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ABSTRACI'.  The relation between logic and thought has long been controversial, but 
has recently influenced theorizing about the nature of mental processes in cognitive 
science. One prominent tradition argues that to explain the systematicity of thought we 
must posit syntactically structured representations inside the cognitive system which can 
be operated upon by structure sensitive rules similar to those employed in systems of 
natural deduction. I have argued elsewhere that the systematicity of human thought 
might better be explained as resulting from the fact that we have learned natural languages 
which are themselves syntactically structured. According to this view, symbols of natural 
language are external to the cognitive processing system and what the cognitive system 
must learn to do is produce and comprehend such symbols. In this paper I pursue that 
idea by arguing that ability in natural deduction itself may rely on pattern recognition 
abilities that enable us to operate on external symbols rather than encodings of rules that 
might be applied to internal representations. To support this suggestion, I present a series 
of experiments with connectionist networks that have been trained to construct simple 
natural deductions in sentential logic. These networks not only succeed in reconstructing 
the derivations on which they have been trained, but in constructing new derivations that 
are only similar to the ones on which they have been trained. 

1 .  L O G I C A L  S T R U C T U R E  AND C O G N I T I O N  

The relation between logic and thought has long been controversial. 
This is particularly true of rules for natural deduction. Most philoso- 
phers construe such inference rules as normative: they are truth preser- 
ving rules which, if adhered to, would insure that if a person started 
with true beliefs, he or she would not end up believing falsehoods. 
The emergence of cognitive science, however, has had inconsistent 
implications for the status of such inference rules. On the one hand, 
there is now empirical evidence that humans often find it difficult to 
apply such basic rules of inference as modus tollens; in some situations 
they are more likely to apply the invalid principle of affirming the 
consequent instead (Wason and Johnson-Laird 1972). On the other 
hand, a number of theorists have adapted natural deduction rules to 
explain human deductive reasoning (Braine, Reiser and Rumain 1984; 
Osherson 1975, 1976; Rips 1983, 1990). In these accounts, humans are 
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thought to apply formal rules to mental representations of propositions 
so as to reach desired or interesting conclusions. 

The view that humans employ mental rules comparable to those 
employed in natural deduction systems fits well with Fodor's (1975 
1987) claim that there is a language of thought. According to Fodor, 
cognitive performance requires an internal system of language-like re- 
presentations and formal syntactic operations which can be applied to 
these representations. That is, language provides the metaphor by 
which theorists can understand and model cognition. If the cognitive 
system has an overall language-like architecture, it makes sense to 
model deductive reasoning by specifying mental rules (comparable to 
the inference rules of natural deduction) that operate upon language- 
like mental representations. This linguistic metaphor has dominated 
psychological models of reasoning (e.g., Smith, Langston and Nisbett 
1992). 

Fodor and Pylyshyn (1988) defended the linguistic metaphor as being 
compelled by three properties of thought: systematicity, productivity 
and inferential coherence. In justifying the first of these properties, 
Fodor and Pylyshyn noted that beliefs (or other thoughts) are systemati- 
cally related to one another. For example, any cognitive system that 
has the capacity to believe that Mary loved the florist is capable as well 
of believing that the florist loved Mary. To account for this systema- 
ticity, Fodor and Pylyshyn claimed that one must employ a representa- 
tional system with compositional syntax and semantics (in other words, 
a representational system comparable to that found in natural lan- 
guages). In this system, each atomic thought is represented by a symbol, 
and formal operations are performed on these symbols. If the represen- 
tation of a thought such as Mary loved the florist were constructed by 
compositional operations from representations of Mary, loved, and 
florist, then the system could create, using the same operations, a 
representation of The florist loved Mary. Similar arguments were of- 
fered for the other two properties. The result is a language-like system 
in which the compositional structure of symbol strings is specified by 
formal rules. 

The hegemony of the linguistic representation/formal rules approach 
to modeling cognition has been challenged in the last decade by the re- 
emergence of connectionist models (see especially Rumelhart, McClel- 
land and the PDP Research Group 1986, and the introduction to this 
approach provided by Bechtel and Abrahamsen 1991). In connectionist 
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networks, there are no formal rules that operate upon symbolic repre- 
sentations. Instead, connectionist networks consist of numerous neur- 
on-like units. These receive input from other units, take activation 
values based on those inputs, and send outputs to other units based on 
their own activation values. The propagation of activation is governed 
by weights on the connections between pairs of units and by mathema- 
tical functions that relate input activations and weights to output acti- 
vations. The metaphor that inspires connectionist models is neural 
rather than linguistic. 

Connectionist networks can naturally be interpreted as engaging in 
pattern recognition. A feedforward network, for example, responds to 
a pattern of activation across its input units by producing another 
pattern of activation across its output units. The output pattern can be 
construed as representing a category to which the input pattern has 
been assigned. Consequently, connectionist networks have been widely 
accepted as useful models for cognitive abilities that clearly involve 
pattern recognition (e.g., perceptual identification or categorization 
tasks), which have proven difficult to model within a classical flame- 
work. But are connectionist networks capable of handling the broader 
range of tasks, including reasoning tasks, that we ordinarily think of as 
cognitive? If so, reasoning might be reconstrued as a kind of pattern 
recognition, and all of cognition might be brought under the same 
theoretical umbrella. Indeed, even from a nonconnectionist perspec- 
tive, Margolis (1987) has offered an extensive argument for the claim 
that pattern recognition is pervasive in mental life and is sufficient 
to explain cognition. Connectionist networks provide both additional 
motivation and a medium for exploring this bold idea. 

How does a connectionist pattern-recognizer successfully process sen- 
tences or sentence-like thoughts and beliefs? The models available to 
date are only suggestive, because they are designed to handle only 
small subsets of the range of vocabulary and syntactic structures found 
in a natural language. As one example, Elman (1992) designed a recur- 
rent network in which the input layer receives a localist encoding of each 
successive word of a sentence. A context layer provides a distributed 
encoding of the part of the sentence so far encountered, and the net- 
work's task is to propagate activations through its four layers of connec- 
tions so as to produce a prediction of the next word on its output layer. 
Following training on several lO,O00-sentence corpora generated by a 
phrase-structure grammar, the network produced appropriate predic- 
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tions for a new corpus. To do so, it had to show sensitivity to subject- 
verb agreement and verb argument structures in simple sentences as 
well as sentences with relative clauses. It did not, however, explicitly 
represent agreement, argument structures, and constituent structure, 
nor did it operate on such representations with structure-sensitive rules. 
Rather, it relied on the statistical behavior of its weighted connections 
between units to act appropriately on the sequence of symbols with 
which it was presented. The input to the network is similar to the input 
to a symbolic parser (a sequence of words), and the output may also 
be similar, but what happens in getting from input to output is quite 
different. The network propagates activations to achieve a distributed 
representation of its input; the symbolic parser applies rules that utilize 
and retain the constitutent structure of its input. 

Fodor and Pylyshyn found the lack of explicit compositional structure 
and rules in connectionist networks quite problematic. If a network 
really lacks a compositional syntax, they claim, it cannot account for 
such properties as systematicity. If it does account for systematicity, 
it must be merely implementing a compositional syntax despite its 
superficially different architecture. One strategy that connectionists 
have employed to answer Fodor and Pylyshyn is to claim that the 
internal states of successful networks exhibit functional compositionality 
(the information is there) but not explicit compositionality (the compo- 
nents are not components in the distributed representations on hidden 
layers); for variations on this argument, see van Gelder (1990), Pollack 
(1990) and Smolensky (1990). Elsewhere (Bechtel, in press), I have 
argued for exploring a different strategy. The property of systematicity, 
and the compositional syntax and semantics that underlie that property, 
might best be attributed to natural languages themselves but not to the 
mental mechanisms involved in language use. On this view, it is enough 
that a network pick up whatever information allows it to respect the 
constituent structure of sentences presented to it. How the network 
does this might be quite different than we would expect from our 
knowledge of the grammar that characterizes the sentence's syntactic 
and semantic structure. That is, cognitive systems might be able to 
interact with symbolic representations, such as those of natural lan- 
guage, without having to build up and operate on internal representa- 
tions that are themselves comparable to those of natural language. 

According to this view, linguistic representations would be external 
to the cognitive processing system. These representations might be 
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presented to the system for processing by means of a language-like 
localist encoding on an input layer, but the system's internal procedures 
accomplish a kind of transduction into quite different, distributed repre- 
sentations. Furthermore, the procedures may rely on the shifting avail- 
ability of parts of the sentence within a temporal window (as simulated 
by limiting what parts of a sentence are available on the input units at 
a given time). Since external symbol strings can be written, spoken, 
signed, or even silently generated as inner speech,~ the temporal charac- 
teristics and memory requirements that must be simulated will vary. 
Grammars, in contrast, give an atemporal account of sentence structure 
that may be suitable for describing the language itself but not for 
specifying people's internal procedures for operating on stretches of 
external encodings. Networks can learn to respect the syntax of external 
strings that grammars describe, without themselves employing composi- 
tional internal representations. A network in action and the string it acts 
on may jointly exhibit features such as systematicity and productivity, 
providing a connectionist response to Fodor and Pylyshyn. 

It is especially interesting in this regard to design simulations in which 
symbols provide an external memory that acts in partnership with a 
network that relies on that external memory. The idea of training 
networks to use external symbols in this way was originally suggested 
by Rumelhart, Smolensky, McClelland and Hinton (1986; see also the 
discussion by Clark 1989 and Rumelhart 1989), who used arithmetic 
problems to illustrate this idea. In solving all but the simplest arithmetic 
problems, we rely on writing symbols in canonical fashion in an external 
medium, and then use those enscribings as input for further processing. 
For example, if we want to multiply the following two three-digit num- 
bers, we begin by writing them in the following canonical form: 

343 
822 

Writing the problem in this way permits us to decompose it into several 
simple component tasks, each of which can be solved mentally if we 
have learned the multiplication tables. As soon as we recognize one of 
the simple problems, the answer is brought to mind. The first task in 
the above problem is 2 x 3, whose answer we write in the appropriate 
position: 
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343 
822 

6 

We then turn to the next task of multiplying 2 x 4. What we have 
learned is a routine for dealing with a complex problem in a step-by- 
step manner, with each step requiring limited cognitive effort. As a 
result, a problem that would be quite difficult if external symbols were 
not available is rendered much simpler with these symbols. (Margolis 
1987, also suggests that cognitive problems might be solved by repeated 
processes of pattern recognition, although he does not develop his 
analysis within a connectionist framework.) 

The arithmetic example shows not only how use of external symbols 
can facilitate decomposition of complex problems, but also how produc- 
tive and systematic performance can result from use of external sym- 
bols. The rules of arithmetic are normative principles governing the 
use of arithmetic symbols by cognitive agents. As long as the cognitive 
system conforms to these norms in its behavior it can, by working with 
these external symbols, manifest productivity and systematicity. The 
same internal procedures can enable it to solve new problems, and by 
virtue of being able to solve certain problems, it is able to solve others. 
In adopting this view, we might grant Fodor that syntax is what explains 
systematicity, but limit syntax to external symbols. A cognitive system 
or network which can interact with such symbols will then exhibit 
productivity and systematicity. By dividing the labor between external 
symbols which must conform to syntactical principles and a cognitive 
system which is sensitive to those constraints without itself employing 
syntactically structured representations, one can perhaps explain the 
systematicity and productivity of cognitive performance. 

The division of labor envisaged here can be illustrated with a Turing 
machine. There are two crucial components to a Turing machine. The 
first is a finite state device which is capable of reading the symbol on 
a particular square of a tape and of following rules which specify, 
depending upon the symbol read and the particular state the device is 
in, either the writing of a new symbol, moving right or left, or stopping. 
The second component is a potentially infinite tape on which symbols 
are stored. It is only by supplementing the finite state device with the 
infinite tape that the Turing machine achieves its capabilities, including 
exhibiting systematicity. Systematicity will result when the set of proce- 
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dures constituting the finite state device are so configured that it pro- 
duces syntactically structured symbol sequences on the tape. For exam- 
ple, a set of procedures for constructing SVO sentences from 
specifications of case roles would generate the representation of either 
"Mary loves the florist" or "The florist loves Mary" depending upon 
whether Mary was specified as the agent and the florist as the patient, 
or vice versa. What I am proposing is that the human mind need not 
incorporate the entire Turing machine: in a given domain, it may be 
sufficient that only the finite state device be internally realized if it 
interacts with (reads and writes) externally-provided symbols. The joint 
operation of the external symbols and internal device would exhibit 
systematicity. 

If appealing to external symbols is even remotely plausible as part 
of an account of systematicity, it suggests a different perspective on 
principles of natural deduction from that adopted by theorists such as 
Braine et al. (1984), Osherson (1975, 1976) and Rips (1983), who 
propose that we employ rules like those for natural deduction to ma- 
nipulate internal symbols. Under the alternative account, principles of 
natural deduction would not govern the processing of internal symbols, 
but would be applied to the symbols of natural languages, whether 
spoken, written, or privately rehearsed. Thus, we might recognize an 
argument uttered by another as an instance of modus ponens, and 
recognize that if we accepted the premises as true, we have to accept the 
conclusion. Moreover, the ability to apply these principles constitutes a 
learned skill. Learning this skill requires learning to recognize particular 
patterns in arguments. 

The idea that one has to learn to recognize such patterns was sug- 
gested to me by observing students in an elementary logic course as 
they learned to evaluate simple arguments of sentential logic. After 
introducing various valid and invalid forms and giving examples of 
natural language arguments using each form, I would assign homework 
which asked students to identify the form found in a natural language 
argument. The answers on these exercises often revealed that the stu- 
dents had not identified what made an argument an instance of modus 
ponens rather than an instance of affirming the consequent. Pointing 
out the distinctive features of each form in lectures did not seem to 
suffice to teach students to recognize instances of the form. In an 
attempt to improve student performance, I developed a set of com- 
puter-based exercises which required students (a) to identify argument 
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forms for natural language arguments and assess their validity or (b) 
to complete natural language enthymemes (arguments in which one of 
the premises or the conclusion has been omitted). In performing the 
computer exercises students often began by writing out templates of 
the different argument forms we had covered, and explicitly matching 
parts of a natural language argument to the different templates. After 
considerable practice, most students gradually weaned themselves from 
reliance on the templates and were able to identify forms or complete 
enthymemes reliably. 

My diagnosis of the situation was that the students had not previously 
been sensitive to the specific syntactic features that are required for an 
argument to exemplify a particular logical form. While they had made 
inferences much of their lives, they were likely guided primarily by the 
semantics of the information involved, not the syntax of the representa- 
tion. To become sensitive to syntax, students had to learn a new way 
of seeing arguments; they had to learn to see patterns where they had 
not seen them previously. This suggested that identification of logical 
structure, far from being a native component of ordinary reasoning 
with natural language, is a learned capacity to recognize patterns. Since 
connectionist networks are good at pattern recognition tasks, it seemed 
plausible that a connectionist network could learn to recognize the 
forms of sentential arguments and assess their validity, or complete 
enthymemes in a valid manner. 

In my first exploration of this idea, I constructed a small set of logic 
problems and two very simple feedforward networks that might master 
them by treating them as problems of pattern recognition (see Bechtel 
and Abrahamsen 1991, pp. 167ff). The first network was trained to 
identify and assess the validity of arguments constructed using the 12 
argument forms that are shown in Table 1. Six of these were valid 
argument forms, each of which was deformed to obtain a corresponding 
invalid argument form. For example, the second premise and conclusion 
of the modus ponens form were reversed to obtain an invalid form, 
generally known as affirming the consequent. By substituting either A, 
B, C or D or their negations for p and q in these schemas, a set of 576 
different arguments was constructed. The network shown in Figure 1 
was trained using the backpropagation algorithm to judge the form and 
validity of these arguments. 2 The arguments were encoded on an input 
layer of 14 units. These were connected through two layers of ten 
hidden units each to three output units, on which the network specified 
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Table 1. Argumen t  forms used to train networks to evaluate arguments  and complete  
en thymemes ,  There  were six valid forms,  each of  which was deformed to create a 
corresponding invalid form (Bechtel and A b r a h a m s e n  1991, p. 167). 

Valid forms Corresponding invalid forms 

Moden ponens Deformed  Modus ponens 
(affirming the consequent)  

If p ,  then  q If p ,  then  q 

P q 
:.q :.p 

Modus tollens Deformed  modus tollens 
(denying the  antecedent)  

If p ,  then  q If p ,  then q 
not  q not  p 
.'.not p .'.not q 

Alternative syllogism Deformed  alternative syllogism 
p or q p or q 
not  p p 
.'.q .-.not p 
p or q p or q 
not  q q 
:.p .'.not p 

Disjunctive syllogism Deformed  disjunctive syllogism 
Not both p and q Not both p and q 
p not  p 
not  .'.q .'.q 
Not both p and q Not both p and q 
q not  q 
not  .'.p .'.p 

the form and validity of the argument. All arguments generated from 
one pair of forms (original and distorted) were assigned the same 
encoding for form on the first two output units; the original (valid) 
forms were distinguished from the corresponding distorted (invalid) 
forms by the validity encoding on the third unit. For example, the 
network was trained to encode all instances of affirming the consequent 
as modus ponens (the form from which they had been derived by 
distortion) and as invalid (to mark the logical effect of the distortion). 

Initially 192 of the arguments were used to train the network. These 
were chosen to include at least one valid and one invalid example of 
each basic problem type, e.g., there was at least one valid instance of 
modus ponens with A or HA as the antecedent and B or ~ B  as the 
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MP O l  
MT 1 0  ................................................... i~7, i ................ Valid 1 1 

Not  Valid 0 

DS O Q  i 

© 0 

"N i [ ............. ...... I 

........................................... ~ ................... ~ .................................. i ......................................... ~ i 

if, then 1 1 

or 0 1 
not both 1 0 

not 
no not 0 

A O l  
B 1 0  

C 11  
D O 0  

Fig. 1. Multi-layer network used for evaluating simple argument  forms in sentential  logic. 
The interpretation of each unit in the input and output  layers is shown in one of the 
boxes. The network includes all possible connections between adjoining layers; only some 
of these are shown (from Bechtel  and Abrahamsen  1991, p. 169). 

consequent.  After  3,000 presentations of  the training set, the network 
had learned to correctly judge the form and validity of all 192 arguments 
in that set. To  assess generalization, it was tested on 192 additional 
arguments which it had not previously encountered,  and was correct 
on 139 (76%). It  was then trained further on the combined set of 384 
arguments  for 5,000 presentations,  after which it was correct on all but 
four. Finally, generalization was assessed on an additional set of 192 
arguments and was correct on 161 (84%). 

The second network was trained to complete en thymemes  employing 
the same set of arguments as above. In this case, there were input units 
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for the complete argument together with the designation of the name 
of the form and the validity of the argument. To make the argument 
into an enthymeme, neutral activations (0.5) were presented on the 
units representing either the second premise, the conclusion, or the 
name and validity of the argument; the rest of the units received non- 
neutral activations (0 or 1 as appropriate). The output units corre- 
sponded to the input units; the network's task was to reconstruct on 
the output units the complete argument, with the proper substitutions 
supplied for the neutral values on the input units. Hence, the task was 
one of pattern completion. The network was trained on 384 of the 
argument forms using 30,000 presentations of each form. At that point 
the network responded correctly on 380 of the problems. Generalization 
was then tested using the remaining 192 arguments. On 128 of these 
the network was required to supply either the second premise or the 
conclusion. The network correctly completed 125 (97.6%). On the 
remaining 64 problems the network was required to specify the form 
and validity of the argument. It made numerous errors on this task, 
misidentifying the form 14 times, misjudging the validity 18 times, and 
erring on both form and validity an additional 2 times. Here perfor- 
mance was far less impressive, although still far better than chance. 
The relatively poor performance on the arguments that required speci- 
fication of form and validity was surprising since the previous network 
performed much better on this task. The fact that the network did so 
well on those problems that required supplying the missing premise or 
conclusion, though, indicates that networks are capable of completing 
simple enthymemes in sentential logic. 

These two investigations confirm that simple problems in logic can 
be successfully treated as problems of pattern recognition and com- 
pletion that can be solved by a feedforward network. Moreover, the 
syntactically ordered symbolic representations of the arguments remain 
external to the network in the sense employed in this paper: they are 
encoded only on the input and output layers of the network and are 
not themselves manipulated in the internal processing. There are sev- 
eral ways in which we might extend these initial feasibility studies. 
First, the problem set could be enlarged by adding additional argument 
forms and atomic propositions. Second, if the number of additional 
atomic propositions in the learning set were very large or if the network 
were pushed to generalize to problems with new atomic propositions, 
the issue of variables and variable-binding would quickly become a high 
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priority. Third, if problems with compound propositions were included, 
the ability of networks to handle constituent structure would receive a 
more challenging test. Fourth, semantics could be added so that we 
would have to grapple with how to keep the network from relying on 
semantics rather than syntax. 

At least some of these extensions ultimately will be needed to con- 
vincingly complete the demonstration that logic problems can be solved 
by processes of pattern recognition using the distributed representations 
of connectionist networks. It is not yet clear what kinds of network 
models will best fulfil this agenda, but the challenges are not unique to 
logic and a variety of avenues are being pursued by connectionist 
investigators. See, for example, Pollack's (1990) RAAM networks and 
Smolensky's (1990) tensor product representations. 

Although extensions like these may ultimately be crucial to the story 
of how we do logic, it is also important to probe the capabilities of 
simple feedforward networks. The next section describes how I did this 
by posing a different kind of logic problem to another feedforward 
network. 

2. S I M U L A T I N G  N A T U R A L  D E D U C T I O N  I N  N E T W O R K S  

One might argue that while evaluating simple sentential arguments and 
completing enthymemes can be easily construed as a task of pattern 
recognition, and thus within the power of simple feedforward networks, 
natural deduction is not. Natural deduction requires the deployment of 
simple argument forms, now construed as principles 3 of inference, in a 
sequential manner so as to progress from premises to the conclusion, 
construed as a goal state. This is a much more difficult task. One cannot 
just deploy principles that are applicable given the premises and the 
steps derived so far; rather, one must formulate and implement a 
strategy, maintaining a focus on the goal and adding steps to the argu- 
ment that are likely to help reach the goal. Often this requires reasoning 
backwards from the goal, determining that if I were able to establish 
this statement, then I would be able to employ this principle to reach 
my conclusion. 

What does such means-ends reasoning require? One possibility is 
that one learns a variety of strategies specifying what one should do in 
particular kinds of circumstances. In learning natural deduction students 
often seek such strategies. If the instructor develops a derivation for 
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them, students often ask about a particular line in the derivation: "Why 
did you do that?" For example, in the following derivation, a student 
might ask why on step 3, I derived F rather than B, which was equally 
derivable by and-elim from step 2. 

1. D & (F D A) :premise 
2. B & F :premise 
3. F :2 &-elim 
4. F D A :1 &-elim 
5. A :4,3 D -elim 

I, and I suspect nearly all logic instructors, answer such queries by 
offering reasons that could be compiled into strategies. For example, 
we might note that the conclusion was the consequence of a conditional 
statement found in a premise, and if we could derive the antecedent of 
the conditional, we could use D-elim to derive the conclusion. Some 
such strategies are even abstracted and discussed in logic textbooks or 
used in computer programs that generate derivations. 4 But when I 
engage in offering such explanations, I strongly suspect that I am confa- 
bulating. Having done innumerable derivations, when I first look at 
natural deduction problems, especially relatively simple ones, I imme- 
diately see what to do. This is a contentious claim which I cannot 
demonstrate. One piece of evidence for it, however, is that the stra- 
tegies I present to students are underspecified; there are circumstances 
in which it is inappropriate to apply the strategy I have specified, and 
when these arise and I do not follow the strategy, a student who has 
heard me enunciate it will then ask why I did not follow it. 

There is an alternative to the strategy account that is worthy of 
exploration. Expertise in natural deduction may be viewed as a parti- 
cular case of Dreyfus and Dreyfus's (1986) analysis of expertise. In 
their account, rules arise at the stage of competent performance, but 
when true expertise arises, what they term intuition predominates. The 
term intuition suggests something mysterious, but that is not what is 
intended. Rather, the term refers to the ability to recognize directly 
that a particular situation is comparable to one experienced previously, 
and to use the solution to the previous situation as a basis for dealing 
with the current one. By the time one teaches natural deduction, one 
typically has a great deal of experience developing derivations, and on 
this basis is able to recognize immediately that a particular problem is 
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comparable to previous cases. In some domains of expertise, such as 
nursing diagnosis (Benner 1984), these previous cases may be explicitly 
remembered. But in others, such as natural deduction, we may simply 
experience awareness that a particular strategy is likely to succeed for 
a particular kind of problem. 

The proposal that expertise in natural deduction might rely on reco- 
gnizing patterns on the basis of considerable experience in constructing 
derivations motivates the attempt to simulate such expertise in connec- 
tionist networks. In what follows I describe a simulation in which a 
feedforward network is trained by backpropagation to construct a re- 
stricted set of natural deductions from sentential logic. Like the net- 
works for evaluating arguments and completing enthymemes discussed 
above, this network is trained with a limited set of problem types 
constructed from particular atomic propositions. A different architec- 
ture might be needed to incorporate variable binding or to solve novel 
problem types. There is, however, one important change in design 
relative to the earlier networks. Natural deduction is viewed as a co- 
operative effort between internal processing and external symbols which 
keep track of the completed lines of the derivation. To simulate this, 
each line of the derivation is assigned to a different set of input units, 
and several passes are made through the network to construct the entire 
derivation (one pass per added line). On each pass the correct encoding 
of the lines completed so far is provided on the input units, and the 
network must try to generate the next line. Hence, memory for com- 
pleted work is externally available, reducing and changing what is 
required internally. In this way, the simulation explores the strategy of 
dividing labor between external structured representations and a pat- 
tern-recognizing connectionist system. 

The natural deductions used by the network followed fourteen deri- 
vation patterns (Table 2). These derivation patterns involved deri- 
vations using either three or four premises and either three, four, or 
five inferential steps. A line in the derivation could consist of one or 
two atomic sentences, possibly negated and one two-place connective. 
Five inference rules were employed: v-intro, v-elim, &-intro, &-elim, 
and D-dim. In constructing the problem set, three permutations of the 
order of the first three premises were employed for all 14 derivations 
patterns: 1, 2, 3, 2, 1, 3; and 3, 1, 2. 5 Twenty-four derivations were 
constructed from each of these schemas using the sentential constants 
A, B, C, D in all possible permutations to replace the sentential vari- 



N A T U R A L  D E D U C T I O N  IN C O N N E C T I O N I S T  SYSTEMS 447 

Table 2. The 14 derivation schemas used with the natural deduction networks. 

I II 
1. p v q  :pr 1. p v q  :pr 
2. q D r :pr 2. q D r :pr 
3. ~ p  :pr 3. ,-op :pr 
4. q :1,3 v-elim 4. q :1,3 v-elim 
5. r :2,4 D-elim 5. r :2,4 D-elim 
6. r v s :5 v-intro 6. r & q :5 &-intro 

III  IV 
1. p D q :pr 1. p D q :pr 
2. q D r  :pr 2. q D r  :pr 
3. p :pr 3. p :pr 
4. q :1,3 D-elim 4. q :1,3 D-el im 
5. r :2,4 D-elim 5. r :2,4 D-elim 
6. r v s :5 v-intro 6. r & q :5;4 &-intro 

V VI 
1. p v q  :pr 1. p D q  :pr 
2. q D r  :pr 2. q D r  :pr 
3. ~ p  & s :pr 3. p & q :pr 
4. ~ p  :3 &-elim 4. p :3 &-elim 
5. q :1,4 v-elim 5. q :1,4 D -elim 
6. r :2,5 D-el im 6. r :2,5 D-el im 

VII VIII  
1. p & q  :pr 1. p & q  :pr 
2. p D ~ r  :pr 2. p D r :pr 
3. r v s  :pr 3. q D s  :pr 
4. p :I &-elim 4. p :1 &-elim 
5. ~ r  :2,4 D-etim 5. r :2,4 D-d im 
6. s :3,5 v-elim 6. q :i &-elim 
7. q :1 &-elim 7. s :3,6 D-dim 
8. s & q :6,7 &-intro 8. r & s :5,7 &-intro 

IX X 
1. ~ p  & q :pr 1. u p  & q :pr 
2. p v r :pr 2. p v ~ r  :pr 
3. r D s :pr 3. r v ~os :pr 
4. ~ p  :1 &-elim 4. ~ p  :1 &-elim 
5. r :2,4 D-elim 5. ~ r  :2,4 v-elim 
6. s :3,5 D-elim 6. s :3,5 v-elim 
7. q :1 &-elim 7. q :1 &-elim 
8. s & q :6,7 &-intro 8. s & q :5,7 &-intro 
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XI XI! 
1. p D q  :pr 1. p v Nq :pr 
2. p D r :pr 2. p v ~ r  :pr 
3 .  r D s :pr 3. r v s :pr 
4. p :pr 4. ~-'p :pr 
5. q :1,4 D-elirn 5. ~ q  :1,4 v-elim 
6. r :2,5 D-elim 6. ~ r  :2,5 v-elim 
7. s :3,6 D-elim 7. s :3,6 v-etim 
8. s & q :7,5 &-intro 8, s & ~ r  :7,6 &-intro 

XIII  XIV 
1. p v q :pr 1. p D ~ q  :pr 
2. q D r :pr 2. q v ~ r  :pr 
3. r D s  :pr 3. r v s  :pr 
4. ~ p  :pr 4. p :pr 
5. q :1,4 v-elim 5. ~ q  :1,4 D-dim 
6. r :2,5 D-elim 6. ~ r  :2,5 v-elim 
7. s :3,6 D-elim 7. s :3,6 v-elim 

ables p, q, r and s. I shall refer to a set of derivations which share a 
particular assignment of sentential constants to the sentential variables 
as a substitution set. Derivations constructed from three-fourths of the 
substitution sets were used as the training set; accordingly, the training 
set consisted of 756 derivations. Derivations from the remaining one- 
fourth of the substitution sets (chosen to be representative of the overall 
distribution) were reserved for testing generalization. These totalled 
252. 

A feedforward connectionist network with one layer of hidden units 
was used for the simulation (Figure 2). The input layer consisted of 
104 units, each of which received an activation of 0 or 1. Each derivation 
was presented to the input units in steps. On the first step the network 
was provided with an encoding of the final conclusion to be constructed 
and the premises. On subsequent steps it would also be presented with 
the correct steps in the derivation up to that point. As noted above, 
the representation of all of this material on the input layer is intended 
to emulate the ability of a person to take in as visual input the written 
representation of the problem and the steps completed so far. The 
input units fed into a layer of hidden units. Experimentally it was 
determined that no more than twenty hidden units were needed to 
learn this task. The output layer consisted of 13 units, on which the 
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First Component Connective Second Component 

 ooo  oJ oooJ 
Neg D C B A & :::3 v Neg D C B A 

Fig. 3. Encoding schema used to encode one line in a derivation on 13 units. Each unit 
represents a negation, a sentential constant, or a connective. The units active in this case 
represent the statement HA and B. 

network was trained to produce an encoding of the next step in the 
derivation. Although the hidden units and output units could take 
continuous activations between 0 and 1, the target outputs were patterns 
of 0s and ls. On the input and output layers 13 units sufficed to encode 
each line of the derivation in such a manner  that a unit having an 
activation of 1 or close to 1 represented the presence of a negation, 
sentential constant, or connective assigned to that unit. Activation of 
unit 1 served to negate the first sentential constant; activation of unit 
9 negated the second sentential constant. Units 2 -5  and 10-13 specified 
the first and second sentential constants; the first unit in each of these 
clusters signified D, the second C, etc. Units 6 -8  encoded the connec- 
tive (unit 6 represented &, unit 7 D, and unit 8 v). Figure 3 shows the 
manner in which the proposition HA & B was encoded. If the line 
consisted simply of an atomic letter or its negation, the first 8 units 
were assigned an activation of 0. 

To present a complete derivation problem to the network, the appro- 
priate activation pattern was presented to the three or four sets of units 
encoding the premises as well as the set of units encoding the desired 
conclusion, and the remaining sets of units were left off. The network 
was required to construct the proper  next line on the output  units (that 
is, it had to make the first inference). Then, regardless of what pattern 
was generated by the network on the output units, the desired pattern 
(the correct first inference) became part of the input on the next step. 
That is, the network was supplied with the premises, desired conclusion 
and correct first inference. From this input the network's job was to 
generate the second inference. This process was repeated until the 
network had constructed all of the steps of the derivation. (Note that 
the only representation of the previously completed steps is on the 
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input layer, which corresponds to the visual input a human might have 
who has written the problem and the steps completed so far on paper.) 

To train each derivation, the network was presented with each step 
in the appropriate sequence. For each step, the network produced its 
answer on the output units, was informed of the correct answer, and, in 
accord with the backpropagation learning algorithm, used the difference 
between its answer and the correct answer to revise the weights on the 
connections in the network. An epoch of training consisted of one 
complete pass through each of the derivations in the training set. After 
only a few epochs of training the network began to get most of the 
steps correct. After 500 training epochs the network had mastered the 
training set. Although technical factors such as the number of hidden 
units influence the rate of learning, the fact that the network learned 
these problems so fast suggests that natural deduction was not actually 
as challenging a task as it appeared at the outset. The incorporation of 
an external memory for the completed lines of the derivation presum- 
ably played a major role in rendering the task tractable. 

The 252 derivations reserved for testing generalization involved a 
total of 936 inferences. The network was judged to have made the 
inference correctly if all units that had values of 1 in the target had 
activations greater than 0.5 and units that were 0 in the target had 
activations less than 0.5. 6 The network was correct on 767 of these 
inferences (81.9%). All of the errors the network made involved the 
sentential constants. There were no errors involving either the negation 
operators or the main logical connectives. The errors involving the 
sentential constants fell into three categories: (a) no unit representing 
a sentential constant was activated above 0.5 (interpretable as a failure 
to respond); (b) both the correct and one incorrect unit were activated 
above 0.5 (interpretable as uncertainty as to the correct response); or 
(c) an incorrect unit was activated above 0.5 (interpretable as the simple 
error of producing the wrong sentential constant). 

In those cases in which either no unit for a sentential constant was 
activated above 0.5 or where more than one was, we can examine 
which unit had the highest activation. In 80 of the 169 cases in which 
errors were made, the correct unit was the one with the greatest acti- 
vation. There is a clean-up technique that can be used to raise the 
activation of the winning unit and suppress the activation of all of the 
other units in a cluster (this involves adding excitatory connections from 
a unit to itself and inhibitory connections to all other units in the 



452 W I L L I A M  B E C H T E L  

cluster). If such a technique had been employed, the percentage correct 
would have risen to 90.5%. 

The errors the network made were not randomly distributed. Using 
the initial, more conservative criterion of correctness, 76 of the errors 
occurred on instances of derivation patterns I-IV,  resulting in a per- 
centage correct on those problems of only 73.6%. On the other hand, 
only 15 errors were made on problem types V, VI, XIII and XIV 
combined, yielding a percentage correct of 94.7%. An examination of 
derivation patterns I - IV reveals that they are extremely similar to one 
another. As a result, when an error occurred in one of these problems, 
it generally occurred in several other problems. Thus, in two of the 
substitution sets in the test set, q was replaced by D. Under this 
substitution the first inferential step in all four derivation patterns 
should be D. In 14 of the 24 derivations within these two substitution 
sets the network made an error on this step, either providing no re- 
sponse above 0.5, activating the unit representing A, or in one case 
activating the units for both A and D. However, on the eight cases in 
which the premises appeared in the order 2, 1, 3 the network made no 
errors. Thus, the network had learned to make this inference when the 
disjunction was the second premise and the negation of the first disjunct 
was the third premise, but not in the other cases. A similar pattern of 
consistent errors was exhibited in one of the substitution sets in which 
r was replaced by B. Here the network made an error on the second 
derivation step in 10 of the 12 instances of patterns VII -X in which 
the correct response should have been either B or ~B.  

These are the most extreme cases in which a pattern can be found 
in the errors, but there were other less dramatic cases in which the 
same type of error was made on several similar problems. This indicates 
that many of the errors are highly localized and that rather than simply 
making random errors, the network learned incorrect generalizations 
of specific inference patterns. In the training set, though, the network 
had encountered numerous instances of each of these types of infer- 
ences involving the same substitution for the sentential variable in 
question, and had learned to produce all of these correctly. Thus, the 
problem was one of learning to generalize and make the same inference 
when required in problems in which the other sentential variables were 
replaced with different sentential constants. More significantly, the fact 
that the network makes systematic errors and is highly accurate on the 
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other cases suggests that the network has learned to generalize patterns 
of inference. 

Although the network had no problem with proper use of negations 
on this first task, the derivation sets were constructed using only A, B, 
C, or D, not their negations, as substitutions for the sentential constants 
p, q, r and s. In a second simulation, the previous set of derivation sets 
was supplemented with three additional sets in which the substitution 
for either q, for p and r, or for q, r and s were negated. (Thus, in the 
first case, if A originally was to be substituted for q, HA would be 
substituted instead; double negations were automatically removed.) 
This introduction of additional substitution sets required the network 
to be extremely sensitive to the proper placement of the negation signs. 
Because of the increased complexity of the stimulus set, the number of 
hidden units was increased to 40. In one version of the experiment with 
this expanded problem set, one-fourth of the derivations were selected 
for the test set in such a manner that if a substitution set in which one 
assignment of sentential constants to sentential variables was chosen 
for the test set, then none of the other substitution sets differing only 
in assignments of negations was chosen. These other permutations using 
the same atomic sentences but differing in negation were included in 
the training set. The network learned this task rapidly, and after 100 
epochs made no errors on the training set. On the test for generalization 
the network was also perfect. Apparently proper placement of negation 
signs was not a challenge in this case. 

In a second variation with this expanded problem set the principle 
for selecting the test set was the reverse: if a substitution set in which 
one assignment of sentential constants to sentential letters was chosen 
for the test set, the other three substitution sets differing in assignments 
of negations were also chosen. Thus, if the substitution set in which A, 
D, C, B were chosen to replace p, q, r, s was selected, then so were 
the substitution sets in which A, ~-,D, C, B; HA, D, ~C,  B; and 
A, ~D,  ~C,  ~ B  served as the replacements. Four such sets of four 
substitution sets each (a total of 16 substitution sets) were selected for 
the test set, leaving 80 substitution sets in the training set. The network 
was again trained for 100 epochs and learned all of the cases. On the 
test for generalization the network was correct on 2,112 out of 2,496 
inferential steps it was required to make (84.6% correct). In this vari- 
ation of the experiment, five errors arose when the network failed to 
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supply the correct negation sign. The rest of the errors, as in the 
experiment without the extra negations, involved activating the unit for 
an incorrect sentential constant, failing to activate any unit for an 
atomic sentences above 0.5, or activating the units for two atomic 
sentences. (When the more lax criterion requiring only that the unit 
representing the correct atomic sentence be the most active in the group 
was employed,  the network was correct on 2,336 inferences, yielding 
93.6% correct.) 

There was once again a significant degree of consistency in the errors 
the network made so that if an error  were made on an inference with 
a particular substitution set, the same error was likely to occur on other  
inferences in the substitution set that had the same form. Moreover,  
in this version there were four sets of four substitution sets that were 
identical except for negation signs. If an error  appeared on an inferen- 
tial step in a particular derivation using one of the substitution sets, it 
was very likely to also appear in the other three. This is a further 
indication that the network has acquired sensitivity to the logical struc- 
ture of the problems: most of the errors the network makes reflect 
inferential patterns that the network has not learned to generalize 
correctly and the same error  shows up repeatedly. On the other  cases, 
which are the vast majority, the network has learned the pattern and 
the errors that occur are very sporadic. 

In all of  the tests of generalization reported so far, the network was 
required only to generalize to a substitution instance of a derivation 
pattern it had already experienced. The network was not required to 
generalize to derivations in which the inferential steps would be put 
together in different orders. In a further test of the generalization 
capacities of this last network, I tested it on a new set of derivations 
constructed following the patterns shown in Table 3. These derivation 
patterns are modelled on those used in the training, but introduce 
variations. For  example, schema XV follows the general pattern of 
schemas I and II, but employs two disjuncts in the first two premises 
rather than one or two conditionals. Once again, three permutations 
of the first three premises were employed. Four  substitution sets were 
constructed, substituting for p ,  q, r and s either B, A, D, C; A, ~ D ,  
B, C; ND,  B, HA, C; or B, ,'oD, NA, ~C .  

There were a total of 252 inferential steps in these derivations, of 
which the network was correct on 198 (78.6% correct). An examination 
of the errors is also revealing as they were not equally distributed. Half  
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Table 3. Six new derivation schemas used to test generalization of the natural deduction 
network. 

XV XVI 
1. p v ~q  :pr i. p D ~q  :pr 
2. q v r :pr 2. q v r :pr 
3. ~p :pr 3. p :pr 
4. ~ q  :1,2 v-elim 4. ~q  :1,3 D-elim 
5. r :2,4 v-elim 5. r :2,4 v-elim 
6. r v s :5 v-intro 6. r & ~,,q :5,4 &-intro 

XVII XVIII 
1. p D ~ q  :pr 1. p & q :pr 
2. q v r  :pr 2. p D r  :pr 
3. p & q  :pr 3. r D s  :pr 
4. p :3, &-elim 4. p :1, &-elim 
5. ~q  :1,4 D-elim 5. r :2,4 D-dim 
6. r :2,5 v-elim 6. s :3,5 D-intro 

7. q :1 &-elim 
8. s & q :6,7 &-elim 

XIX XX 
i. p v ~q  :pr 1. p D q :pr 
2. q v r :pr 2. q D ~ r  :pr 
3. r D s :pr 3. r v s :pr 
4. ~p :3, &-elim 4. p :pr 
5. ~ q  :1,4 v-elim 5. q :1,4 D-elim 
6. r :2,5 v-intro 6. ~ r  :2,5 D-elim 
7. s :3,6 D-elim 7. s :3,6 v-elim 
8. s & ~q  :7,5 &-intro 

t h e  e r r o r s  o c c u r r e d  o n  p r o b l e m s  f r o m  t h e  f o u r t h  s u b s t i t u t i o n  set .  I f  

th is  se t  is n o t  c o n s i d e r e d ,  t h e  n e t w o r k ' s  s c o r e  r ises  t o  8 5 . 7 %  c o r r e c t .  

M o r e o v e r ,  t h e  p r o b l e m s  w e r e  n o t  e q u a l l y  dif f icul t :  17 e r r o r s  w e r e  m a d e  

o v e r  t h e  48 i n f e r e n c e s  r e q u i r e d  o n  p r o b l e m  X I X ,  w h i l e  o n l y  2 e r r o r s  

w e r e  m a d e  o n  t h e  36 i n f e r e n c e s  r e q u i r e d  o n  p r o b l e m  X V I .  O n c e  aga in ,  

t h e r e  was  c o n s i d e r a b l e  s y s t e m a t i c i t y  in t h e  e r r o r s  t h e  n e t w o r k  m a d e .  

I f  t h e  n e t w o r k  h a d  a p r o b l e m  w i t h  o n e  s t ep  in a d e r i v a t i o n  in o n e  

s u b s t i t u t i o n  se t ,  t h e n  i t  f r e q u e n t l y  e x p e r i e n c e d  t h e  s a m e  t r o u b l e  w h e n  

t h e  o r d e r  o f  t h e  p r e m i s e s  was  r e v e r s e d  o r  w h e n  d i f f e r e n t  p r o b l e m s  
r e q u i r e d  s imi l a r  i n f e r e n c e s .  A n  u n u s u a l  f e a t u r e  o f  this  g e n e r a l i z a t i o n  

t es t  is t ha t  34 o f  t h e  e r r o r s  i n v o l v e d  i n c o r r e c t  u se  o f  t h e  n e g a t i o n  s ign  

o n  i n f e r e n c e s  o n  w h i c h  t h e  n e t w o r k  s u p p l i e d  t h e  c o r r e c t  s e n t e n t i a l  

c o n s t a n t .  W h e r e a s  b e f o r e  t h e  n e t w o r k  s e e m e d  to  h a v e  l i t t le  d i f f icul ty  
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with proper placement of negation signs, such errors now constituted 
the majority. Overall, though, the network performed well on the novel 
derivations. 

3. D I S C U S S I O N  O F  T H E  N A T U R A L  D E D U C T I O N  N E T W O R K S  

The networks I have described in the previous section were able to 
perform the circumscribed problems of natural deduction which were 
posed to them. This demonstrates that a feedforward network that is 
set up to provide an external memory for keeping track of a stepwise 
proof can acquire sufficient sensitivity to the structure of derivations to 
generate each successive line of simple derivations of the types on 
which it has been trained. We saw that such networks can generalize 
to derivation instances constructed by making different substitutions 
for the atomic sentences in the derivation patterns beyond those on 
which they have been trained. Moreover, they can generalize to new 
derivation patterns which use individual inferences like those used in 
the schemas on which they have been trained, but p~at together in a 
new pattern. While generalization rates in the 78-85 % range are less 
than we might desire, they are comparable to what many students are 
able to achieve and also to the results of many other network simula- 
tions. Analysis of the errors indicated that many of the failures were due 
to the networks' having learned incorrect generalizations for particular 
patterns of inference, which further suggests that the networks are in 
fact sensitive to the logical structure of these derivations. 

At the same time, it is important to note that these networks have 
not demonstrated the full range of capacities required for natural deduc- 
tion. The inference rules used by these networks are not complete. For 
a natural deduction system to be complete, one must make use of 
indirect proofs such as found in reductio arguments. Moreover, each 
of the lines employed in these derivations involved at most two atomic 
propositions and a logical connective. Real natural deduction systems 
allow for embedding of compound propositions within the components 
of a proposition, as in ((A & B) v C). Further, only four sentential 
constants were used. As a result, the network may not have learned 
the general principle that whenever a sentence of the form p D q ap- 
peared as a previous line and the sentential constant that substitutes 
for p appears on another line, then the sentenfial constant that substi- 
tutes for q could be derived as a new line; thus, even if the encoding 
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system allowed for encoding an new sentential constant E, it is doubtful 
that the network could now generalize to a new derivation using it. 
Whether it is possible to overcome these limitations with a simple 
feedforward network such as I have been using is unclear; sorting out 
claims concerning competing architectures will presumably form an 
important part of the future research agenda for network models of 
performance in logic. Finally, an inherent limitation of these networks 
is that, insofar as they do not know a natural language, they do not 
really understand what a sentence or a connective is. They have only 
made procedural distinctions between them based on their patterns of 
occurrence. 

One quite legitimate worry about these simulations is that the net- 
work might be responding to simple cues rather than the logical proper- 
ties of the problems. This objection was in fact raised by John Nolt in 
response to an early simulation with this network. In that simulation, 
only the first six argument forms from Table 2 were employed, and the 
premises were only presented in the order given. Nolt constructed an 
alternative set of three principles that could account for success on 
these problems, relying not on principles of logic, but on the position 
of particular statements in the premises. One way to determine which 
principles the network is adhering to is to analyze the weights in the 
network. Given the number of weights involved, however, such an 
investigation would be quite difficult. Another strategy is to present 
the problems in a way that would defeat such an alternative strategy. 
This was the reason for presenting the premises in three different 
orders: there were no longer cues in the presentation of the premises 
so as to permit Nolt's principles to solve the problem. As well, by 
adding additional types of problems, eventually the simplest strategy 
for solving the problems is to learn to obey the principles of logic. 
While it is possible that the network is adhering to principles other 
than those of logic, this seems unlikely given its success is this range 
of problems and its ability once trained to generalize to the arguments 
in Table 3. 

To the extent that the network is sensitive to the logical properties 
of the problems, the internal processing part of the simulation has 
been successful. Recall, however, that this simulation was designed to 
explore a division of labor between (a) an internal cognitive system 
which relies primarily on pattern recognition capacities and (b) external 
symbols which themselves employ a compositional syntax, such as that 
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of propositional logic. My suggestion has been that by using external 
symbolic representations a network can accomplish tasks that require 
a compositional syntax, but that representations employing this compo- 
sitional syntax need not be employed in the internal processing of the 
cognitive system itself. 

When Fodor and Pylyshyn present their objections to connectionism, 
they do admit that there is a way in which connectionists might over- 
come their objections. Connectionists might do this by implementing a 
symbolic system. If connectionists did this, however, they contend that 
it is the classical symbolic system, not the connectionist implementation, 
that is responsible for the cognitive performance. One might worry that 
this is precisely what I am doing here: the network is performing 
operations upon syntactically structured symbols, successively adding 
new symbols to the symbol string until a deduction is complete. How- 
ever, only the input and output layers are explicitly symbolic. The key 
issue is the nature of the operations used to traverse the internal part 
of the network. Explicitly, the internal operations are those sug- 
gested by a neural metaphor: they are statistical operations on large 
numbers of weights and activations that produce distributed patterns 
of activation on hidden layers. If these explicit operations are actually 
just a means of implementing s3~abolic processing, then there is parallel 
activity at a higher (but implicit) level of description. The implicit 
operations would be those suggested by a linguistic metaphor: the 
application of rules so as to obtain and act on compositional representa- 
tions. It is reasonable to discuss whether some aspects of network 
processing can fruitfully be summarized by higher-level descriptions. 
However, it would be an exercise in futility to try to prove that all of 
the explicit activity generated by one of my networks in solving a 
problem corresponds exactly to a series of implicit symbolic operations. 
It is neither necessary nor desirable that this be the case. Instead, I 
would point again to the advantages of a division of labor between 
language-like external representations and neural-like internal process- 
ing. To do its job, the internal processing system need not replicate the 
structure of an external representation that is made available on its 
input units; its knowledge of language and logic is procedural, coopera- 
tive, and sensitive to composition without being compositional. We 
would all like to attain a better understanding of the internal operations 
of networks, but focusing our search on functional equivalents to sym- 
bolic operations could keep us from noticing what is most worth seeing. 
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The difference between the approach I have pursued and that ad- 
vanced by Fodor can be further clarified by returning to the approach to 
explaining human deductive abilities advanced by Braine et al. (1984), 
Osherson (1975) and Rips (1983). These theorists propose that rules of 
deduction are explicitly stored within the cognitive system and applied 
to mental representations of the premises of the argument, perhaps in 
successive steps, to arrive at the conclusion. Smith, Langston and Nis- 
bett (1992), in making their case for the role of mental stored rules in 
reasoning, offer this sketch of what is going on when a rule is applied: 

When a test item or problem is presented,  it is coded in a form that is sufficiently abstract 
to lead to access of an abstract rule: Once accessed, if need be,  the rule can be used for 
further abstract coding of the test item. The next stage is to instantiate, or bind, the 
variables in the rule with entities from the input. Finally, the rule is applied to yield the 
desired answer; that is, inspection of the instantiated representation reveals that the 
antecedent of the rule has been satisfied, thereby licensing the conclusion. There are 
therefore four stages: coding, access, instantiation, (variable binding), and application. 
(p. 8) 

These are, very clearly, not the sorts of activity going on in this network. 
Nonetheless, one might characterize the network as applying rules 
(what I have referred to as principles) to the inputs to arrive at outputs. 
This indicates how a connectionist might answer an objection Smith et 
al. advance against connectionism. Smith et al. present evidence that 
there is rule following in logic, and then note that their account of such 
rule following employs "notions of explicit data structures and inspection 
of explicit structures [which] simply lie outside the ontology of connec- 
tionism" (p. 35). There is a sense in which the logic network is engaged 
in rule following: one interpretation of its success is to say that the 
network has mastered a number of principles and applies them to the 
different symbolic structures presented as inputs, In this respect the 
natural deduction network is closer in spirit to the approach to deduc- 
tion of Braine et al. (1984), Osherson (1975) and Rips (1983), than it 
is to the alternative approach of reasoning through mental models 
advanced by Johnson-Laird and Byrne (1991). Johnson-Laird and 
Byrne reject the proposal that reasoners master principles (rules) of 
natural deduction and propose that instead they learn to mentally ma- 
nipulate semantic models generated for the premises. When one charac- 
terizes the natural deduction network as employing principles of natural 
deduction, however, it is important to note that it is the whole network 
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which is applying the rule and that what it is applied to is an external 
representation, not a mental representation. 

The aspect of my approach that distinguishes it from the classical 
symbolic approach is that I limit compositional syntax and semantics 
to what I am calling external symbols, not to mental representations 
that utilize a language of thought and then appeal to the compositional 
syntax of these external symbols to explain systematic and productive 
features of cognition. This poses a question: how could a compositional 
language have been created in the first place? 7 This is not the place to 
develop a theory of language origins, but answering this question would 
require appealing to both the phylogeny and ontogeny of language. 
Very briefly, once organisms learn to use single symbols referentially 
(Bechtel 1993), it is a natural further development to join such symbols 
together in utterances. Joining symbols, however, creates great poten- 
tial for ambiguity as to the intended relations between the symbols. 
But the medium of the external symbols provides means of solving this 
problem. When we produce symbols, we do so in a serial manner. 
Thus, one potential tool for resolving ambiguity is word order. It is 
also possible to mark the external symbols (e.g., with syntactic case 
markings) so as to specify the relationships between symbols. Thus, 
external symbols afford ways of constructing compositional syntax that 
can be exploited by a tool-creating organism. Presumably social units 
select amongst these ways one that is sufficient for their communicative 
functions. The cognitive capacities required for developing composi- 
tional syntax in external symbols are the same ones I have been empha- 
sizing in this paper: the capacity to generate external symbols and 
respond to them. As social units begin to select specific compositional 
principles from those that are tried out, the cognitive system must be 
one that can extract information from such structured symbols and 
construct symbols in accord with that structure. 

4. CONCLUSIONS 

The simulations presented in this paper offer support for the conception 
of logic that I developed in the first part of this paper. We do not need 
to view capacities in logic, including capacities for constructing natural 
deductions, as the product of a system which performs internal logical 
manipulations of symbols. Rather, the ability can be developed by a 
system capable only of pattern recognition in conjunction with an exter- 
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nal representational system in which structured symbols can be stored. 
A cognitive processing system with capacities limited to those of pattern 
recognition, such as a simple connectionist network, can recognize 
patterns in these symbols, and as a product of recognizing these pat- 
terns, generate additional symbols which provide inputs for additional 
steps of processing. When we study the sequences of symbols produced 
in this manner we may discover that they are highly structured and that 
we can specify principles governing the permissible sequence of symbols 
and the strategies for constructing new sets of symbols. In order to 
adhere to these principles, the cognitive system requires extensive train- 
ing. But a dynamical system that does not use syntactically encoded 
internal representations and syntactic rules to operate on them may 
nonetheless be able to conform in its construction of sequences of 
symbols to the principles of a highly syntactically structured system 
such as natural deduction. 
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N O T E S  

1 Vygotsky (1962) argued that the capacity to produce inner speech is a further develop- 
ment  of the ability to engage in public speech. Producing and responding to inner speech 
may well involve many of the same activities as for public speech, except that vocal tract 
activities are suppressed. I am construing such inner speech as a product of the cognitive 
system and hence external to it. For a related view, see Rumelhart  (1989). 
2 This and the other simulations described below were all conducted using software for 
implementing backpropagation provided by McClelland and Rumelhart  (1987). 
3 These principles are often referred to as rules. However,  to make it clear that I am 
not referring to the internal processing of  the system, I will refer to them as principles. 
4 Moreover,  it seems likely that artificial intelligence architectures such as Newell's (1989) 
SOAR could use procedures such as chunking in building up a viable set of strategies 
and employ them as rules in constructing derivations. 
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5 This was done to insure that the network was not relying on the order of the premises 
and any local cues that might provide. Otherwise, rather than adhering to a principle of 
logic, the network might simply learn that in certain circumstances it should copy over 
what appears on the final five units of the third line of the derivation. 
6 In fact in this and the other tests reported below, using this relatively lax criterion for 
correctness only marginally improved the percentage correct. Most of the units that 
should have been on had activations well above 0.9 and those that should have been off 
had activations well below 0.1. 
7 This important question was raised by an anonymous reviewer for this journal. 
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