solution. Clearly, this method is applicable, in 
principle, to any problem domain. Clearly also, it will rarely produce 
solutions if the generator operates on a 'try everything' or 'search 
randomly' basis, without any information about the problem domain. 

The heuristic search method generates new solution candidates by 
modifying candidates already tried. It can be more efficient than the 
generate-and-test method to the extent that information can be 
extracted from the search to guide the direction of modification. 
Evaluation of solution candidates on some scale of better or worse 
can provide one such search criterion. 

Means-ends analysis is a special form of heuristic search that 
guides the search at each step by comparing a solution candidate with 
the criteria for solution, detecting differences between them, and 
modifying the candidate in a way that is aimed at reducing or 
removing one or more of the differences. Again, the efficacy of such a 
scheme depends on what knowledge the system has of the association 
between specific differences and specific operations for removing 
them. 

Weak methods exploit as little or as much knowledge about the 
structure of the problem space as is available to them. When little 
knowledge is available, they are more or less equivalent to, and as 
inefficient as, random search through the problem space. If a great 
deal of knowledge is available, especially to the means-ends method, 
they may home in on solutions with little extraneous search. 

Two and one-half decades of research in artificial intelligence and 
cognitive simulation have shown that weak methods can solve prob- 
lems in domains that are regarded as difficult for intelligent human 
problem solvers, and can do so without intolerable amounts of 
search. 7 The programs for scientific discovery on which we shall 
comment, and specifically the BACON and AM programs, employ 
heuristic search and other weak methods as their problem solving 
tools. 

Data-Driven and Theory-Driven Science 

Since theories encourage the acquisition of new data, and vice versa-  
as surely as hens engender eggs and eggs hens-  scientific discovery 
can enter the cycle of scientific activity at any point. In the contem- 
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porary literature of the philosophy of science, with its (mistaken) 
emphasis on theory testing as the quintessential scientific activity, the 
tale usually begins with a theory. The theory, emanating from the 
brain of Zeus or some other unexamined source, calls for testing, 
which demands, in turn, that appropriate data be obtained through 
observation or experiment. In this scheme of things, the discovery 
process may be described as theory driven. 

Especially when a theory is expressed in mathematical form, theory 
driven discovery may make extensive use of strong methods asso- 
ciated with the mathematics or with the subject matter of the theory 
itself. The discovery procedures will not be general in this case, but 
will be tailored to the problem domain. 

The converse view, which we may call Baconian induction, takes a 
body of data as its starting point and searches for a set of generaliza- 
tions, or theory, to describe the data parsimoniously or to explain 
them. Usually such a theory takes the form of a precise mathematical 
statement of the relations among the data. In this scheme of things, 
the discovery process may be described as data driven. Data driven 
discovery will perforce make use of weak methods, but with the 
compensating advantage that the methods are quite general in their 
domain of application. Moreover, we must remember that 'weak 
methods' will still usually be far more powerful than blind trial-and- 
error search. 

Both data-driven and theory-driven processes give partial views of 
the scientific enterprise. It is easy to find in the history of science 
examples of discoveries of first importance that fit each view. Pub- 
lished accounts of the history tend most often to cut the cycle so as to 
emphasize theory as the first m o v e r - f o r  example Lavoisier's refu- 
tation of the phlogiston theory with his careful experiments on 
mercuric oxide, the disconfirmation of the classical theory of the 
ether by Michelson and Morley, the test of general relativity by 
observations on the solar eclipse of 1921, and many others. 

On the other hand, the historical records of Mendeleev's discovery 
of the periodic table and Balmer's of the formula for the hydrogen 
spectrum reveal both of these to be clearcut cases of data-driven 
Baconian induction. 8 They could not have been otherwise, since the 
regularities discovered were, at the time of their discovery, purely 
descriptive generalizations from the data, lacking any theoretical 
motivation. 
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Francis Bacon himself said, in the Novum Organum, 

Those who have treated the sciences were either empirics or rationalists. The empirics, 
like ants, lay up stores, and use them; the rationalists, like spiders, spin webs out of 
themselves; but the bee takes a middle course, gathering up her matter from the flowers 
of the field and garden, and digesting and preparing it by her native powers. 

There is no question, then, of choosing between data-driven and 
theory-driven discovery. Rather, what is needed is an understanding 
of how each of these processes can occur. In the next main section of 
this paper, we will address one part of the task: we will describe the 
computer program, BACON, which as its name implies is a system 
capable of making scientific discoveries by induction on bodies of 
data. In the final section of the paper, we will consider more briefly 
AM, a system that can do theory-driven discovery. 

Description and Explanation 

The distinction, alluded to earlier, that is commonly made between 
descriptions and explanations is a matter of degree rather than a 
dichotomy. Generalizations are viewed as 'mere' descriptions to the 
extent that they stick close to the data, stating one or more relations 
among the observable variables. Thus, Kepler's Laws, expressed 
entirely in terms of the shapes of the planetary orbits, the areas over 
which they sweep, their radii, and their times, are regarded as 
descriptions rather than explanations of the planetary motions. On the 
other hand, Newton's Law of Universal Gravitation, Mla, = 
gMIM2/d 2, from which Kepler's Laws can be derived, is regarded as 
an explanation of the latter and, by transivity, of the phenomena they 
describe. In the Law of Gravitation, the acceleration, a~, and the 
distance between the objects, d, are observables, but the masses, M~ 
and Ms, a re  theoretical terms whose values must be inferred in- 
directly from those of the observables. 9 

Newton's Law, then, is regarded as an explanation both because it 
contains theoretical terms and because Kepler's descriptive laws can 
be deduced from it. These seem to be two of the cr i ter ia- the 
presence of theoretical terms and the derivability of more specialized, 
descriptive consequences- that  underlie our intuitions of the dis- 
tinction between explanatory and descriptive theories. 

Although the distinction is intuitively plausible, it does not hold up 
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terribly well under formal examination. For example, Kepler's Third 
Law can be stated in the form, S = K, where K is a constant; 
whereas S--P2/d3, where P is the period of the orbit and d is the 
distance of the planet from the Sun. However, S is then a theoretical 
term, for it is not observed directly but is computed by the equation 
given above from the values of P and d, which are observed. 
Consequently, if we take the presence of a theoretical term in a law 
as the test for its being explanatory, we would have to classify 
Kepler's Third Law as explanatory, a classification that does not 
match very well with our intuitions. 

Without trying to arrive at an immediate judgment, let us carry the 
story a step farther. If a pair of blocks, X and Y, is connected by a 
spring, the spring stretched to various lengths and then released, and 
the initial accelerations of the blocks measured, we can discover the 
invariant relation, ax/ay = -  Kxy, where the a's are accelerations, as 
before, and K is a theoretical term that is constant. With a new pair 
of blocks, W and Z, a similar invariance will be found, possibly with 
a new constant, Kwz. Now we might seek to state the invariance in 
another way by attributing to each block, X, an invariant property, 
Mx, and asserting the law, Mxax = - M g a g ,  or what is equivalent, 
My/Mx = Kxy. Expressing the ratios of the accelerations in terms of 
the postulated masses yields a stronger law than the first form of the 
invariance, for it implies transitivity of these ratios over the whole set 
of blocks-  i.e., that Kxz = K x y K y z .  The first form of the invariance is 
expressed in terms of the ratio of the accelerations, while the second 
is expressed as a relation between these accelerations and the inertial 
masses of the individual blocks. Yet, there are theoretical terms in 
both forms of the law" the K's  in the first and the M's in the second. 
As a matter of fact the number of different values of the theoretical 
terms (constants) in the first form of the law is n 2 for a set of n 
blocks, but for the second form of the law it is only n. 

There is a difference, however, between the ratios of accelerations, 
Kxy, and the masses, Mx. The former can be computed directly as 
ratios of observables, while the latter cannot. The existence of the 
mass numbers must be postulated, and the mass of one of the blocks 
taken as the standard; then the values of the remaining masses can be 
computed froni the ratios of the accelerations. The same distinction 
between two kinds of theoretical terms can be found by comparing 
the directly computable constant in Kepler's Third Law witli the mass 
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numbers that appear in Newton's gravitational law. In both examples, 
the explanatory law is slightly more parsimonious than the descriptive 
law; it also makes use of a more sophisticated kind of theoretical 
term, introducing into the picture a new property that is not obtain- 
able by taking simple functions of the observables. We will call 
invariants that are introduced in this way intrinsic properties. And 
from the two examples we have examined, we can conjecture that the 
introduction of intrinsic properties gives a generalization an explana- 
tory rather than merely descriptive flavor. 

These remarks fall far short of providing a formal basis for a 
distinction between explanations and descriptions, but they provide a 
background for understanding the fact that in the BACON.4 program, 
to be described in the next section, different mechanisms are used to 
introduce the two different kinds of theoretical terms that we have 
identified here. All of these mechanisms remain in the category of 
weak methods, so that they do not reduce the generality of BACON.4 
nor introduce any great element of complexity. Before we leave the 
subject of explanation, however, we should comment on a third 
viewpoint on this topic which we have not mentioned. 

Explanation and Causation 

We have said that explanatory power may be attributed to a law if it 
leads deductively to correct predictions of empirical data or if it 
postulates intrinsic properties. Sometimes, on the other hand, laws 
are said to be explanatory if they give a causal account of the 
phenomena. Since the correct explication of the notion of causality is 
still a topic of discussion and dispute in philosophy, ~° we will again 
proceed informally. Fortunately, most of the philosophical difficulties 
relate to the attribution of causes in non-experimental situations, 
while most of our data and theories (except for Kepler's law) are 
derived from experiment, where matters are relatively straightfor- 
ward. 

If the value of a dependent variable changes when the value of an 
independent variable is altered, we say that the latter change causes 
the former. When we replace one of the blocks in the conservation or 
momentum experiment with a heavier one, the corresponding ac- 
celeration decreases. Hence, we say that inertial mass is a deterrent 
(i.e., a negative cause) to acceleration. We do not make the converse 
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inference: that decreasing the acceleration will cause the mass to 
increase. The asymmetry between the variables appears to arise from 
the fact that we have a way of intervening in the situation directly to 
change the masses, but no way of intervening directly to change the 
ratio of the accelerations. In any event, if we associate explanation 
with causality, we can regard the law of conservation of momentum 
as a causal law. 

Ohm's law provides a similar example. In a circuit with a battery 
and a resistance wire, we can replace one battery with another, and 
one resistance wire with another, measuring the current (the depen- 
dent variable) each time. In the theory we derive from these data, the 
voltage of the battery and the resistance of the wire are the causes 
that determine the amount of current that flows. The asymmetry is 
genuine, since we have no physical way of causing the battery or the 
wire to change by varying the current directly. Ohm's law, by this 
criterion, is not merely descriptive; it is an explanatory law. 

What shall we say about Kepler's Third Law and the Law of 
Universal Gravitation? In the former, there seems to be a perfect 
symmetry between distance and period of orbit; neither seems to take 
precedence in causing the other. Of course in our age of Sputniks, we 
can turn the situation into an experimental one. We launch a satellite 
with sufficient energy to put it into orbit at a specified height above 
the earth. At that altitude, it will orbit with a period given by Kepler's 
Law. Does the law now provide a causal explanation of the period? 

In the case of Newton's Law, we instinctively feel an asymmetry. 
We read M~a~ = gM1M2/d 2 from right to left and not from left to right. 
We think of the masses and their distances as causing the acceleration 
(via the force field caused by the gravitational mass), and not vice 
versa. This reaction is perhaps not unrelated to the fact that the 
acceleration contains an implicit reference to future velocity and 
position; hence, if we read the equation from right to left, the causal 
arrow will agree with the arrow of forward movement through time, 
while if we read it in the other direction, it will reverse that arrow. 

We will not try to resolve here the philosophical issues raised by 
these examples. Our purpose in mentioning them is to point out that if 
we take the assertion of causality to be the criterion for a law's being 
explanatory, then all laws derived from experimental manipulations as 
well as laws that involve temporal asymmetry can be given explana- 
tory interpretations. 
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Nor do we claim that we have explicated, in this section and the 
preceding one, all of the criteria that might be advanced for dis- 
tinguishing explanatory from descriptive laws. In particular, we have 
said nothing about laws that reduce a description at one level of 
aggregation to a description at a lower leve l - the  reduction of the 
laws of thermodynamics, for example, to the laws of statistical 
mechanics, or the laws of chemistry to quantum mechanics and the 
laws of atomic physics. There would be general agreement that all 
such laws are explanatory, but not that only such laws are explana- 
tory. 

B A C O N :  A D A T A - D R I V E N  D I S C O V E R Y  S Y S T E M  

We are now ready to return to our main topic: a demonstration that 
scientific discovery-  at least some kinds of scientific discovery-  can 
be accomplished by an inductive process that is driven by empirical 
data. The demonstration takes the form of reporting the results of 
experiments with a computer program, BACON.4, that discovers 
empirical laws using data-driven weak methods. BACON.4 is able to 
discover both descriptive and explanatory laws. 

BACON.4 employs a small set of data-driven heuristics to detect 
regularities in numeric and nominal data. These heuristics, by noting 
constancies and trends, cause BACON.4 to formulate hypotheses, 
define theoretical terms, postulate intrinsic properties, and propose 
integral relations (common divisors) among quantities. The BACON.4 
heuristics do not depend on the specific properties of the particular 
problem domains to which they have been applied but appear to be 
general techniques applicable to discovery in diverse domains. 

BACON.4' s Heuristics 

BACON.4 is programmed as a production system whose components 
are computer instructions called productions. Each production con- 
sists of two parts: a condition part and an action part. The conditions 
are tests that are performed on BACON.4's data base. Some of the 
actions are arithmetic operations on the data base to compute func- 
tions of the data previously developed; other actions bring in new 
data (i.e., 'perform experiments'). Whenever the conditions of any 
production are satisfied by the data in the data base, the actions Of the 
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production may be carried out. A set of simple rules adjudicates 
conflicts among productions when two or more seek to execute at the 
same time; the content of these conflict resolving rules will not 
concern us. BACON.4's heuristics fall into four classes, which we 
discuss in detail below. 

Detecting Covariance. The nature of the data BACON.4 uses and the 
way it operates is most easily explained by working through some 
simple examples. In Table 1 is shown a set of data that might have 
been gathered by Kepler. Each row of the table except the last one 
represents an individual observation, and the entire table represents a 
set of observations made on the planets. Each observation consists of 
the value of a nominal variable, which identifies the planet, and of two 
numeric variables, its distance from the Sun, D, and the period of its 
orbit, P. All of these variables are observables. (The names of the 
planets could be replaced by descriptions that identified them 
uniquely by their color, brightness, location, and so on.) 

To extract Kepler's Third Law from these data, BACON.4 
examines the column for each observable (D and P)  to determine 
whether the values in the column are all identical. Finding that none 
are in this case, it arranges the observations monotonically according 
to the values of one variable (say, D) and then examines the columns 
of the other variables for monotonicity. In this case, since period of 
orbit, P, increases monotonically with D, BACON.4 forms the ratio, 
D/P, but finds that it is not invariant. Since this ratio varies inversely 
with D, BACON.4 now computes the product, (D /P)xD = DZ/P. 

TABLE I 
Induction of Kepler's Third Law 

PLANET DISTANCE PERIOD (D/P) x 103 (D2/P) x 103 (D3/p 2) x 106 

MERCURY 0.387143 87.9583 4.40144 1,7040 7.50 
VENUS 0,722467 224.232 3,22197 2.3278 7.50 
EARTH 1.000000 365.256 2.73781 2.7378 7.50 
MARS 1.524881 687.580 2.21776 3.3818 7.50 

JUPITER 5.208507 4340.49 1.19998 6.2501 7.50 
SATURN 9.543414 10765 . 27  0.88650 8.4602 7.50 

ANY 7.50 
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Because the latter product also varies inversely with DIP, BACON.4 
computes their product, which is D3/p z. On examining this product, 
BACON.4 discovers that it has the same value for all the obser- 
vations, hence the desired invariant law has been discovered. 

In this description of BACON.4's behavior, a number of important 
details have been elided. In particular, we have said nothing about the 
order in which pairs of variables are examined, although that order 
could clearly affect the amount of search that would be required to 
find the invariant ratio. In fact, the exact order in which pairs are 
tested turns out to have only a second-order effect on the program's 
problem-solving ability. BACON.4 is also provided with checking 
procedures that allow it to avoid infinite loops -  such as calculating 
the product of D/P and P and adding DP[P = D as a new variable. 
The important elements that account for BACON.4's efficiency in its 
search for invariants are: (t) the heuristic that allows it to notice the 
constancy of a particular dependent variable and to recall the 
definition of that variable in terms of the observables; and (2) the 
heuristic that leads it to look for pairs of variables that are positively 
(negatively) correlated, and to compute their ratios (products). 1~ 

The new variables that BACON.4 introduces by taking products 
and ratios of observables or previously computed variables are 
theoretical terms, in the sense in which we have been using that 
phrase. They are theoretical terms of a simple kind, being im- 
mediately definable in terms of observables. It is important for 
BACON.4's effectiveness that its heuristics operate on defined terms 
in exactly the same way as they do on observables. The program is 
completely recursive in this respect also. 

Recursion and Generalization. When BACON.4 has discovered an 
invariant, it can now summarize the whole set of observations from 
which it derived that invariant in a single new observation, which 
shows the value of the invariant and omits all of the independent 
variables that do not influence its value (See the last row of Table 1). 
This new observation is, in fact, the hypothesis or law that has been 
discovered. BACON.4 has a completely recursive structure. Having 
found the Level 1 summaries of Level 0 data for a number of 
different values of one of the independent variables, it can examine 
these summaries in exactly the same way as it examined the original 
data. If successful, it may be able to discover a new, Level 2, 
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generalization that summarizes the Level 1 hypotheses. This process 
can be repeated for an arbitrary number of levels, the hypotheses 
being generalized at each step. 

To see how this works, consider some data obeying the ideal gas 
law. This law may be stated as pV/nT = 8.32, where p is the pressure 
on a gas, n is the number of moles, T is the temperature, and V is the 
volume. Suppose BACON.4 is given data showing that when p is 1, n 
is 1, and T is 300, the value of V is 2496.0. If the first three terms are 
under the system's control (independent variables), 12 one can think of 
their values (p, n, and T) as conditions on the value of V, the 
dependent variable (see Table 2). Now suppose that after gathering 
additional data by varying p while holding n and T constant, 
BACON.4 finds that pV is 2496.0 whenever n is 1 and T is 300. This 
first level description (Boyle's Law) summarizes all zeroeth level 
observations that have the same conditions (the same n and T), but it 
can be treated as data in turn. Upon varying T, the program generates 
other first-level summaries; taken together these lead to the second 
level summary that pV/T is 8.32 whenever n is 1 (the laws of Boyle 
and Charles). Continuing in this way, the system arrives at the ideal 
gas law when the third level of description is reached. 

In determining when to generate a new description to summarize a 
set of lower level descriptions, BACON.4 draws on a generalized 
version of the traditional inductive inference rule. It simply looks for 
recurring values of a dependent variable and, when these are found, 
hypothesizes this constancy, including as conditions upon it the 
values of independent variables that are common to all cases in which 
this constant value occurred. The rule may be stated as: 

IF you see a number of descriptions at level L in which the 
dependent variable D has the same value, V, 

TABLE 2 
Derivation of the Ideal Gas Law 

Level Conditions Indep. Var. Dep. Var. Law 

0 N , T , P  V V = K  
1 N , T  P V P V = K  
2 N T P V  P V / T  = K 
3 N P V / T  P V / N T  = K 
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THEN create a new description at level L + 1 in which the 
value of D is also V, and which has all conditions common 
to the observed descriptions. 

This production may detect constant dependent terms that take 
either numerical or nominal (symbolic) values. BACON.4 has primi- 
tive faculties for ignoring small amounts of noise in data. However, it 
cannot, in its present form, deal with significant deviations from 
regularity, nor can it recover from overgeneralizations once they have 
been made. The conservative strategy of including all common con- 
ditions in the statement of each law serves to offset this latter 
limitation. 

Postulating Intrinsic Properties. Earlier, we compared two forms of 
the law of conservation of momentum. The first, ax/ay = - K x y ,  
asserted that, for any pair of blocks, the ratio of their mutually 
induced accelerations would be invariant. The second, -a×/ag = 
My/Mx, explained this invariance in terms of the ratios of the inertial 
masses of the two blocks. BACON.4 is able to discover this second, 
deeper, form of the law by attributing an intrinsic property, mass, to 
objects and discovering an appropriate value of the mass to associate 
with each block used in the experiment. 

In this experiment, BACON.4 treats pairs of objects 0× and Oe as 
the independent variables and their accelerations, a× and ay as the 
dependent variables. In addition, the program is told that the objects 
of a pair are interchangeable (i.e., that the same objects can be used 
for Ox or Oy. Thus, when an intrinsic property is discovered for Oy, 
BACON.4 knows it can associate that property with the same object 
when it appears as Ox .13 

Let BACON.4 experiment with five blocks, A, B, C, D, and E. At 
level 0 of the experiment, where O× is the block A, BACON.4 will 
discover that each pair of objects, A, Oy, has a constant ratio of 
a c c e l e r a t i o n s ,  KAy. Suppose that the ratios a r e  KAB ---- 1.20, KAC = . 80 ,  

KAD ---- 1.60, and KAE = 1.80. BACON.4 now defines a new variable, 
My, a n  intrinsic property associated with the second object in each 
pair, Oy, and sets its value equal to the corresponding K. At this 
point, BACON.4 cannot specify an M value for block A, which has 
not appeared in the experiment as Oy, and so it includes only blocks 
B, C, D, and E in the remaining experiments it carries out. At this 
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point, BACON.4 also defines the term Kxy/My, which, by the 
definition of My a s  equal to KAy, must always equal 1.0 whenever Ox 
is A. 

BACON.4 now collects data for new values of Ox. When Ox is the 
block B, it again discovers a constant ratio of accelerations for each 
value of Oy: .667, 1.33, and 1.50 for the pairs (BC), (BD), and (BE), 
respectively. Since these ratios, KBy vary directly wih the stored 
values of My, BACON.4 finds that the ratio KBv/My is equal to the 
constant .833. 

At Level 2, BACON.4 now varies the first block, and looks at the 
values Kxy/My obtained on the previous level. When the program 
retrieves the Mx values of each of the blocks and compares them 
with the previously mentioned ratios, it finds that their product, 
KxyMx/My, is a constant. Thus, for any pair of blocks, Ox, Oy, 
My/Mx =Kxy, which is the desired law of conservation of 
momentum. 

Finding Common Divisors. BACON.4 has one additional important 
heuristic beyond those already mentioned: It examines the several 
values of a variable that are obtained within any given experimental 
condition, to see if all these values can be expressed as multiples of 
some common divisor. Suppose, for example, that in a certain 
experiment measurements were made of a particular property (the 
dependent variable) of a number of different chemical elements (the 
independent variable). The observed values of the property were 
0.0446, 0.715, and 0.625, for hydrogen, oxygen, and nitrogen, respec- 
tively. BACON.4, upon examining these numbers, would discover 
that the first (0.0446) divides the others with the integer quotients: 
16.0 and 14.0. (The reader may recognize these latter numbers as the 
atomic weights of oxygen and nitrogen relative to H = 1, and the 
regularity expressed as Prout's hypothesis that all atomic weights are 
integral multiples of the atomic weight of hydrogen.) 

In another example, we might have as independent variable some 
chemical compounds of oxygen, and as dependent variable, the 
weight of the oxygen in a standard volume of the compound: nitrous 
oxide, 0.715; sulfur dioxide, 1.430; and carbon dioxide, 1.430. 
BACON.4 would notice that the second and third numbers are 
exactly twice the first number. It was on the basis of this kind of 
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observation that Cannizzaro, following Gay-Lussac and Avogadro, 
postulated the chemical formulas for these three compounds: N20, 
SOz, and CO2, the number of oxygen atoms in each molecule cor- 
responding to the multiple in the weight/volume ratio. 

Summary: BACON's  Heuristics. We have come to the end of the list 
of principal heuristics that BACON.4 uses to induce laws from data. 
The list is very short, consisting of only four items: 

1. It detects covariances of variables, and creates new functions of 
these variables in a search for invariants, carrying out this 
process recursively with the new variables it has defined. 

2. It recurses indefinitely to higher levels, generalizing by varying 
the independent variables that were held constant at lower 
levels. 

3. It postulates intrinsic properties associated with nominal vari- 
ables and tests for constancy of these properties. 

4. It searches for common divisors among the values of a variable 
and takes the least common denominator as unit of measure- 
ment. 

The brevity of the list of heuristics and their independence of the 
subject matter described by the data show that BACON.4 is itself a 
rather general and parsimonious theory of the process of law dis- 
covery by induction from data. 

BACON.4's Performance 

To give a more complete picture of the power of BACON.4, as well 
as its limitations, we summarize here the results of the main experi- 
ments we have conducted with it and the laws it has discovered. 

In the previous section, we have already outlined how the program 
can discover Kepler's Third Law, the law of conservation of momen- 
tum, and the ideal gas laws. To these, we may add the following: 

• Ohm's Law: Current = Voltage~Resistance 
Given control over two nominal variables, the battery and the wire, 
and measurements of the current, BACON.4 defines conductance (the 
reciprocal of resistance) as an intrinsic property of the wires, and 
voltage (the ratio of current to conductance) as an intrinsic property 
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of the batteries. It then discovers that current is equal to the product 
of voltage and conductance, an alternative form of Ohm's Law. 

Given, instead, numeric information about the wires (their length 
and diameter), BACON.4 finds the extension of Ohm's law that gives 
the conductance (or resistance) as a function of the length and 
diameter of the wire. In this form of the experiment, the program can 
also discover the internal resistance of the battery as a second 
parameter, along with its voltage. 

• Archimedes" Law  
Given two nominal variables, the name of an object and its composition 
(gold, silver, etc.), and two numeric variables, the volumes of a liquid 
and combined volumes of object and liquid, BACON.4 determines the 
volume of each object. Given several objects of each composition, it 
then proceeds to define the density of each object as an intrinsic 
property of its composition. 

• Shell's law of refraction: sine i/sine r = n l / n 2  

The law relates the angle of incidence and the angle of refraction of a 
ray of light as it passes from one medium to another. The data given 
BACON.4 are the sines of the angles. BACON.4 introduces as 
intrinsic properties the indices of refraction of the media, nl and n2. 

• Black's  specific heat law: ctmltl  + c2mEt2 ----- ( c l m l  + c2m2)t/ 
This law relates the temperatures of two liquids along with their 
masses to the final temperature, tf of the mixture. In this experiment 
the masses were provided as independent variables, while BACON.4 
introduced the specific heats, cl and c2, as intrinsic properties of the 
nominally identified liquids. 

• Laws  of  chemistry 
BACON.4 has induced a number of the laws of Nineteenth Century 
chemistry from data on chemical reactions. In examining these reac- 
tions, the program treats three variables as independent: the element 
contributing to the reaction, the resulting compound, and the weight 
of the element used, We. Three dep¢ndent variables are measured: the 
weight of the compound resulting from the reaction, wc, the (gaseous) 
volume of the element used, re, and the (gaseous) volume of the 
compound, vc, under standard conditions. 
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At the first level, the system finds three constant ratios for each 
element/compound combination: wdwc, Well)e, and WdVo The first of 
these is the relative combining weight of the element, which is 
constant by Proust's Law. The second is the constant density of the 
element, and the third is the weight of the element per unit volume of 
the compound. 

At the second level, BACON.4 varies the element and discovers 
that the WdVc ratios occur in small integer multiples of each other. 
Using the common divisors discovered in this way as intrinsic pro- 
perties of the elements, the program goes on to find a common divisor 
among these latter numbers, thus obtaining the atomic weights of the 
elements as multiples of the weight of hydrogen. 

Finally, BACON.4 discovers that the ratio wdve depends on the 
element being considered, but is independent of the compound-  
equivalent to the statement that each element has a characteristic 
(gaseous) density. 

Thus, BACON.4, without using an atomic hypothesis, obtained the 
main generalizations arrived at by Proust (law of definite proportions) 
and Avogadro, and posited the intrinsic properties of gaseous density 
and atomic and molecular weight. In a related experiment, with a 
slight re-ordering of independent and dependent variables, the pro- 
gram can discover Gay-Lussac's law (the law of simple proportions 
by volume). 

Does Bacon Explain ? 

We may now return to our earlier discussion of the relation of 
explanation to description and ask whether BACON.4 has explained 
any phenomena, or whether it has only described them. In every one 
of our experiments, BACON.4 introduced new theoretical terms, 
hence met at least that criterion of explanation. In most cases, it has 
also discovered and introduced intrinsic properties, including inertial 
mass, voltage, resistance (or conductance), internal resistance, 
specific gravity, index of refraction, specific heat, atomic weight, and 
molecular weight. Hence, if the use of intrinsic properties is the 
touchstone of explanation, most of the theories BACON.4 has dis- 
covered are explanatory. 

What about the test of reduction? The chemical formula, 2H2 + 
02--2H20, provides a reductionist explanation of the formation of 
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water vapor from hydrogen and oxygen, in terms of the atomic theory 
and hypotheses about the atomic compositions of the respective 
substances. BACON.4 using its GCD heuristic, discovers that water 
contains two 'quanta' of hydrogen and one of oxygen, and that each 
'quantum' of the latter weighs sixteen times as much as a 'quantum' 
of the former. Does this result support the claim that BACON.4 has 
discovered the atomic theory of the formation of water vapor, hence 
has reductionist capabilities? We would say that it does not, although 
it is not easy to specify what is missing. 

Perhaps we should only assert that a system has an atomic theory if 
it has some internal representation for atoms, each having associated 
with it its atomic weight and such other properties as theory attributes 
to it. Sets of such atoms would represent molecules. In addition to 
this representational capability, we might require that the system also 
have operators (representations of reactions) for rearranging sets of 
atoms. 

With such capabilities, the system could simulate the formation of 
water from hydrogen and oxygen by taking two molecules consisting 
of two atoms of hydrogen each and one molecule consisting of two 
atoms of oxygen and rearranging these into two molecules of water. 
This simulation would then constitute an explanation (or would it be 
only a description?) of the reaction. If only rearrangement operations 
were admitted (no creation or annihilation of atoms), the system 
would obey the basic laws of chemical reactions-conservation of 
weight, for example, and of numbers of atoms. 

It would be no great difficulty for BACON, or a very similar system 
to discover the conservation of mass and of atoms in chemical 
reactions (if appropriate data were supplied)] 4 Would we then say 
that BACON held an atomic theory? These are puzzling questions for 
which it is not easy to find answers. Our own belief is that the 
answers will be found mainly in the course of trying to construct 
experimental systems like BACON. Therefore, instead of conjectur- 
ing further about these difficult matters, we will describe briefly 
another discovery system, D. B. Lenat's AM, which illustrates 
aspects of the discovery process that are not prominent in BACON.4. 
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D I S C O V E R Y  O F  M A T H E M A T I C A L  C O N C E P T S  

The goal that the AM system strives to attain is a vague one: to find 
interesting new concepts and conjectures. 15 It has no machinery for 
proving or disproving its conjectures 'New ' means 'new to AM,' 
since the system has no way of knowing what concepts are already 
abroad in the world. 

In contrast to BACON.4, AM is a theory-driven system. Its search 
for new concepts is guided by the concepts it already has and what it 
knows about them. However, since AM's domain is mathematics 
rather than empirical science, there is no way to test its 
'theories' - concepts and conjectures-against  data. The closest 
analogue to data in AM are examples of concepts. AM does have 
capabilities for generating examples of its concepts and uses these 
examples as one basis for guiding the search for new concepts. If the 
analogy between examples and data is accepted, then to that extent, 
AM may be regarded as both theory driven and data driven. In this 
interpretation it exhibits the whole cycle of interaction of theory and 
data, with examples motivating the construction of new concepts, and 
concepts motivating the generation of examples. 

The Structure of AM 

To understand how AM operates and what it can (in principle) do, we 
must say something about the way it represents concepts in memory, 
the processes it uses to search for new concepts, and the criteria it 
uses to guide its search. We begin with its representational scheme. 

Representation of Concepts. Each concept in AM is represented as a 
schema consisting of a list of attribute-value pairs. There is a fixed set 
of attributes, or 'slots,' which are used to describe all concepts. When 
a concept is initially introduced, any or all of the slots may be empty, 
to be filled by further exploration. The 'values' that fill the slots are 
data structures or procedures of arbitrary complexity. 

The standard slots include the concept name, definitions (pro- 
cedures for generating or recognizing examples of the concept), 
specializations, generalizations, examples (subclassified as 'typical,' 
'barely,' 'not-quite', and so on), conjectures, intuitions (analogic 
representations), views (mappings on to other concepts), analogies, 
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algorithms (for executing the concept on a given argument), domain, 
range, worth, interestingness, and a few others. We will not explain in 
detail the content of each of these slots. We list them to indicate the 
degree of 'richness' a concept can acquire, and of interrelation with 
other concepts. 

A new concept is created by creating a node in memory, and 
assigning to it a name and at least one definition. How far it will later 
be elaborated by the slot-filling processes will depend on its ratings 
for worth and interestingness. 

Initial information. At the start, AM is provided with three packages 
of information: 

1. Criteria to measure how interesting a concept or conjecture is. 
For instance, AM judges a concept to be interesting to the extent that 
it is related to other interesting concepts, to the extent that examples 
of it can be generated (without too much difficulty but not too easily), 
and to the extent that strong conjectures can be made with its help. 
An example of a concept is interesting to the extent that it is extreme 
(is barely within the boundaries of the concept). The interest criteria, 
of which there are a substantial number, are assigned real numbers 
that are added together to determine the net worth of a concept or 
conjecture. 

2. Heuristics for searching for interesting concepts. 
For instance, AM searches for new concepts by constructing exam- 
ples. If examples of a concept are very easy to find, it specializes the 
concept; if they are very hard to find, it generalizes the concept. AM 
also specializes concepts to create narrower concepts that fit extreme 
examples of the original concept. It has combinatory capabilities for 
generating new concepts by assembling tests from concepts already in 
its stock. Given an interesting concept, AM may construct its inverse, 
and other concepts related to it. 

3. Finally, AM is provided with an initial stock of concepts in some 
subject-matter domain. 
The two principal experiments with AM used the domains of elemen- 
tary geometry and set theory. In set theory, AM was given the 
definition of set, of union of sets, of intersection of sets, and so o n - a  
total of some 1t5 concepts. This was the kind of information that 
would be introduced in a first course on set theory. 
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AM is not a parsimonious system. We have noted that in its 
exploration into set theory it was supplied with more than one 
hundred initial concepts. The criteria for evaluating interest and the 
heuristics for searching for interesting concepts and conjectures also 
number in the hundreds. Most of the criteria and heuristics cor- 
respond to fairly general weak methods, applicable to many different 
mathematical domains; a few correspond to more powerful, domain 
specific, methods. There is no objective standard for judging how 
closely they are tailored to the particular concepts that AM discovers, 
but our conclusion, after examining the system closely, is that they 
cannot generally be accused of being ad hoc. 

Search Organization. The control system of AM directs a best-first 
search. At each episode, AM selects from an agenda list the task that 
has the highest worth, and allocates a quantum of computing power to 
it. When the allocation of computing resources has been exhausted, 
AM makes a new evaluation of the available tasks and resumes 
search with the most promising. The product of task activity is to 
define new concepts, fill slots of existing concepts, and add new tasks 
to the agenda after evaluating them. Hence, the system has no goal 
more definite than elaborating concepts and searching for new 
concepts in the neighborhood of the most interesting things it koows 
already. 

Performance of AM 

In the domain of set theory, after using about one hour of central 
processor time on a PDP 10K1, AM had discovered the natural 
numbers and the basic operations of addition, subtraction, multi- 
plication, and division upon them. It had assigned a high interest 
value to the operation of division, and had examined examples of 
numbers with different numbers of factors. It had paid particular 
attention to numbers possessing only two factors (i.e., the prime 
numbers). It had conjectured that any number can be represented 
uniquely by a product of powers of primes (the so-called 'fundamental 
theorem of arithmetic') and that any even number can be represented as 
a sum of two primes (Goldbach's conjecture, not yet proved or 
disproved). 

AM then began to make conjectures about numbers with maximal 
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numbers of primes (for their size). Here it appeared that the program, 
for the first time, was on completely new ground beyond the present 
literature of mathematics. Alas, it was not so. Ramanujan, the self- 
taught Indian mathematician, had once gone that way. 

C O N C L U S I O N  

What light do BACON.4 and AM throw on the hypothesis that the 
processes of scientific discovery are simply the processes of problem 
solving, familiar to us from many other problem solving domains? 
What can we conclude from our examination of these two systems? 

First, some limitations. Several aspects of scientific discovery lie 
outside the scope of both programs. 16 BACON and AM do not gather 
data by making observations or conducting experiments. They do not 
design experiments (but see the last footnote, with reference to the 
MOLGEN program). They do not invent new instruments or methods 
of observation. ~7 Unless we accept the analogy, proposed earlier, 
between AM's examples and empirical data, the programs do not 
make theory-driven discoveries. Finally, they do not, in any clear 
way, accomplish what we would recognize as explanation by reduc- 
tion. 

Neither AM nor BACON.4 can claim to have made a discovery that 
was unknown to the world of science, though each system made, as 
we have seen, numerous discoveries that were new to it .  Until at least 
one substantial wholly new discovery has been made by such a 
system, it may be claimed that, implicitly at least, the requisite 
knowledge was given to it by its programmers. We know no formal 
procedure for evaluating a claim of this kind. All one can do is to 
examine the program as carefully as possible for evidence of (explicit 
or implicit) ad hoc assumptions. In our judgment, both AM and 
BACON are reasonably free from such evidences. 

On the positive side, it is not very difficult to evaluate the quality of 
the discoveries made by AM and BACON. In both cases we can look 
to the histories of science and mathematics for an assessment. Both 
AM and BACON.4 have rediscovered concepts or laws that were 
considered to be of first magnitude by the contemporaries of the 
original discoverers. Taken collectively, BACON and AM do model a 
range of scientific discovery activities- if not the whole gamut-  and 
perform impressively within that range. 
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In their basic organization, both AM and BACON are examples of 
heuristic search systems of a kind that is wholly familiar among 
artificial intelligence problem solvers. Of course, the search spaces 
and heuristics are adapted to their domains of inquiry, but are 
nevertheless quite general. 

On the basis of the experience with these programs, it seems 
reasonable to claim that the mechanisms of scientific discovery can, 
indeed, be subsumed as special cases of the general mechanisms of 
human problem solving. To be sure, there may be essential novelty 
hidden in those aspects of problem solving that lie outside the range 
of the programs. But given the evidence of behavior that we have 
reviewed here, bare claims that such novelties exist are not convinc- 
ing. There seems to be no present reason to believe that any aspects 
of scientific discovery must remain indefinitely beyond the powers of 
heuristic search, or that the discoveries of human scientists cannot in 
time be explained within the information processing paradigm for 
problem solving. 
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