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The clinical problem of  testing for equivalence in comparative bioavailability trials is restated in 
terms of the proper statistical hypotheses. A simple t-test procedure for these hypotheses has been 
devloped that is more powerful than the methods based on usual (shortes 0 and symmetric confidence 
intervals. In this note, this new procedure is explained and an example is given, including the 
method for sample size determination. 
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I N T R O D U C T I O N  

The bioequivalence problem has received considerable  at tention 
recently in the statistical literature (1-13). Inc luded  in much  of  this work 
has been the recognit ion that the s traightforward ANOVA F-test is not  
appropr ia te  for the bioequivalence problem. By testing the null hypothesis  
o f  exact equality, the F-test  is testing the wrong hypothesis.  (Regardless,  
the F-test  is still in use; see ref. 14 as an example.) Our  purpose  here is to 
report  a new approach  (1) that leads to a simple test procedure .  The basis 
for  the new procedure  is a reformulat ion o f  the statistical hypotheses  to 
cor respond  to the nature o f  the bioequivalence problem. We first describe 
and demonst ra te  the rat ionale and the method  and then discuss the implica- 
tions for  design o f  comparat ive  bioavailabili ty studies. Finally, we compare  
the new method  with others. 
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THE METHOD 

Comparative bioavailability trials are conducted primarily for two 
reasons: either a new formulation of a standard drug is to be compared to 
the original formulation, as is the case in generic drug testing; or a new 
form of administration of  a drug is to be compared to the presently marketed 
formulation. In either case, the objective is to demonstrate that the bio- 
availabilities, the rate and extent of absorption of the parent drug or 
metabolite in the circulatory system, of the two formulations do not differ. 

In practice it is recognized that no two formulations will result in bio- 
availability profiles which are exactly alike. Therefore, clinically determined 
and meaningful limits are specified such that if the two formulations differ 
by less than the specified limits, the drugs are said to be bioequivalent. Let 
Ms and Me represent the population means of one of the parameters of 
bioavailability such as the peak plasma level, time to peak level, area under 
the plasma level time curve, or urinary recovery, for the standard and 
experimental formulations, respectively. In notational terms, the two formu- 
lations are considered bioequivalent if Ao< Me~Ms < Bo for some Ao and 
B0. Often these limits are taken to be within 20% of the standard (15), in 
which case, Ao = 0.8 and B o = 1.2. 

Data from comparative bioavailability trials are analyzed, at least in 
part, by an analysis of variance (ANOVA) appropriate for the design of the 
trial. For example, an ANOVA for a crossover study will have terms for 
subjects, order (group), and formulation as well as the error (residual) term. 
As part of the ANOVA there will typically be an F-test for formulations. 
This test is of the hypothesis that the two formulations are equal, i.e., 
Me = Ms. But equality and bioequivalence are different concepts, and so 
the ANOVA test does not address the bioequivalence issue. Note in particular 
that the equivalence limits, Ao and Bo, nowhere enter into the ANOVA. 

TO motivate our new test procedure, the inappropriateness of  the ANOVA 
test for the bioequivalence problem must be addressed in statistical terms. 
Classical statistical hypothesis testing, which we are concerned with here, 
is very asymmetric. One states two hypotheses, a null hypothesis (denoted 
Ho) and an alternative hypothesis (HA). A statistical test of significance then 
demonstrates the likelihood of the alternative hypothesis by measuring the 
strength of evidence against the null hypothesis. If  the evidence is sufficiently 
strong, one rejects the null hypothesis in favor of the alternative. If  the 
evidence is not sufficiently strong, one fails to reject the null hypothesis, 
but this is not evidence for the null hypothesis. 

In the ANOVA, the test for formulations is specifically a test of the null 
hypothesis that the average bioavailabilities of the formulations are equal 
(Ho: ME = Ms) against the alternative that they differ (HA: Me ~ Ms). If 
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the study is sufficiently sensitive, it is possible to detect significant differences 
of little clinical meaning. Alternatively, if the study is sufficiently insensitive, 
large differences will not be detected; the evidence will not be sufficiently 
strong to accept the alternative hypothesis. 

When one has a hypothesis to demonstrate, the logic of hypothesis 
testing therefore requires that the hypothesis to be demonstrated be the 
alternative hypothesis. In the case of demonstrating equivalence, this means 
that the equivalence hypothesis should be the alternative and not the null 
hypothesis. The statistical hypotheses for the bioequivalence problem can 
then be stated as 

H; :  ME< ME> Bo - - ~ A 0  or 
Ms Ms 

and 

H'A: Ao<Me <Bo 
Ms 

We will now formally restrict ourselves to considering the case where 
a single, unspecified measure of bioavailability is of interest. Since, in 
applications such as comparative bioavailability studies, the data to be 
analyzed will often be logarithms of biological measures (10) such as the 
logarithm of the area under the plasma-time curve (AUC) or peak plasma 
level, we let /xE and ~s be the mean values in the logarithmic scale for 
subjects receiving the experimental and standard formulations. The 
equivalence hypotheses are then 

Ho: ~E--I~S ~<A or /xe--p~s ~>B 
and (l) 

HA: A<l - t e - t t s<B  

where A = log Ao and B = log Bo. The test statistic we will consider is 

XE - Xs - �89 + B) 
T -  

S(1/n~ + 1/ns) ~/2 

where the ){'s are the respective sample means (in the logarithmic scale), 
nz and ns are the group sample sizes, and S is the error standard deviation 
calculated from the appropriate analysis of  variance with degrees of freedom 
u. (If  nE = ns = N, then v = N - 2  for a crossover design, and p = 2 N - 2  
for a completely randomized design.) T can be seen as a measure of how 
far the difference in means, ,,Y~ - J(s, is from the center of the equivalence 
interval, �89 + B). The desired test is to reject/40 in favor of bioequivalence 
if the magnitude of  T is sufficiently small, that is, if I T] < C for some critical 
value C ; the closer T is to zero, the more the data support  the equivalence 
hypothesis. The distribution of T is, in general, not known, so C cannot 
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be found exactly. In (1) we've shown that the usual Student's t distribution 
can be used as a good approximation. Rather than determine the C appropri- 
ate for a given level test, we approach the problem through descriptive 
levels of significance, most commonly known as p values. A 100or% test is 
conducted by comparing the p value, p, to the chosen level of  the test, a, 
and rejecting the null hypothesis if p <~ a. 

For the bioequivalence problem, the p value is the probability of  
obtaining a value of I T I equal to or smaller than that observed. For problems 
such as this one, with null hypotheses composed of intervals, the significance 
level of the test is found by maximizing the type I error over the null 
hypothesis interval. The p value is defined similarly. For our procedure this 
means the p-value probability is calculated assuming that the true difference 
is at the boundary of the equivalence interval. (Also note that this is the 
reverse of most common statistical tests where the null hypothesis is rejected 
for sufficiently large values of the test statistic.) Skipping the nonilluminating 
derivation, the approximation to the p value is 

p = F~(I T [ -  6) - F~( - ] T I -  6) 

where 

B - A  

6 - 2S(1/nE + 1/ns) 1/2 (2) 

and F~ is the distribution function for Student's t with v degrees of freedom. 
6 may be considered a standardized equivalence interval width; the smaller 
6 is, the more difficult it will be to conclude equivalence. 

Before proceeding to an example, there are three notes. First, we have 
not needed to state the trial design. The S and v are those from the 
appropriate ANOVA. Second, we have made the implicit assumption that 
the data, after the logarithmic transformation, follow a normal distribution 
with constant variance. The normality assumption is more reasonable when 
working with logarithms of A U C s  than with the A U C s  themselves. Third, 
calculation of p does require a computer program or good tables for the t 
distribution function. The calculations for the example in the next section 
were done using a program included in a statistics package for a pocket 
calculator. 

EXAMPLE 

To illustrate use of our method, we consider the analysis of  data from 
a bioequivalence trial (14) that was also considered by Metzler and Huang 
(6). In Clayton and Leslie's Study II, erythromycin stearate taken immedi- 
ately after a meal was compared to erythromycin base also taken immediately 
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after a meal in a balanced crossover design with 18 subjects. There was a 
one-week washout period separating the administration of  the two formula- 
tions. The average A UCs were 4.117 and 5.231 mcg �9 h r .  ml-I for the stearate 
and base, respectively, so the availability of  the stearate is 79% that of  the 
base. 

The ANOVA for base 10 logarithms of  A U C  is given in Table I. (Order 
is not included since the group membership of each subject was not given 
in ref. 14.) The F-test for formulations yields a p value of  0.08 indicating 
that the two formulations do not differ at the conventional 5% level. After 
the corresponding analysis in the original scale (yielding a p value of  0.18, 
but the normality assumption is very questionable), Clayton and Leslie 
concluded that the "two preparations are bioequivalent." 

In the base 10 logarithm scale, the data are 

. ~  = 0.512 (stearate) 

Xs = 0.661 (base) 

$2---0.057 (from the ANOVA; u =  17) 

To test HA: 0.8 < Me~Ms  < 1.2 by our method, we need T and ~: 

-2s- (a +B) 
T -  

S(2 /N)  1/2 

0.512-0.661 - �89 (1.2) +loglo (0.8)] 

,/2/18 
= - 1.984 

�89 - A)  
S (2 /N)  1/2 

�89 (1.2)- log,o (0.8)] 
4~-b-~ 42/18 

= 1.106 

Table I. ANOVA for Loglo AUC 

Source DF SS MS F p value 

Formulations 
Subjects 
Error 

1 0.19748 0.19748 3.46 0.0801 
17 1.81986 0.10705 1.88 0.1022 
17 0.96943 0.05703 

Total 35 2.98677 
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Then, using the t distribution with 17 degrees of freedom, 

p = F,~(I T I -  a ) -  F , ~ ( - I f [  - a) 

----- F l 7 ( 0 . 8 7 8 )  - -  F17(-3.090) 

= 0.8039 - 0.0033 

= 0.8006. 

We would thus be very unwi l l i ng  to accept the hypothesis of equivalence 
(no more than 20% difference), since p = 0.80, indicating that the observed 
value of  T is not unlikely from nonbioequivalent formulations. The great 
difference between the conclusion drawn from our approach (and that would 
also be reached by the confidence interval methods) and that of Clayton 
and Leslie serves to emphasize the inappropriateness of the usual F-test 
for the bioequivalence problem. 

SAMPLE SIZE DETERMINATION 

In order to design comparative bioavailability studies, one needs a 
method for determining an appropriate number of subjects. With the test 
procedure described above, a standard method of sample size determina- 
tion is applicable. We assume that a prior estimate, o-, of the error standard 
deviation is known and that the study is designed so that each of the two 
formulations will be given to N subjects. In a crossover design there will 
thus be N subjects total, and a total of 2 N  subjects in a randomized block 
design. In addition we assume that the experimenters can specify a probabil- 
ity/3, the probability of no t  accepting bioequivalence when there is in fact 
no difference (specifically /~E - ~ s  = ( A  + B ) / 2 .  Commonly 3 = 0.1 or 0.2. 
The power of the test is 1 -/3,  the probability of concluding that the two 
formulations are bioequivalent when there is no difference. 

Given/3, the value of C for concluding equivalence is found from 

Pr{I TI < c]  = 1 - /3  

When tz~ - lZs = ( A  + B ) / 2 ,  T has Student's t distribution, so C = t~:~/2, the 
upper 3 / 2  percentage part of the central t distribution on v degrees of 
freedom. The sample size is then determined by adjusting 6 to make the 
test the desired 100a% level for specified a. Once a value for 6, say g, is 
obtained, g can be solved for N, the required number of subjects: 

~ B -  2 

As happens in similar situations, if N and the initial choice of v (and hence 



Equivalence in Two-Group Comparative Bioavailabillty Trials 89 

of C) are not compatible, the process can be repeated with a new u 
determined from N until compatible values are found. 

As an example of  a sample size determination for this method, we 
again use the data from ref. 14. We supposed that a sample size was required 
for a crossover design that would have a power of  0.8 for equivalence 
defined as 

0.8 < M ~ <  1.2 
Ms 

The S 2 from the AXOVA was 0.057, and we took this to be a previous estimate 
of  o .2 to be used in a sample size determination. For this example,  A = 
loglo (0.8) and B = logl0 (1.2). 

The guesses at N and subsequent solutions for N are shown in Table 
I I  for a = 0.05. Two program runs (iterations) were needed, with multiple 
guesses in each iteration. After the first iteration, we know that 126 or 127 
subjects would be required. The second run confirms this to be 127, or 
actually 128 for a balanced crossover design. The sample size calculations 
in Table I I  were done on the CYBER 170/730 at Northwestern University's 
Vogelback Computing Center. The IMSL subroutine MDXN was used for the 
noncentral t distribution function, M o x o ~  for the standard normal distribu- 
tion function, and ZFALSE for numerically solving for 6. A copy of  the 
program (but not including the r~sL subroutines) is available on request 
(to W.H.). 

Since comparative bioavailability studies are commonly conducted with 
about 20 subjects, a required sample size of  128 may be disconcerting. From 
a mathematical  point of  view, the large sample size reflects the variability 
in Clayton and Leslie's data. As in other statistical applications, the greater 
the variation, the greater the sample size required for a given a and/3. Here 
IV is roughly proport ional  to cr 2. I f  Clayton and Leslie's variance were 
reduced by a factor of  four (to 0.014), the required sample size would be 
only 34. 

The penalty for conducting a study with too few subjects is low power. 
For example,  taking o.2= 0.057 and using our method, Clayton and Leslie 

Table If. Sample Size Determination Example 

Iteration Guess at Ar(v +2) Solution for~ r 

1 Infinity 126.0 
122 126.8 
62 127.7 
22 131.4 

2 126 126.7 
127 126.7 



90 Hauck and Anderson 

had only about a 10% chance of concluding equivalence if there were no 
difference between the formulations. In ref. 1 we have shown that our 
procedure is more powerful than either of the two commonly used con- 
fidence interval procedures (symmetric and shortest) (11,13). Consequently, 
with these procedures one is less likely to conclude equivalence, or alterna- 
tively, they would require more subjects (for given a, /3, and 0-2). Power 
comparisons are discussed further below. 

DISCUSSION 

A key step for progress in developing methodology for testing 
equivalence is the statement of the proper null and alternative hypotheses 
(Eq. 1). Once that is done, the ANOVA test of equality is seen to be inappropri- 
ate. We have proposed a statistic for the proper hypothesis that is easy to 
calculate; the p value for our statistic can be easily calculated using com- 
monly available tables and/or  computer programs. In addition, sample size 
determinations necessary for design of trials of equivalence are possible 
when using our approach. 

Our method is an alternative to the two confidence interval approaches. 
In the usual (asymmetric) confidence interval method (13), bioequivalence 
can be concluded at the a% level if the 100(1-2a)% confidence interval 
lies wholly within the bioequivalence interval (A, B). [Note if the 100(1- 
a)% confidence interval is used, the nominal level of the test is a/2, not 
a.] For the symmetric confidence interval method (11), the 100(1-a)% 
symmetric confidence interval must lie within the bioequivalence interval. 
As noted in ref. 13 and implicit in ref. 4, for every value of the parameter, 
the usual confidence interval method is more powerful than the symmetric 
interval method, that is, it has a greater chance of concluding bioequivalence. 
In ref. 1 we show that our method is similarly uniformly more likely to 
conclude bioequivalence than is the usual confidence interval method, so 
our method is the most powerful of these three methods. 

It is important to note that the above power comparison is based on 
comparing three nominal a-level tests. None of the three tests is exactly 
a-level. The two confidence interval methods are conservative since their 
actual level is always less than the stated a (or equivalently that the 
calculated p values are too large), reaching a only as 6 (Eq. 2) becomes 
large. As a corollary to the power comparison, the actual level of our test 
is always greater than  that of the asymmetric intervals, which, in turn, are 
always greater than that of the symmetric intervals. Schuirmann (7) has 
shown that the usual confidence interval method can be extremely conserva- 
tive, with actual levels near 0 for nominal 1% and 5% tests. In the extensive 
simulation study (1) that supports the validity of our method, we obtained 
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a c t u a l  l eve l s  r a n g i n g  f r o m  3 .9% to  6 . 2 %  f o r  n o m i n a l  5 %  t e s t s  a n d  f r o m  

0 . 5 %  to  1 .7% fo r  n o m i n a l  1%.  

I n  s u m m a r y ,  o u r  m e t h o d  is m o r e  p o w e r f u l  t h a n  t h e  t w o  c o n f i d e n c e  

i n t e r v a l  m e t h o d s ,  I n  p a r t  t h i s  is d u e  to  t h e  a v o i d a n c e  o f  t h e  s o m e t i m e s  

e x t r e m e  c o n s e r v a t i s m  o f  t h e  c o n f i d e n c e  i n t e r v a l s .  
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