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Abstract. The propagation of a vertical hydraulic fracture of a constant height driven by a viscous fluid 
injected into a crack under constant pressure, is considered. The fracture is assumed to be rectangular, 
symmetric with respect to the well, and highly elongated in the horizontal direction (the Perkins and 
Kern model). The fracturing fluid viscosity is assumed to be different from the stratum saturating fluid 
viscosity, and the stratum fluid displacement by a fracturing fluid in a porous medium is assumed to be 
piston-like. The compressibility of the fracturing fluid is neglected. The stratum fluid motion is 
governed by the equation of transient seepage flow through a porous medium. 

A self-similar solution to the problem is constructed under the assumption of the quasi-steady 
character of the fracturing fluid flow in a crack and in a stratum and of a locally one-dimensional 
character of fluid-loss through the crack surfaces. Crack propagation under a constant injection 
pressure is characterized by a variation of the crack size l in time t according to the law 
l(t) = 10(1 + At)t~4, where the constant A is the eigenvalue of the problem. In this case, the crack 
volume is V ~ l, the seepage volume of fracturing fluid l,'r ~ l 3, and the flow rate of a fluid injected 
into a crack is Q0 ~ l  ~. 

Key words. Hydraulic fracturing, transient seepage flow, self-similar solution. 

1. S t a t e m e n t  o f  the P r o b l e m  

The principles  o f  hydrau l ic  f rac tur ing  theory  were laid down  in [26, 3, 4]. These 

papers  have s tudied the mechanism and  basic laws o f  rock des t ruc t ion  dur ing  

hydrau l ic  f rac tur ing  and  p r o p o s e d  the models  for  a penny- shaped  hor izon ta l  crack 

and for  a vert ical  hydrau l ic  f rac tur ing  o f  a large height,  which have been widely 

appl ied  [7, 10, 12, 27, 28]. Both exact  and  a p p r o x i m a t e  solut ions  to some associ- 

a ted e l a s t i c -hydrodynamic  p rob lems  o f  hydrau l ic  f rac tur ing  were la ter  ob ta ined  

for these models  [1, 2, 11, 14, 19, 21, 22, 24]. 

A n  a l ternat ive  model  o f  a vert ical  hydrau l ic  f racture  was p r o p o s e d  in [16, 18] 

and  fur ther  deve loped  in [6, 8, 13, 15, 17, 20, 23] for  ca lcula t ing  the processes o f  

massive or  deep-pene t ra t ing  hydrau l ic  f ractur ing.  I t  is this model  which is appl ied  

be low [9]. 

Suppose  tha t  in the hydrau l ic  f rac tur ing  o f  a s t r a tum of  thickness 2h, a vert ical  

c rack  is fo rmed  o f  cons tan t  height  2 H  and  large length 2I >> 2 H  ~< 2h. The crack is 

symmetr ic  with respect  to the well (F igu re  1). Then  the pressure  in a c rack  p at  

any  t ime m a y  be assumed  to be cons tan t  at  an a rb i t r a ry  vert ical  cross-sect ion o f  a 

crack x = const ,  i.e. p = p(x ,  t). By virtue o f  the e longated  shape o f  the crack,  one 
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Fig. I. Perkins and Kern fracture. 

can assume the plane cross-section hypothesis  according to which at  any cross-sec- 
t ion x = const,  the crack width 2w is determined by the solution of  a plane p rob lem 

of  elasticity theory  and is p ropor t iona l  to the difference between the local value of  

pressure in the crack p(x,  t) and a confining hor izonta l  stress o- --- const.  In this case, 

at the crack tips x = +__ l(t), one can specify the condi t ion of  a smoo th  contac t  o f  

surfaces: p = o (the analogue of  C. A. Khr is t ianovich ' s  condi t ion [26, 3, 4]). The  

fo rmat ion  permeabi l i ty  k is assumed to be small enough,  the fracturing fluid 
viscosity #f  to be different f rom the fo rmat ion  fluid viscosity go, the displacement  of  

one fluid by another  to be piston-like, and the zone of  fracturing fluid penetra t ion 
into a s t ra tum to be thin and adjacent  to the crack surfaces intersecting the pay  
zone. Then  the flow inside the penet ra t ion  zone can be considered to be quasi- 
s ta t ionary,  one-dimensional ,  and  directed perpendicular  to the crack surface. The  

flow outside the penet ra t ion  zone is supposed to be p lanar  and obeying the 

t ransient  seepage flow equation.  
Within  the f r a m e w o r k  o f  above  assumpt ions ,  the process o f  hydraul ic  f ractur ing 

is governed by the following system of  equations:  

a(w> a ( w v )  
-b = -- 2hqL, 

at 3X 

W 2 @ 
t ) ( X ,  Z ,  l )  ~ -  - -  311fCq x 

2(1 -- v 2) 
w ( x ,  z ,  t) 

f _~zef ( z ) /..f> = dz, (1.1) 

E ~ [p(x, t) - o1, 

(1.2) 

(1.3) 
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Ixl z(0, IzI-< H, 

k @ii ~u 
u - , - -  = (1.4) oy o, w lyl y s, 

k c3pl //63 2pl c~ 2p,~ 
u = - --#0 Vp,, --c3t = K~Sx2 + 0-y2J ' (1.5) 

[xl z(t), lyl > y/; z(t), lyl>  0, 
c~ 1 

yf(x,  t) = -  u(x, 5 ,  t). (1.6) 
m 

Here v and u are velocities of fluid flow in a crack and through a porous medium 
in a stratum, qL(x, t) is the seepage velocity of flow through crack surfaces, E and 
v are the Young modulus and the Poisson ratio of the formation and surrounding 
rock, y/(x,  t) is the depth of the fracturing fluid penetration into a stratum, p~ and 
Pn are pressures in a stratum inside the region o f  formation fluid flow through 
porous medium (I) and inside the penetration zone (II), ~: is the formation 

piezoconductivity, and rn is porosity. 
Equation (1.1) is the equation of mass conservation in a crack, (1.2) is the 

Boussinesq formula for a laminar viscous fluid flow in a narrow channel, (1.3) is the 

solution of a plane elasticity problem on a pressurized crack for the homogeneous 
loading of its surfaces, (1.4) and (1.5) are Darcy's laws of flow through a porous 
medium and the continuity equations for a fracturing fluid flow inside the penetra- 
tion zone and for the formation fluid flow outside the latter, and (1.6) is the 
kinematic equation of a penetration zone boundary. 

In order that the system (1.1) (1.6) is closed, we have the condition of smooth 
contact of crack surfaces 

p( +_ l(t), t) = a (1.7) 

and conditions of continuity of pressures and flow rates at crack surfaces y = w(x, t) 
and at the penetration front y = s t) 

p(x, t) =pn(x ,  w, t), qL(x, t) = u(x, w, t), (1.8) 

k apl y=)9-" pil(x ,  yf,  t) = pl (x ,  yf,  t), u(x, yf,  t) - ~o ~y (1.9) 

Besides, one should specify the initial cond i t ions -  the pore pressure p0, the 
initial crack length 10, and the initial depth of fracturing fluid penetration into a 
stratum y~ (x) as well as the regime of fluid injection into a crack. Thus, we have 

pl (x ,y ,  0) =p0,  l(O) = lo, yf(x,  0) = y~ (x), p(0, t) =P0, (1.10) 

where Po is the well-bore pressure (Po > a). 
By virtue of the above assumptions, w ~ 10 and Ys '~ lo. Therefore, we shall 

hereafter use the following natural simplifications of the problem. In calculating the 
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flow in the penetration zone II, we shall extrapolate the conditions at the crack 
surfaces lYl = w into the plane y = 0, from which we shall further measure the 
penetration zone depth y f ( x ,  t). In the same manner, in solving the outer problem 
in region I, the penetration zone boundary y = y f  may be displaced by the plane 

y = 0 .  
Substituting (1.2) and (1.3) into (1.1), one obtains the equation for the pressure 

distribution in a crack 

0 32 
a ~ (p - a) - ~ x  2 (p - o-) 4 + fiqL = O, 

4ktfE 2 8h# fE  3 
Ixl-< z(t), a - -  (1  - -  1~2)2H 2 '  b - ~ (1  - y 2 ) 3 H  4 '  ( 1 . 1 1 )  

that contains an unknown fluid-loss velocity qL(x,  t). 
It follows from Equations (1.4), that in the penetration layer, the pressure 

Pn (x, y, t) is a linear function of  the coordinate y. As a result, the flow velocity in 
a layer u(x, t) does not depend on y and coincides with qL(x,  t) by virtue of (1.8). 
Denoting by py(x ,  t) the pressure at the penetration zone boundary y = yf ,  one gets 

(1.12) 1 x 
YT (x, t) = --m qL ( , t), 

qL(X, t) = k p(x ,  t) - - p f ( x ,  t ) ,  
~j- yf(X, t) 

3PI y=O pi(x, O, t) = pf(x ,  t), ~y  -- 

(1.13) 

/~0 qL (x, t). (1.14) 
k 

Thus, we have four equations (1.11)-(1.14) for determining the unknown 
functions p(x ,  t), qL(X, t), y f ( x ,  t), py(X, t). Function p i ( x ,  y,  t) in these equations 
must satisfy the 'piezoconductivity' equation (1.5), and condition (1.7) serves for 
finding the crack length l(t). These relations, together with conditions (1.10), 
compose a complete system of equations for solving the problem stated. 

2. Transition to Dimensionless Variables 

Now we shall introduce new variables according to formulae 

t x y l(t) 
= - - ,  X = - -  Y -  L(~) = - -  

t o l ( t ) '  y o f ( ~ ) '  lo ' 

P(X, "c) = !0 PI (X, Y, "c) = pj Pf  (X, "c) = Pf,  QL(X, "c) qL 
a ' a ' a qLo cp(~) ' 

(2.1) 

rs(:c, -- Po __po po =/,_o 
Y~'~"oJt) o- ' a ' # =--'~o 
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where to, Yo, qL are scaling factors, and f ( r )  and (p(z) are unknown functions to be 
determined. 

Using the following expressions for derivatives 

3t - to ~ - X ~ - )  r ' 

3" 3 '~ 3" ~n 
= - -  - - n  

3x n (l~ ~ 3X"'  ~ y ~ -  (Yof)  Oy=, 

where the dot means differentiation with respect to dimensionless time r, one gets, 

after transformations, the system of equations 

p(r) & - Z X (P - 1) 4 (p('c) 3X 2 (P - 1)4 =- QL, 

L X ~ ) [ f ( r ) Y f l  = ~o(z)QL, 

1 P - P r  
~o('c)Q c , (2.2) 

f(~) ~- 

PI (Jr', 0, "c) = Pf(X, "c), # 3pI = --(P(r)QL, 
f('c) 3 Y Y= o 

4j2(..C) ( 3  PI  s  3pl f y 3 P i \  32p1 [yof('c)qz 32P, 
L aX )" ~ ) : ~ + L ~ J  3x2' \3r 

where 

7"C( l - -  V2)3H40 "4 ka y~ 
= , t0 = - -  qco -- 8hl~#yE 3 , Yo #fqco 4X' 

e : #f I 2El~ 72 mKt% (2.3) 

The condition of a smooth contact of crack surfaces (1.7) takes the form 

P(1, z) = 1 (2.4) 

and from (1.10), one gets 

P,(X, Y,O) = p o ,  L ( 0 ) =  1, Yf(X,O) = Y~(X), P(0, "r) = P o ,  (2.5) 

where Y~ = y}/[yof(O)]. 

3. Quasi-Steady Crack Propagation Regime 

System (2.2) includes a small parameter (yo/lo) 2 that characterizes the ratio of the 
thickness of a zone of fracturing fluid penetration into a stratum to the crack 
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length. Letting this parameter  be zero, one obtains the system of equations 

- e L 2 - L s  (P - 1) + (P -- 1) 4 = L2~o(z)QL, (3.1a) 

4g) ~ -~X [f(r)Y z] = ~o(r)QL, (3 .1b)  

P -- PI = p(z)f(z)YrQ c, (3.1c) 

OPx y=o PI(X, O, ~) = Pf(X, "c), # ~ = --~o(z)f(~)QL, (3.1d) 

(31e  

We shall seek its stationary solutions P(X), QL(X), Pz(X), Yf(X),  PI(X, Y). I f  
functions f(~) and q)(r) are chosen in the form of 

f ( r )  = L2(z), (p(z) = L-2(z)  (3.2) 

and the function L('c) is chosen as the solution to the equation 

f/2 /; 
4 ~ L  - 4f2 Z = 4L3/2 = c~ -- const, (3.3) 

then Equations (3.1b)-(3.1e)  will not be time-dependent for 0/0r = 0. 
In this case, Equation (3.1a) takes the form 

4L 2 X (P - 1) + ff~5 (P - 1) 4 = QL. 

The time-dependence conserves in this equation due to the ec~/(4L 2) coefficient m 

the first term that takes into account the variation of a crack volume with changing 

pressure in a crack. In cases where the fluid-loss velocity QL is large, the contribu- 

tion of this term into the redistribution of  fluid flow in a crack becomes small 
( ~  ~ 1) and can be neglected. In other words, the time of pressure redistribution in 

a crack becomes small when compared to the characteristic hydraulic fracturing 
time. Therefore, for determining the pressure in a crack, one can make use of  the 
stationary flow continuity equation ( ~  = 0). 

Equation (3.3) is explicitly integrationed and with due account of  the initial 
condition L(0) = 1 one finds 

L(r) = ( 1 + ~zz)1/4. (3.4) 

Parameter  c~ along with P(X), QL(X), Pf(X),  Yy(X), and ei(~, Y) functions, are 
to be determined from the system of equations 

d 2 

dX 2 (P -- 1) 4 = QL, (3.5) 
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Py = P - YfQL, 

c3PI r=0 P~ (X, O) = Pf, # ~ = -- Qc, 

(3.6) 

(3.7) 

(3.8) 

(3.9) / OP~ yOPI~ ~2PI 

d 
d-~( P - 1) 4 = 0  (Ixl = 1) (3.10) 

Here, the additional relation (3.10) expresses the nonpenetration condition at the 
crack tips - the equality of the crack propagation rate to the rate of  its filling with 
a fracturing fluid averaged over the vertical cross-section of a crack. It is this 
condition which is used to determining the parameter ~. 

Functions P(X) and P~(X, Y), according to (2.4) and (2.5), must satisfy the 
conditions 

e(1)  = 1, P(0) =~'0 (3.11) 

and the condition that the flow is unperturbed at infinity. The statement of the 
latter condition in the given case does not occur to be trivial, however. 

Indeed, after lowering the order of  a piezoconductivity equation in variable X, 
that implies the transition to the scheme of locally one-dimensional seepage flow, its 
solution should be sought in a half-band IX[ ~< 1, Y/> 0 rather than in a half-plane 
Y ~> 0. In this case, it is sufficient to state only one boundary condition in variable 
X. In the initial problem, however, there were two conditions of this type for a 
complete piezoconductivity equation; namely, the conditions that PI(X, Y) is an 
even function of X and that the flow is unperturbed at IX[ ~ ~ .  The question of 
which of these conditions should be conserved in a given case is solved as follows. 
Equation (3.9), after replacement O = -ln[X[, is reduced to the equation of heat 
conductivity with convection 

r 1 6 2  ~ (0 ~< | < oo), 

where | is a false time. 
This equation requires an 'initial' condition at | = 0 and, hence, the boundary 

conditions for Equation (3.9) should be stated at the boundaries of a half-band 
IX] = 1. Since (3.9) is a first-order equation in X, it follows that the problem should 
be solved independently in regions 0 ~< X ~< 1 and - 1 ~< X ~< 0. By virtue of the fact 
that the initial problem is even in X, it is sufficient to find its solution in the 
half-band 0 ~< X ~< 1, Y >~ 0 and then to continue the solution into the half-band 

- 1 ~< X ~< 0, Y >~ 0 symmetrically about the Y axis. 
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As a result, one obtains the boundary condition 

e , ( ; : ,  r )  ; p o  (Ixl  = 1, r >i 0; Ixl < 1, r = (3 .12)  

The condition that the flow is unperturbed at half-band boundaries Ixl-  l, has 
a simple physical meaning. Namely, by virtue of the one-dimensional character of 
the fluid loss, the flow perturbations are absent before the crack tips (]XI > 1). 
Therefore, the perturbations are also absent at the boundaries between the per- 
turbed and unperturbed regions-  at straight lines Y ~> 0, X = +_ 1. Thereby, the 
continuity of the solution of the problem is provided. 

Condition (3.12) is closely related to the statement of a boundary condition for 
Equation (3.6) with respect to Yf(X). In order that the fracturing fluid flow be 
consistent with (3.12) in the penetration zone, the penetration depth Yf(X) should 
be zero at the crack tips, i.e. 

Yf( + 1) =0 .  (3.13) 

Finally, the initial condition yr(x, O)= Y~(X) cannot be satisfied, generally 
speaking, since function Y~ (X) must coincide with the solution of problem (3.5) - 
(3.13) and, therefore, it cannot be specified in an arbitrary manner. In other words, 
the type of solution of the initial problem that is sought does exist at some special 
initial condition, namely, at y} (x) = Yofo Yf(x/lo) = Yo Yf(x/lo), where the function 
yr(X) is determined from (3.5)-(3.13). 

4. C o n s t r u c t i o n  o f  a S e l f - S i m i l a r  S o l u t i o n  

Problem (3.5)-(3.13) is nonlinear and, therefore, we shall construct its solution by 
the iteration method. For this purpose, we shall specify an initial approximation for 
function P/and find the solution to Equation (3.9) satisfying the first condition of 
(3.8). Then we shall express QL from the second condition of (3.8). Further, we 
shall calculate ~ from condition (3.10), find Y/from Equation (3.6) and, finally, 
correct the value of pf using Equation (3.7). The iterations continue until we achieve 
the convergency of the iteration process. 

So, we shall first consider Equation (3.9). It is convenient to seek its solution 
within a half-band 0 ~< AT ~< 1, Y >~ 0 in new variables 

= X2, 7 = x / ~  Y, ~b~ = P~ - po, @ = pf _ po. (4.1) 

Then function q~(~, 7) satisfies the equation 

-- (~ ~-1 -/- 7 ~(]~7I) -- 0 2(])1 (~- (4.2) 

whose general solution can be found by the separation of variables method. 
Substituting into (4.2) 

~(~, 7) = R(r (4.3) 
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one obtains two equations 

dR d2F dF  
~ -  = 2R, dr/2 + ~ / ~  = - 2 F ,  2 = const. (4.4) 

We shall make use of  their solutions for 2 = 0 

Ro = co = const, Fo = erfc(2-  mr/) (4.5) 

and f o r 2 = n + l , n ~ > 0  

Rn+, = ~+~, F,+1 = exp( - 2-~t/2)Hn( - 2'/2r/), (4.6) 

where H,,(~) are the Ermith polynomials orthogonal on - c o  <~ < oo with weight 
exp( - ff 2). 

The system of functions Fn+~ (~/), n ~> 0 is complete on - oo < r / <  oo. However, the 
system of functions Rn+~ = ~n+l, associated with F,+~(~), is not complete in the 

interval 0 ~< r ~< 1, because it does not contain any constant. This circumstance does 

not allow us to construct the solution by its expansion over the products of  functions 

(4.6) Rn+ 1 (~)Fn+ 1 (?1) and requires the attraction of  the RoFo(tl) solution of (4.5). As 
a result, one obtains the general solution from Equation (4.2) in the form 

which must be found in the half-band 0 ~< ~ ~< 1, q >I- 0 with the boundary conditions 
following from (3.8), (3.12) 

q~l (~, 0) = qSf (~), ~b~ ( 1, r/) = 0. (4.8) 

The specificity of  expansion (4.7) is in the fact that when the interval narrows down 
to a half-line, the property of  the Ermith polynomial orthogonality on - oo < ~ < oo 

with weight e x p ( -  if2) separately conserves for polynomials of  even and odd 

numbers only. Besides, function Fo(t/) is not orthogonal to any function F,,+~(q), 
n >~ 0. Nevertheless, this fact does not prevent the determination of  co, cl . . . .  
coefficients of  expansion (4.7). 

We shall begin by using the first condition of (4.8). For  q = 0, one obtains from 
(4.7) 

Of=Co@ ~ a2n+l~ 2n+l, 
n-O 

(2n)! 
a2~+~ = c~,,+ t H2~(0) = ( - 1) ~ ~ c2,+, �9 (4.9) 

I f  the function ud(~) = @(r - co is known, then coefficients a2,+l and, hence, 
c2,+1, are found by expanding q~(~) in the 0 ~< ~ ~< 1 interval over the system of 

functions ~2~+~, n = 0, 1 , . . . ,  which is complete on this segment. 
Coefficients a2,,+~ have been sought, practically, in two stages. First, the colloca- 

tion method was used for expanding the W(~) function over odd Chebyshev 
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polynomials which are orthogonal in the 0 ~< ~ ~< 1 interval with weight (1 - ~2)- 1/2. 
In so doing, the collocation points were chosen equidistant in the 0 ~< fl ~< ~/2 
interval, where fi = arcsin 3. Then, the coefficients at ~ 2, + 1 were recalculated in terms 
of the coefficients of expansion over Chebyshev polynomials. 

Once the c2,+1 coefficients are found, the second condition of (4.8) can be used 
for determining c2, coefficients at even powers of 4. We have 

G(rl)=--c~ ~c2n+lH2~(2-~/2rl)'.=o (4.10) 

where G(tl) is an already-known function. 
Using the property of orthogonality of Ermith polynomials H2,_1(2 l/2tl), 

n = 1, 2 . . . .  on the half-line t//> 0 with weight exp( - �89 t/z), the c2, coefficients can 
be explicitly expressed in terms of  Co and c2,+~. For this purpose, it is sufficient to 
multiply (4.10) by H2i_1(2 1/2#7) and integrate the result over q from 0 to oe. Using 
relations 

fo~176 [~'~H / / ~ ' ~  e x p ( -  ~ ) d q  ~ " ~  22(i- n(2i - 1)!' i=n, 
2"- 't ,M) 2, ' t ,M)  =to, 

f0 ~176 e r f c ( ~ H 2 ,  i(m~d~7 =(  i 1)/+1 ( 2 i -  1 ) .  i 
\ x / 2 1  \ x / 2 J  xf2i!  ' 

r/ t/ - -2-  (2i - -  2n 1)(i 1)!n! ' H2,,(~H2i 1(~'~ exp dr /=  
\ ~ / 2 I  \ x / 2 J  - - 

one gets 

( -- 1)ibii c o ~ a2"+l 
c2~-x f l  ~22 * l ( i - 1 ) ! '  fi2~=~-+,=o~ i - n ~ - l / 2 "  (4.11) 

Now the unknown functions QL, P, Ys can be expressed in terms of 
Co, Cl, c2, �9 �9 coefficients. 

Substituting (4.7) into the second condition of (3.8), and by taking (4.1) and 
(4.11) into account, one obtains 

# X / ~ [  ~176 (2n - 1)lib2" ( ~ n - -  2~'I! 1 QL({) --= 2c0 + y ,  4 2" . (4.12) 

Upon integration and taking into account conditions (3.11), the substitution of 
(4.12) into (3.5) yields 

P(~)= l +{I(Po-1)4-Col.tx/~ ~1/2](1-42) - 

- 1)!!b2.(1 - 4 "I 

--].L 41/2 .=1 ~ (~-n Z~'['t~-/77 1-)~-~2)J " 

(4.13) 



D E E P - P E N E T R A T I N G  H Y D R A U L I C  F R A C T U R E  P R O P A G A T I O N  293 

Finally, using Equation (3.6) and condition (3.13), one finds 

# Co(1 - r + = . (4.14) r A r  
3 ~ hE1 (2n - 2)!!(2n - 1) .J 

The unknown constant ~, that appears in expressions (4.12)-(4.14) is found from 
condition (3.10) which, upon transition to variable 4, takes the form 

d(P - 1 ) 4 / d ~  = 0 (~ = 1). (4.15) 

Substituting expression (4.13) into (4.15), one obtains 

c~ = g s ( P 0 -  1) 8 Co+ ~. (2n - 1)![b2,, 2. (4.6) 
,, = ,  (2n -- 2) 

Now, the coefficient Co can be found explicitly if one uses Equation (3.7) for 
= 0. We have 

Co - - -  + 1 (4.17) 
- 4/12 re3 " 

Thus, all parameters of the hydraulic fracturing - the crack propagation law 
L(r), the fluid pressure in a crack P, the intensity of fluid-loss through crack surface 
QL, the depth of fracturing fluid penetration into a stratum Yj, and the pressure at 
the penetration front P f -  have been expressed in terms of the coefficients c2,+~ of 
the expansion of pressure in a stratum (4.7) for odd powers of {, which are 
efficiently found by the iteration method (see Section 5). In this case, there is no 
necessity in calculating the pressure in a stratum P~(~, r/) for the determination of 
principal hydraulic fracturing parameters. Thereby, the dimension of an initial 
problem is lowered. 

5 .  C a l c u l a t i o n  M e t h o d  

The self-similar solution has been numerically constructed according to the follow- 
ing procedure. First, some initial approximation for pressure at the front of the 
fracturing fluid penetration into a stratum was specified: PT = p}9) (3), 0 <~ ~ <~ 1. 
Usually, function P0 + Co(1 -4)1/4 was chosen as p fro) (~), satisfying Equation (3.7) 
for ~ = 0 and the condition of absence of pressure perturbations in a stratum before 
the crack tip: ~_ = 1. Then, the function ~/(~) = Py(~) - p r ( O )  was calculated and 
expanded over odd Chebyshev polynomials in the 0 ~< ~ ~< 1 interval: 

q~r(~) = ~ d2j_, T2j_I(~.), (5.1) 
j = l  

f0 2 ~r(cos  O)cosj O dO 1 [qJf(cos O k l) cosj Ok_ 1 + 
7"C " 7 " O k =  1 

+ q/f (cos Ok)cosj Ok] A| AO • 7z/N, Ok = k AO. 
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Coefficients dj rapidly decrease as number j grows. Therefore, in calculations, 
the series (5.1) was truncated at some term, the number M of which was deter- 
mined from the condition dM ~< 10 -7. As usual, nine terms or less were retained in 
this procedure. 

Then, the azn_ 1 coefficients of expansion (4.9) ~Df(~) over  odd powers of 
were recalculated in terms of coefficients dj. For this purpose, the recurrent 
relation 

2 2("-') ~ ( -- 1)~(2n + i -- 2)!(2n + 2i -- 1) 
a2n-  - i = o  i! d2("+~ (5.2) 

was utilized. 
Further, coefficients b2~ were calculated by Equations (4.17) and (4.11), 

after which Equations (4.12) (4.14) and (4.16) were used for finding the values 

of the functions QL(~), P(~) and Yf(r at collocation points ~k = sin(Ok - z / 2 ) ,  
| =7~k/N, k = 0 ,  1 , . . . ,  N. These values were substituted into formula (3.7) 
for determining a new pressure distribution pyO)(r at the penetration front, 
and the iteration was repeated. The iterations were stopped when the sequence 
py(O), p(~) . . .  converged to the required accuracy. The number of iterations 
was mainly determined by the specified accuracy and by the value of the 
dimensionless parameter 6/#. For example, when the maximum deviation e be- 
tween the PY)(~k) and P~-~)(~k) values of the order of 10 4 and 6/# =0.1,  the 
number of iterations was about 30. As 6/# 'increased (i.e. as the fracturing 
fluid-loss from a crack became more intensive), the number of iterations grew. To 
accelerate the convergency of a sequence of functions P5 -') the relaxation method 
was applied. 

6. Asymptotics 

Some features of the self-similar solution can be elucidated analytically prior to its 
numerical construction. This information occurs to be useful for a qualitative 
analysis of basic laws of the hydraulic fracturing as well as for practical applica- 
tion of the numerical method. 

First, we shall find the main term of the similarity solution expansion. This term 
corresponds to the condition that b2n coefficients in formulae (4.12)-(4.14), (4.16) 
are zeroes. Using expression (4.17) for Co, one obtains 

QL(~) = 2(Po - 1) 4, 

P(~) = 1 + ( P o -  1)(1 -~1/2)~/2, 

m 

8/12(po __ po) ] 4F/1  1 (6.1) 
n6-~-0-0--]~ 16# ( P o - )  LV " 
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Substi tut ing (6.1) into (3.7), one can find the pressure at  the f ront  of  the 

fracturing fluid penet ra t ion  into a s t ra tum: 

2 2 2e 
Pf(~) = 1 + (Po -- 1)(1 - -  ~ 1 / , 2 ) 1 / 2  _ C0]'/ t 1 - -  ~) 

~5 

= 1 + (Po- -  1)(1 -- ~a/2) 1/2 ~6(1 - ~) x 1 +  1 
81./2 ~ 3  " 

(6.2) 

This pressure distr ibution does not  however,  satisfy the condi t ion that  the 

pressure is unper turbed  before the crack tip: P I ( 1 ) =  p0. Indeed,  in this case, 

Pf(1) = 1, i.e. the pressure PF at the penet ra t ion  zone bounda ry  tends to the fluid 

pressure in a crack P(1)  = 1, as one approaches  the crack tip. As a result, the pore  
pressure per turba t ion  zone arises in the vicinity of  a crack tip, at the ~ = 1 

cross-section. Its characterist ic size is evaluated by the ~11 -~ x / ~ - / 2  value in dimen- 

sionless variables,  and in dimension ones it decreases with t ime as an inverse square 

of  the crack length. This deficiency of  a solution follows f rom truncat ing the next 
terms of  the expansion.  

Thus,  the approx ima te  solution (6.1), (6.2) coincides with the exact solution at 

the middle of  a crack (~ = 0), where the well is situated, and deviates f rom the exact 
solution when approach ing  the crack tip (4 = 1). The  same behaviour  tendency also 

conserves for improved  approx ima te  solutions obta ined  with retaining the next 

terms of  the expansion.  This is due to the fact that  the similarity solution expansion 

constructed does not  take into account  explicitly the features of  its behav iour  near  
the crack tip. 

In  order  to find the exact solution asymptot ics  in the crack tip vicinity, it is 
sufficient to make  use of  Equat ions  (3 .5) - (3 .7) .  F r o m  (3.7), one has 

P - P f  1 _po  
QL = ~ (~ ~ 1). (6.3) 

The subst i tut ion of  this relat ion into (3.6) yields the equat ion with respect  to Yf, 
which is integrated in the explicit fo rm as follows 

1 ~/2(1-P~ ({--+1). (6.4) 

Then,  the asymptot ics  of  QL(~) and P(~) behaviour  in the crack-t ip vicinity can 
be found f rom (6.3) and (3.5). As a result, one obtains  the relations 

QL(r ~ z~-1/2, P(~) - 1 ~ A  3/8, Yf(~) ,-~A I/2, A =  1 _ r = 1 - X--+0 

(6.5) 

C o m p a r i n g  them with Equat ions  (6.1), one can see that  for the exact solution, 
the reduced pressure P(~) - 1 and the penet ra t ion  zone depth  YI(~) near  the crack 
tip tend to zero lower than  is predicted by f i r s t -approximat ion  formulae  (6.1). 
Besides, the fluid-loss velocity distr ibution QL(~) near  the crack tip has a r o o t  
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singularity, as it takes place in the stationary problem of fluid flow from a 
motionless crack of infinite conductivity into a porous medium [5]. This coincidence 
would hardly be forecasted a priori, however, since in the given case, the fluid-loss 
into a porous medium have been determined with due account of the finite 
hydraulic conductivity of a fracture. So, in the problem of flow injection into a 
formation through a penny-shaped crack or through the vertical Zhe l tov-  
Zhristianovich fracture [26, 28], the consideration of the dependence of a crack 
conductivity versus its opening by the Bousinesq formula results in the limitation of 
a flow near the crack tips: the velocity of flow through a porous medium decreases 
as a root of the distance to the crack tip [25]. 

7. Discussion of the Results 

The purpose of the calculations was to study the influence of two principal 
parameters - the formation permeability k and the fracturing fluid viscosity /~F- 
upon the dynamics of major characteristics of a hydraulic fracturing - the crack 
length l, its opening 2w, volume V, the depth of fracturing fluid penetration into a 
formation Ys,  and the total quantity of fluid penetrated into a formation, V/" The 
remaining parameters were fixed at the values 2 H  = 2 h  = lo = 10 m, E = 104 MPa; 
v=0 .25 ;  a = 5 0 M P a ;  K=0.1m2/s ;  m = 0 . 1 ;  # 0 = 5 M P a s ;  p 0 = 2 0 M P a ;  

P0 = 52.5 MPa. 
The initial crack length Io-- 10 m was chosen in a rather arbitrary way, since it 

only slightly influences the ultimate process parameters for l >> 10. 
The inlet pressure value Po was chosen from the following considerations. 

Usually, the inlet pressure variation range is limited from above because of the 
danger of rock fracture in the vertical direction. The (Po  - a ) / a  value of a relative 
increase of confining horizontal stress o- in the hydraulic fracturing varies, as a rule, 

within the limits of  0.001-0.05. Letting (P0 - o-)/~ = 0.05, one obtains 

P0 = 1.05 a = 52.5 MPa. 
The accepted values of the confining stress a = 50 MPa and of initial pore 

pressure pO = 20 MPa, correspond to the formation deposition depth of the order of 
2 kin. 

Finally, note that the crack height 2H is not determined within the framework of 
the Perkins and Kern model, but it should be specified from some additional 
considerations. It was assumed in the calculations that it coincides with the 
formation thickness 2h = 10 m. This situation frequently takes place when the top 
and bottom of a formation are in contact with plastic rocks (clays or salts) 
possessing a higher strength than the formation. 

Four cases of the process have been considered corresponding to two values of 
fracturing fluid viscosity: #y = 50 and 500 MPa s and to two values of a formation 
permeability: k = 0.01 and 0.1 #m 2. The corresponding values of dimensionless 
parameters # and 6 are given in Table I. Here are also presented the found values 
of parameter e that characterize the crack propagation rate. The dimensionless 
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Table I. Parameters of the hydraulic fracturing processes 
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Version 1 2 3 4 

/~f, Pa s 0.05 0.05 0.5 0.5 
k, g m  2 0.01 0.1 0.01 0.1 
# 10 10 100 100 

103 102 I04 103 

X 1013 7.74 18.3 0.183 0.819 
H I x 102 3.61 3.52 3.5 3.48 
H 2 • 10 -4 0.412 1.87 1.87 4.24 
]I/(0) x 10 -4 0.401 2.05 2.1 4.93 
flv X 102, m 2 5.32 5.2 5.16 5.12 
~j,  X 104 0.326 14.8 1,48 33.6 
f~y X 105, m -1 0.793 40,7 4.07 97.7 
f~Q, m 4 s -  1 1.9 2.08 0.208 0.211 
~l, m4 S- l 7.9.104 1.87.103 1.87.103 83.5 

self-similar distributions of pressure P in a crack, the velocities Q/, of flow through 
its surfaces, the depths Yy of fracturing fluid penetration into a stratum, and the 
pressures Ps at the penetration front for these cases are shown in Figures 2 to 5. The 
notations of curves in all plots coincide with numbers of  cases in Table I. 

Consider some of the features of self-similar solutions found above. The pressure 
P in a crack (Figure 2) behaves nearly linearly in X in the middle part of  a crack 
and rapidly decreases near its tips. It changes very weakly from one version to 

I .05 

P 

1 . 0 2 5  

1 
0 

3 

0 .5  X 

Fig. 2. Dimensionless pressure distribution in a fracture. 
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0 0,5 X 

Fig. 3. Dimensionless fluid-toss velocity through the fracture surfaces. 

0.5 
3 \ 

I 

0 0.5 X 

Fig. 4. Dimensionless depth of fracturing fluid penetration into a stratum. 
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Fig. 5. 

I 

Pf 

0 . 7  

0 .4  

L t 

4 

0 0.5 x 

Dimensionless pressure at the fracturing fluid penetration boundary 

another, and slightly decreases as the fracturing fluid viscosity and the formation 
permeability grow. 

Function QL(X), which determines the fluid-loss, slightly depends on the # and 
parameters as well (Figure 3). In this case, the fluid-loss velocity is near constant 

in the middle of a crack and sharply increases towards its tips. Accordingly, it 
changes the depth of a fracturing fluid penetration into a stratum YF(X) (Figure 4): 
it is nearly constant in the middle of a crack and sharply decreases down to zero 
near the crack tips. However, Yj, depends much more strongly on the /~ and 
parameters, than QL does. The pressure distributions Ps at the penetration front 
have a similar behaviour (Figure 5); however, PF tends more to their limiting value 
p~ with X ~  1 in a steeper way than Ys does. 

Of interest is the fact that the YF and Py functions practically coincide for the 
second and third versions, which differ in ten-fold, oppositely-directed variations of 
fracturing fluid viscosity and formation permeability for the constant k/# F ratio. 
Comparing these two versions with the first and fourth versions, one concludes that 
the increase of both fracturing fluid viscosity and formation permeability has the 
same consequence. Namely, when the cracks reach the same length, the penetration 
layer thickness increases. 

The results obtained seems to be rather surprising. It seems that as the fracturing 
fluid viscosity grows, the fluid-loss should decrease. However, the growth of 
viscosity at a fixed inlet pressure results in the decrease of the flow rate of the 
fracturing fluid injection into the crack. In this case, the crack propagation rate 
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lowers, and the hydraulic fracturing time grows. As a result, it occurs that though 
the injected fluid viscosity increases, the volume of leakage through the crack 
surface grows. 

We shall express the principal hydraulic fracturing characteristics in terms of 
self-similar solution parameters. Using (2.1), (2.3), and (3.2)-(3.4), one obtains the 
following expressions for the crack volume V, the fluid-loss volume VN, the 
maximum depth of fracturing fluid penetration into a stratum Y,v = yf(O, t), and the 
crack length 

j't 4re(1 _ v2)o-H2 s 
V = 2 (w)  dx - [I1/; [I 1 = (P -- 1) dX, 

-t E 

f '  64mkh2I~-v]31~213; fo ~ V1 = 4mh l yf dx - ga 4 ( 1 2)0- 1-[  2 = Yf dX, 

8 k h I E  13 
yjo = y o s Y A o )  = (1 - YA~ 

l={14_}_o~[(l_v2)0-q6fI~g4",~2 )1/4 

The values of the HI, 172 and Yf(O) quantities in Equations (7.1), are given in 
Table I. 

Thus, the crack length l grows as t ~/4 for large values of time. The proportionality 
factor includes the parameter c& -2, that decreases as the permeability k and 
fracturing fluid viscosity #f grow (see Table I). As a result, the crack growth rate 
decelerates in this case. 

Since the parameter II 1 varies very slightly from one case to another, the crack 
volume V is determined, in fact, by its length only and does not explicitly depend 
upon k and #f: V ~ l. 

The depth of fracturing-fluid penetration into a stratum and the fluid-loss volume 
Vf, to the opposite, rather strongly depend upon these parameters, and one should 
note that both these quantities grow with both the formation permeability k and 
fracturing fluid viscosity #f. 

At the developed stage of the hydraulic fracturing (l >> lo), the volume of fluid 
penetrated into a stratum Vf ~ l 3 grows more rapidly than the crack volume does: 
V ~ l. Therefore, the flow rate Qo of a fluid injected into a stratum is determined, 
for />> lo, by the fluid-loss dynamics. One has 

d dVf 
Q 0 = N ( V +  El) ,.~ dt 

- -  3r~mc~ II2 KH4 [ ~ l k  ~ 2)0"131--1. (7.2) 

It is this circumstance which has already been used above in constructing the 
self-similar solution: in the continuity equation of flow in a crack (3.1), the 
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corresponding term that accounts for a crack-volume variation, was omitted. As a 
result, the flow rate Q0, expressed in terms of self-similar solution parameters 
according to the formula 

must coincide with that specified by asymptotic formula (7.2). Equating the 
right-hand sides of these formulae, one obtains the relation 

d(Pdx- 1)4 x=0 - 3m~ca c~Fi2/~rk (7.4) 

Using the data of Table I, one can see that the parameter ~ H 2 y j / k  and, hence, 
the d(P - 1)4/dX value for X = 0, only slightly changes from one case to another. 
This implies that the flow rate Q0 of a fluid injected into a crack, does depend on 
the formation permeability k and varies inversely proportional to the fracturing 
fluid viscosity/~/. 

Finally, note that Equation (7.2), rather than (7.3), is more convenient for 
calculating Q0 because the latter equation includes a rather small quantity 
d(P - l)4/dX requires a thickening of the computation nodes in the vicinity of point 
X = 0 when the self-similar solution is found, whereas when using Equation (7.2), 
no special improvements of a self-similar solution are required. 

Substituting specific values of parameters into Equations (7.1), (7.2), one reduces 
them to the form 

V = f~vl, V r = nj-/3 , s = f~,.l 2 , Qo = n e  /l  l = (14 + f~,t) TM (7.5) 

Coefficients f~w, f~r, ~ , ,  flQ, and f~t are given in Table T. Here, the quantities V, 
Vr, s Q0,/, and t have dimensions m 3, m 3, m, m3/s, m and s, respectively. 

Some specific results of calculations by Equations (7.5) are presented below. Let 
us find the final characteristics of the hydraulic fracturing when forming cracks of 
length l = 50 and 100 m. The values of V, ~., s Qo and t are given in Table II. 
Remember that Qo is the flow rate of fluid injected at time t, corresponding to the 
cessation of fracturing. The same table presents the values of time-averaged flow 
rate Q* = Vj-/t > Qo. The fact that Q0 and Q* are close suggests that the fracturing 
fluid injection stage with high flow rates is rather short. 

The width 2w 0 in the middle of a crack is the same for all cases, since it depends 
on the inlet pressure only, and equals 4.7 ram. 

Table IT shows that, for low fracturing fluid viscosities and low permeabilities 
(the 1st version), the crack volume is comparable with a fluid-loss volume; for large 
viscosities and permeabilities (the 4th version), V ~ V z. The increase of permeability 
for ##- = const gives rise to a drastic increase of fluid-loss and, hence, to the growth 
of fracturing time for nearly the same flow rate of injected fluid (see versions 1 and 
2 o r  3 and 4). 
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Table II. Parameters of  the hydraulic fracturing processes 

L m 50 100 

! 2 3 4 1 2 3 4 

V, m 3 2.66 2.6 2.58 2.56 5.32 5.2 5.16 5.12 
V#, m 3 4.08 185 18.5 420 32.6 1480 148 3360 
3!/, cm 2 102 10.2 244 7.9 407 40.7 977 
Qo, m3/rain 2.38 2.5 0.25 0.253 1.19 1.25 0.125 0.126 
t, rain 1.32 55.7 55.7 1256 21.1 819 890 20100 
~2~, m3/min 3.09 3.32 0.332 0.335 1.54 1.66 0.166 0.167 

Finally, the increase of viscosity #f for constant permeability k (see versions 1 and 
3 or 2 and 4) results in the inversely proportional decrease of the flow rate Q0, and 
also in the growth of fluid-loss which is essentially less, however, than that observed 
when increasing the permeability. 

As follows from Equations (7.5), if the size (the volume) of a crack doubles, the 
hydraulic fracturing time grows as much as 16 times, the depth of fracturing fluid 
penetration into a stratum increases four times and the volume of the fluid 
penetrated into a stratum increases eight times. 

Specifying one of the parameters appeared in these formulae, all the remaining 
parameters can be calculated. For  example, with the injected fluid volume Vf 
known, one can find the crack length I and the hydraulic fracturing time t. 

On the other hand, Equations (7.5) can be used for improving the model 
parameters by measuring any two quantities which are included in (7.5). Obviously, 
the injected fluid volume V r and the flow rate Qo can naturally be considered as the 
measured values in the given case. Eliminating the crack length I from correspond- 
ing Equations (7.5), one obtains 

Vj.Q 3 = f~rf~ = const. (7.6) 

It follows from this relation that function the VfQ 3, measured in the hydraulic 
fracturing, should tend with time to some constant value, and relation (7.6) can be 
considered to be the equation for one of the model parameters included in the 
coefficients 

~f-- 7zH4 1 _ v 2 ) o  " [ I2 ,  n O - -  k -- . ( 7 . 7 )  

In particular, from (7.6) and (7.7), one can express the vertical crack size H in 
terms of the other parameters and the measured value VfQ~: 

" - (V#Q3)1/8 1 kE ~,/4 
(12c~c) 3/8 rchm2II2(1 - vZ)aJ ' (7.8) 

Here, the parameters ~ and H2 are found from the self-similar solution; they 
depend on dimensionless complexes # and ~5 and not on H. The remaining 
quantities in the right-hand side of (7.8) must be known. 
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Thus, formula (7.8) allows us to find, in principle, a rarely defined, or, more 
frequently, merely unknown model parameter the hydraulic fracture height 2H 
from the data of measurements of flow rate Qo and the injected fluid volume ~,. 

Let us resuma the results obtained. 
In forming vertical, highly elongated hydraulic fractures by the injection of  

viscous fluid under constant well-bore pressure, a large amount of fracturing fluid 
penetrates into a stratum, the fluid-loss volume per fracture length or volume unit 
being increased with fracture size as a square of the fracture length. 

For the fixed final fracture length and for the same inlet pressure, the hydraulic 
fracturing time and the fluid-loss volume increase with the formation permeability 
and fracturing fluid viscosity. This implies that it is more beneficial, from technolog- 
ical and economical points of view, to form a hydraulic fracture by using low- 
viscosity fluids, and high-viscosity fluids should be used at the fracture fixation 
stage only. This conclusion, of course, cannot be spread to injection regimes with a 
constant flow rate in which the inlet pressure should increase with time and with the 
fracturing fluid viscosity. 
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