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It is shown that for scalar dissipative delay-diffusion equations u, -  Au =f(u(t), 
u( t -  r)) with a small delay, all solutions are asymptotic to the set of equilibria 
as t tends to infinity. 
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1. I N T R O D U C T I O N  

It is wel l -known and not  hard  to prove  (see Refs. 4, 6, and 13) that  for 
scalar reaction-diffusion equations,  

u , - d u = f ( u )  ( x ~ s  (1) 

subject to homogeneous  bounda ry  condit ions,  all globally defined bounded  
solutions mus t  approach  the set of  equilibria as t tends to infinity. 
This is a consequence of the fact that  (1) is a gradient  system, thanks  to 
the L y a p u n o v  function 

V(u) := ~ IVul  - F(u) 

where F is a primitive o f f  It  is also wel l -known that  if we introduce a t ime 
delay into the r ight -hand side so that  (1) becomes 

u t - - A u = f ( u ( t ) ,  u ( t - - z ) )  (2 )  
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solutions will typically oscillate in t as t ~ oo: see Ref. 12 for an up-to-date 
survey of results on the underlaying ordinary delay differential equation 

ut =f(u( t ) ,  u(t - z)) (3) 

[which in the case of Neumann boundary values governs the evolution of 
the invariant subsystem obtained from (2) by considering functions 
constant in space], and see Refs. 2, 3, 14, 15, and 18 for existence and 
stability results on both spatially homogeneous and inhomogeneous 
oscillations for (2). 

A natural question that then arises is whether such oscillations persist 
if the delay is decreased towards zero. The aim of this article is to show 
that this does not happen: if Eq. (2) is dissipative with respect to the 
L~(f2)-norm and the delay is sufficiently small, then all trajectories get 
attracted by the set of equilibr{a as t tends to infinity (see Theorems 1 and 
2, below). The result is of some interest even in the simpler case of Eq. (3), 
since introducing a small time delay into a scalar ODE makes a one- 
dimensional dynamical system infinite-dimensional. 

2. PRELIMINARIES AND STATEMENT OF THE RESULT 

Let f2 be an open bounded regular domain in ~ ' ,  and let z > 0 be 
a positive parameter (the delay). We study the scalar delayed initial- 
boundary-value problem 

ut - Au =f(u( t ) ,  u(t - z)) in (2 x ~ + (2a) 

u = Uo in f2 x [ - z ,  0] (2b) 

8u 
u = 0  or ~ v = 0  on 0f2x• + (2c) 

where the nonlinearity f :  ~2 ~ R is assumed to be locally lipschitz and to 
satisfy the one-sided growth estimates 

f ( u , v ) < . ( u + l ) v ( v )  for u>~0 
(4) 

f ( u , v ) > > . - ( l u l + l ) 7 ( v )  for u ~ 0  

for some continuous 7. Note that we do not impose any growth condition 
on the delayed part of f,  or on undelayed terms tending to ~ oo as 
u ~ _+oo. In particular, the equations we study include Hutchinson's 
equation 

u , - A u = ~ u ( t ) [ 1 - u ( t - ~ ) ]  (~>0)  (5) 
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studied in Refs. 2, 3, 11, 14, 15, and 18, its modification 

u , -  Au = au(t) [ 1 - flu(t - z) + ?u(t - z) 2 - 6u(t - r) 3 ] (~,/~, v, a >0) 

(6) 
studied in one space dimension in Ref. 14, and the equations 

u, - Au = - u ( t  - 3) 3 

u , -  Au = - u ( t )  u(t - 3) 2 

u t - - A u =  - - u ( t ) 2 u ( t - - z ) ,  u>/O 

(7) 

(8) 

(9) 

investigated in a three-dimensional domain in Refs. 8 and 9. By a solution 
of (2) on (0, T) we mean a function u: s x [ - 3 ,  T ) ~  N lying in 

c~ T- t ] ;  L2(n))~ ~e~([-~, r -~ ] ;  L~(n)) 

for all e ~ (0, T) and satisfying 

f2 u ( t ) = T ~ ( t ) u o ( O ) +  T ~ ( t - s ) f ( u ( s ) , u ( s - ~ ) ) d s ,  Vte(O, T) (10a) 

u] [_~,o] = Uo (lOb) 

where 5 ~ ( [ a ,  b]; Y) denotes the space of bounded (not just essentially 
bounded) functions from [a, b]  into Y, and T~(t)  is the analytic semigroup 
generated by the Laplacian on L2(f2) subject to the choice of domain 

~(~)= w2,2(n)~ w~,2(o) 

in the Dirichlet case and 

~ ( A ) = { u ~ W 2 " 2 ( t 2 ) :  Ou = 0 ~  
~3v 0a ) 

in the  Neumann case. Here the requirement that u(t) be bounded in L~(f2) 
ensures that the integrand f ( s )  in (10a) lies in L2(0, T - e ;  L2(f2)) so that 
the integral makes sense; moreover, by the regularity theory for analytic 
semigroups (see Ref. 16), any such "mild" solution lies in 

1,2 t?oe(0 , T; 9 ( / I ) )  Wloc(0, T; L2(O)) n 

and is thus a "strong" solution. In particular, the boundary values are 
attained in the W2'2(s sense for almost all t~ (0, T), since u(t) lies in ~(A)  
for almost all t. 

To shorten the notation, let us denote the Banach space c 0 ( r - z ,  0]; 
L2(12)) by X and its dense subspace C ~  0]; L2((2))(~ ~ e ~ ( [ - ~ ,  0]; 
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L~(f2)) by Xoo. Treating Eq. (2) stepwise as a nonautonomous undelayed 
parabolic PDE, it is more or less standard (see Section 3) to show the  
following. 

Proposition (Global Existence and Uniqueness). For all Uo ~ Xoo there 
exists a unique solution u of (2), defined globally in t. In particular, via 

: =  u(t + s) 

Eq. (2) defines a continuous semiflow (or "dynamical system") on the dense 
subspace Xoo of X. 

Remark. If we wanted to obtain a continuous semiflow on the 
Banach space C~ 0]; Y) (Y an appropriate L p or Sobolev space) 
itself rather than just a dense subspace--a strategy usually adopted in the 
literature (see Refs. 1, 8, 14, 15, 17, 18)--we would either have to impose 
severe growth conditions on f ,  including delayed and negative feedback 
terms, or to work in Sobolev spaces of higher and higher order so as to 
weaken these growth restrictions; otherwise we would not even obtain local 
existence results? In particular, we would not be able to incorporate the 
above examples (for which existence has been proved in the literature in 
various spaces, depending on the dimension of domains and the order of 
nonlinearities) into a unified context. 

As usual, an equilibrium solution of (2) is defined as a solution which 
does not depend on t; the equilibrium states are thus the functions 
U ~ wl'2(O)f~ L~176 satisfying the elliptic boundary value problem 

- A u  = f (u ,  u) in (2 

0 u = 0  or ~v on ~f2 

in the weak sense [so that they in particular lie in W2'2(f2)], and their 
totality is denoted E for the remainder of this paper. We can now state our 
main result. 

Theorem 1. Given K > 0  there exists Zo=z0(f, K) independent of  f2 
such that for z < Zo all trajectories u of (2) with l im,_ ~ [[u(t)[I ~ < K satisfy 

dist L2(a) (u( t ), E) --* 0 

as t tends to infinity. 

3 For example, the local existence results for abstract retarded parabolic equations in Ref. 1 
or 17 applied to Eq. (2) with initial data in C ~  L2(f2)) require, among other 
hypotheses, a global linear growth bound If(u, v)[ ~< C(lul + Ivl + 1). 
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The proof is given in Section 4, and its main ingredients are decay 
estimates on u, obtained by using the Lyapunov function for the undelayed 
counterpart of (2) (Lemmata 1 and 2). 

Under further assumptions of f, the result can be improved: provided 
that f satisfies a one-sided linear growth condition independent of the 
delayed terms together with a negative feedback condition at infinity, 

f (u ,  v) <<. (u + l )7 for u~>0 
(V independent of v) 

f ( u , v ) > ~ - ( l u l + l ) v  for u~<0 (11) 

l f(2u, 2 v ) ~  +_or for u , v ~ O  (12) lim 
A 

it is a nontrivial result of Luckhaus [-11] that for small z ,  all solutions of 
(2) satisfy lim,~oo Ilu(t)[IL2(m<K for some K independent of ~ and u. In 
Ref. 11 this is proved for nonnegative weak subsolutions, but the proof can 
easily be adapted to the present setting by considering u+, - u  instead of 
u and using the fact that both are nonnegative weak subsolutions. Since, 
moreover, (11) implies an L1-L ~ estimate, 

Ilu(t)l[ ~ ~ c(7, ~, ~)(llu(t-e)[ll + 1) 

for all solutions of (2) (see, e.g., Ref. 6, exercise 3.5.4), we obtain the 
following. 

Theorem 2. Assume in addition that f satisfies (11), (12). Then there 
exists ~o = %(f, g2) such that for r <~ ~o, all trajectories u of (2) satisfy 

distL2(a)(u(t ), E) ~ oo 

as t tends to infinity. 

In particular, this implies global stability of zero for Eqs. (7), (8), and 
(9), since in these cases E =  {0}. Also, by applying the above results to 
spatially homogeneous solutions of the Neumann problem, we obtain a 
corresponding statement for ordinary delay differential equations. 

Corollary 1. Let f be locally lipschitz and satisfy (4), and assume that 
the dynamical system generated by (3) on C := C ~  0]; N) is dis- 
sipative, uniformly with respect to r for small z. Then there exists ro = %(f)  
such that for ~ < r o all solutions of (3) converge in C to the set of  equilibria 
as t--* oo. Moreover, i f  the zero set o f f ( u ,  u) is discrete, each solution 
stabilizes to a single equilibrium. 

865/5/1-7 
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It is left to the interested reader to extract a simpler proof from 
Section4 exploiting the fact that the "pseudo-Lyapunov'-function V 
reduces on spatially homogeneous solutions to a multiple of a primitive of 

f ( u ,  u). 
Let us now return to the diffusive case and end this section with a 

rather less trivial example than (7)-(9), where our results lead to a 
complete picture of the global dynamics. 

Example. Hutchinson's equation in an interval 

u t - U x x = U ( t ) [ 1 - u ( t - z ) ]  for x e  (0, re), 

ux(0, t) = ux(z, t) = 0 for t > 0 

t > 0  
(13) 

subject to nonnegative initial data u0 >~ 0. 

Without diffusion, this equation was proposed in 1948 by Hutchinson 
[7] as a continuous model (derived from the familiar discrete logistic equa- 
tion) for population fluctuations and is one of the best-studied ODDEs in 
the literature (see Ref. 5, Section 11.4, Ref. 12, and the references therein); 
its diffusive version was studied by Green and Stech [3], Yoshida [18], 
Luckhaus [11], and the author I-2], and recently by Memory [14, 15]. It 
is easy to see that the solutions of (13) stay nonegative for all t (in keeping 
with their interpretation as density distributions), that therefore Theorem 2 
applies, and that u = 0, u = 1 are the only equilibria: if u is an equilibrium, 
then 

fo f: ;: z 2 _ - 2  uu~ 0 <~ Uxx --  u x -- 

which implies uu:, = 0 ,  hence ux = 0. Consequently, by Theorem 2 each 
solution converges to either u = 0 or u -  1 if the delay is small. Let us 
examine whether there can exist nontrivial orbits converging to zero. 
Unfortunately, linearizing (13) about zero proves unsuccessful here because 
it so happens that zero possesses an infinite-dimensional stable, an infinite- 
dimensional unstable, and an infinite-dimensional center manifold [with 
respect to the flow generated according to Ref. 18 by (13) on C ~  0], 

2,2 W N (0, n))], and it seems difficult to predict where the intersection of these 
manifolds with the constraint set {u~>0} lies. So let us argue differently. 
Suppose u(., 0 ) ~  0, u(., t ) ~ 0  in L2(0, re). By orbit precompactness in 
W2'2(0, re) [see Ref. 14 or show directly via energy estimates that u(., t) 
stays bounded in W3"2(0, n)], u(., t) ~ 0 in W2'2(0, 7/7) and in L~(0, n), so 
there exist T >  0, e < 1 such that 

u ( x ,  t) < e for x e (0, 7t), t >~ T (14) 
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On the other hand, since llu(', t)[l~ ~<K for all t~> - ~  and Ilu(., O)llLl<~ 
>0, we have infx~ 10,~)u(x, t )>  0 for all t > O. [This Harnack-type estimate 
follows from an elementary comparison argument here: u is estimated from 
below by the solution of u t -uxx = ( i -  K)u on the whole of N with the 
same initial data as u, and the latter is seen to have positive infimum on 
xs(O, ~z) by writing it explicitly as an integral against the heat kernel.] 
Now letting ~:=infx~o.~)u(x, T) we define the comparison function 
~(x, t ) :=  3e ~ ~)~t-T) and compute, using (14), 

( t t - ~ x x - ( 1 - e ) ( t = O < < . u ~ - U ~ x - ( 1 - e ) u  (t>~T) 

Hence u(t)>>.~(t) for t>~T, which contradicts (14) for large enough t. 
Therefore no nontrivial solution can converge to zero as t--, ~ ,  and our 
Theorem 2 gives the following result (which improves the local stability 
result in Ref. 15, p. 140). 

Corollary 2. I f  the delay z is small, then all solutions u(., t) of  (13) 
with initial data u o >1 O, Uo(., O) ~ 0 stabilize in W2'2(0, 7~) to the nontrivial 
stationary state u =-- 1 as t tends to infinity. 

For large delays, the above stability results break down for various 
reasons. First, bounded solutions might contain oscillating orbits in their 
o-limit sets [i.e., O(Uo)~ El; see, in particular, Refs. 14 and 18 for 
interesting existence and stability results for periodic solutions to Eqs. (5), 
(6), and (13), or Ref. 3, where Eq. (13) subject to Diriehlet boundary 
conditions is studied numerically and a stable spatially inhomogeneous 
periodic orbit is observed. Second, Theorem2 breaks down since 
dissipativity itself may fail for large delays, even under the negative feed- 
back condition (12): trajectories might escape exponentially to infinity with 
respect to the Ll(Q)-norm [i.e., cO(Uo)=~] by moving their "mass" 
aropund along periodic paths in space, as happens for example for 
Hutchinson's equation (5) in more than one space dimension or in an 
interval with periodic boundary conditions (see Ref. 2). 

3. PROOF OF THE PROPOSITION 

To prove existence, we treat Eq. (2) stepwise as a nonautonomous 
undelayed parabolic PDE on the time intervals [ - ( j -1)z ,  jz] (jE ~) by 
regarding the delayed values as fixed. However, despite the vast literature 
on existence for such equations, we have been unable to locate a result 
directly applicable to (2) since rather mild regularity assumptions on the 
nonautonomous terms are required here. For example, results involVing 
H61der continuity assumptions with respect to t as in Ref. 6 cannot be 
applied since our initial data, considered as functions from I - z ,  0] into 
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L2(g2), are only continuous. To work in C~ 0]; L2(g'2)) instead of 
C~ 01; L2(~c2)) is no way out of the dilemma since solutions of 
parabolic equations do not in general attain their initial values H61der-con- 
tinuously, thus time translates of typical solutions with H61der continuous 
initial data are not even locally H61der in t. Thus our strategy is to mimick 
the results of Henry (Ref. 6, Theorem 3.3.3 and Corollary 3.3.5) but with 
his assumption of H61der continuity in t replaced by p-integrability. But 
first, let us prove uniqueness. 

3.1. Proof of Uniqueness 

Let u be any solution of (2). For s t  (0, tl) (tl < T), u(s) is uniformly 
bounded in L~176 thus by continuity of f so is f(u(s); u(s-~))=:f(s),  
in particular, f(s)~L2(O, tl; L2(O)). But since the semigroup is analytic 
and L2(f2) is Hilbert, the variation-of-constants formula has maximal 
regularity in L2(0, tl; L2(f2)) (see Ref. 16 for an elegant three-line p roof  
using the Fourier transform), hence 

oT~( t - s ) f ( s )ds  e WI'2(O, tl;L2(f2))c~L2(~(A)) 

Thus since a difference w := ul - u2 of two solutions consists only of two 
terms of the above form [the singular terms T~(t-S)Uo cancel], it lies in 
W1,2(0, tl; L2((2))~ L2(~(A)), and thus we can "test the equation with w," 
i.e., compute 

fo , ;o f fo x IIw(t)ll~-~ IIw(0)ll~= w,w 

f fo = (Aw+ [ f ( . ,  u~(.))- f( . ,  u2(.)])w 

~s(tl)i~ Ilwll 2 

) 
�9 lull, lull, Iv'l ~<max sup Ilui(s)lloo~ 

i s E  [ --'C, t l ]  ) 

Since w EC~ t 1 l; L2(f2)) and w(0)=0 ,  Gronwall's inequality now 
implies [Iw(s)ll-0 on [0, tl]. This proves uniqueness. 

where 

s(tl) := sup ~.lf(u'l, ~ u ' 2 ,  v'(I 
1 .1 -u21  
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3.2. Proof of Existence 

3.2.1. Local Existence on (0, T) for Some Small T> 0: 

Let v ( t ) :=u( t - z )  for t e  [0, z], and let f : = f . ~  where ( is a cutoff 
function with values between 0 and 1, with compact support in R 2, and 
satisfying (---1 on [ - R ,  R ]  2 (R  to  be specified later). Then f is globally 
lipschitz on R2 with some lipschitz constant L(R) and obeys the same 
growth conditions as f :  

f(u, v)<~ (u+ 1)C 

f(u, v ) >  - ( lu l  + 1)C 

(C = sup{y(v'): Iv'l ~ sup 

for u~>O 

for u~<O 

IIv(s)llo~ )) 

(15) 

se [0 ,~ ]  

Since f is lipschitz we readily obtain for u, Ul, u2 ~ L2(~QT) [where (2 T := 
~2 • (o, T) ) ] :  

IIf(Ul, v) - f ( u 2 ,  v)ll L=(~)~ L(R)Ilul - u211L2~,~T~ (16) 

IIf(u, V)I[ 2 r2(~r) <<- L(R) 2 (]1 ul[ 2 2 L2(,~TI + llvtl L=/~T~) (17) 

Hence the operator 

(Gu)(t) := Ta(t) Uo(0)+ T~( t -  s)f(u(s), v(s)) ds 

is well defined, maps L2(Or) into itself, and also turns out to be a 
contraction for sufficiently small T: in fact, by the Schwarz inequality, 

II(auz)(t)-(aul)(t)]12 <~ x//-t sup HIT~(s)I[I Ill(u1, v ) -  f(u2, V)IIL2(OT) 
sE [0, T] 

thus, by integrating over t and by (16), 

T 
Ilau2 - aulll c2(Orl 4<" 7 s~sUPEo, T2 HI ZAs)lll L( R ) Itul - U2l[ L2(ar) 

Hence, for T small enough, G possesses a unique fixed point in L2(t2r), 
which satisfies 

u(t)=Ta(t-S)Uo(O)+ T~( t - s ) f (u (s ) , v ( s ) )ds  Vte(O, T) (18) 

Since the integrand f (s)  lies in L2(0, T; L2(12)), the integral in the above 
equation varies continuously with t, and thus u e C ~  0]; L2(12)). 
Moreover, by the growth estimates (15) on f and the comparison principle 

[ lu( t ) l l  ~ < ( l luo (O) l l  ~ + 1)e c ' -  1 (19) 
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[where we have used the solutions constant in space of u t - A u =  
_+C([u[ + 1) with initial data _+ I[ Uo(0)I[ ~ as comparison functions ], so that 
u ~ L Z ~ ( [ - z ,  0]; L~(O)).  Consequently u is a local solution of (2) with 
nonlinearity f. 

3.2.2. Existence on [0, ~] 

Suppose tl ~< z is the maximal time of existence. Then as in Ref. 6 
(Corollary 3.3.5), either 

IIf(u(t), v(t))ll  y 
(A) ~ ( t ~ t l )  or 

1 + Ilu(t)l] 

(B) u(t) ~ u* in Y (t --* tl) for some u* ~ Y 

[where the failure of (A) implies (B) since then {u(t): t ~  tl} is bounded 
in the fractional power spaces Ya (0 ~</3 < 1) associated with the Laplacian 
on Y= L2(f2), which in turn implies {u(t): t ~  t 1} Cauchy in Y]. Here (A) 
is excluded by (19), thus tl = r  and u ( t ) ~  u* (t ~ tl) in L2(12). Moreover, 
(19) implies that u*sL~176 and Ilu(t) l l~,  t lu*ll~ are bounded by some 
constant independent of t, thus u is a solution of (2) with right-hand side 
f on [0, r].  Now use the fact that the bound on Ilu(t)[[L~(o) in (19) 
depends only on Ilvll ~ ,  and not on R [it is exactly at this point where the 
one-sided linear growth conditions (4) on the undelayed part of f are 
needed]; thus choosing 

R >  (llvlloo + 1 ) e  c~ - 1 

implies f = f  for all values attained by u, v on [ - z ,  0] xf2 so that u is a 
solution of (2) with right-hand side f on [0, r].  

3.2.3. Global Existence 

Repeating the above procedure iteratively on the time intervals [ jr ,  
( j + l ) z ]  ( j e N )  now gives a global solution of (2) for all t > 0 .  This 
completes the proof of the proposition. 

4. PRO OF OF C O N V E R G E N C E  TO EQUILIBRIUM 

The proof of Theorem 1 is split into several lemmata. Our first goal is 
to obtain appropriate decay estimates on ut. To this end, consider the 
Lyapunov function for the undelayed counterpart of (2), which was already 
mentioned in the Introduction: 
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where f (u)  is a primitive of f(u,  u) with respect to u. V is defined on 
W1'2(O) c~ L~(O), and thus, in particular, along trajectories of (2). In the 
case v = 0, one would have 

d f 2 7 V(u(t))= - u, 

and thus V would strictly decrease along trajectories except at equilibria. In 
the presence of a delay ~ > 0, this is no longer true, but we have the 
following. 

Lemma 1. 
and define 

Let u be a solution of (2) satisfying Ilu(t)l] oo < K for t >~ T, 

If(u, v ) - f ( u ,  v')[ 
B(K, f )  := sup ..... '~E-K,< Iv-v'l 

Then for t >>. T + ~, we have 

at T - 1  u ' ( t )+2f ,  ~ u'2 (20) 

Proofi Using the differential equation for u, the lipschitz continuity of 
f as manifested in the definition of B, Young's inequality, the fundamental 
theorem of calculus, and the Schwarz inequality, we compute 

d ( ,  

.(.(o)-- - jo : + jo (J(u(o, dt 

~< - f .  ut 2 + B f .  [ u ( t - . ) - u ( t ) [  ]ut] 

+s "~'~,'<{Bz-1) 2z fo lu(t- O-u(t)l~ 

"~\2 l);ou:(t)+Bf, t_~fou: 
The above decay estimate is good enough to deduce the following. 

Lemma 2. Given K > 0 ,  there exists to(K, f )  independent of s such 
that for z < Zo, all trajectories u of (2) with l i m t ~  [[u(t)][ ~ < K satisfy 

f; ~fo ~ o  (t~oo) (21) U t 
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Proof. For sufficiently large t, estimate (20) holds for all s >/t, thus 

V(u( t+  r ) ) -  V(u(t))<. 1 -, u,~+~-/  _~ u, 

~ k  2 1 -, fau~+-~3t_~: 3 ut 

T 2 + 5 -  

so that (letting T ~  ~ )  

[ l i m  V ( u ( t + T ) ) ] - V ( u ( t ) ) + ( 1 - B ~ )  u,<~-~ u t 
T - ~  o o  z 

But by the boundedness of Hu(t)H ~, l imr_  o0 V(u(t+ T ) ) >  - ~ ,  thus for 
< (1/8) 

f f  fo 2 (23) Ut < CZ3 

and the statement of the lemma holds with Zo = (l/B). 

Remark. The appearance of the constant B is rather natural here, as 
it measures how substantially the nonlinearity f depends on the delayed 
values of u (recall its definition from Lemma 2); in particular, we regain 
estimate (21) for arbitrary �9 if f depends on undelayed terms only. 

Another Remark. Using (23) and letting t ~  in (22) gives 
lim V(u(t))-l imV(u(t))<~0, that is, V(u(t)) stabilizes to some real number 
as t ~ ~ .  This fact is not, however, made use of below. 

Lemma 4 suggests that the orbits under consideration must in some 
sense become stationary as t ~ ~ .  But since the equation of evolution is 
parabolic we in addition expect their limit points to be regular enough to 
satisfy the differential equation of stationary states. In the language of 
dynamical systems, this preservation of regularity at t = ~ is called "orbit 
precompactness" and its verification is indeed straightforward here. 

m 

Lemma 3 (Orbit Precompactness). Let z be arbitrary. I f  limt~ ~ II u(t)l] 
< ~ ,  then the orbit {#(t)Uo}t>~o is precornpact in X. 

Proof. Due to the compact imbedding (see, e.g., Ref. 10), 

wl,2((0, T) • ~ )  ~ C~ T3; L2(~)) 
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it suffices to show that u,, Vu remain bounded in L2((t- 'c ,  t )xf2)  as 
t ~ ~ .  To obtain the desired estimates, we proceed in exactly the same way 
as one would in the case of an undelayed parabolic equation. First, testing 
(2a) with u, applying Young's inequality, and integrating over t gives 

so that 

lim IVul 2 < oo (24) 
t ~  I T 

Next, texting (2a) with u, and applying Young's inequality yields a growth 
estimate for Ya IVu(t)12: 

ira 1 dfa l faf2 u f + ~  IVul~<~ (25) 

Combined with (24), this gives 

f~ IVu(t)l 2 < ov (26) limo~ 

Finally, we integrate (25) over t and obtain by (26) 

f/fo li  2 (27) 
m o c  u t  < (x3 

I T  

This completes the proof. 

Remark. Obviously, orbits are also precompact in "higher" norms 
than the norm of X: For example, using the fact that f e  WI '~(E:  E), loc ~, , 

we could differentiate (2a) for t > z  weakly with respect to t (thereby 
preserving the boundary condition), and analogous energy estimates as 
above yield boundedness of Vut(t) in L2(•) and of u .  (thus also of Aut, 
D2ut) in L2(t - z, t; L2(f2)). 

Proof  of  Theorem 1. Let u be any solution of (1), and assume 
lim,~ ~ [lu(t)[I ~ < K and ~ < zo(K) as in Lemma 2. According to Lemma 3, 
the associated orbit {q~(t)Uo}t>o is precompact and thus possesses a 
nonempty co-limit set 

closure with respect to the topology of X cO(Uo) := 
of N~>o U,>~ ~(t)Uo 
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by which it is attracted as t ~ ~ ,  i.e., 

distx(~b(t)Uo, o~(u0)) ~ 0 ( t ~  ~ )  (28) 

Therefore, we need to show only that the set ~o(u0) consists of equilibria. 
We do not have a Lyapunov function so that the La Salle-Hale invariance 
principle in its standard form cannot be applied, but the decay estimate in 
Lemma 4 will do just as well. Take Vo e co(u0) and pick ti--" oo such that 
q~(ti)Uo ~ Vo in X. Since (d/ds)[~(ti)Uo](S) ~ 0 in L2((-- 'c ,  0) X g-2) by 
Lemma 4, v0 lies in W1'2(-~, 0; L2(g2)), ~b(t~)Uo ~ Vo in W1'2(-~, 0; 
L2(~2)), and 

d ~Vo(S) 0 (se (-T, 0)) 

Now is m(Uo) positively invariant under 45 ? This requires a little care, since 
the flow is not continuous with respect to the L~(f2)-norm (even in the 
case of the plain heat equation u t - A u = O ,  L ~ initial data are not in 
general attained continuously in L~),  thus ~o-limit sets may not lie in the 
domain of definition X~ of the flow. However, the orbits under considera- 
tion here satisfy limt~oo [[u(t)[[~ < ~ ,  so their ~o-limit sets do lie in X~ 
(since L2-1imits of a sequence of functions which is bounded in L ~ must 
also lie in L~),  and then they must trivially be positively invariant under 
~b since 05 is continuous with respect to the topology of X. Thus the above 
arguments for Vo also apply to ~(t)Vo, and we see that 

d 
~ v ( s ) - O  ( s e R  +) (29) 

where v(s) is the solution of (2) with initial data Vo. In other words, the 
constant state attained by v(s) is an equilibrium state. Finally, combining 
(28) and (29) and retranslating them into a statement about u(t) gives 

sup distL2(m(u(s), E) ~ 0 (t -~ ~ )  
s~ [ t - ~ , t ]  

as claimed. In fact, the remark following the proof of Lemma 3 gives 
slightly more: 

distwl.2(m(u(s), E ) ~ O  ( t ~  ~ )  

The proof of Theorem 1 is now complete. 
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