
SPACES OF PIECEWISE-CONTINUOUS ALMOST-PERIODIC FUNCTIONS AND 

ALMOST-PERIODIC SETS ON THE REAL LINE. II 
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The authors consider a series of spaces of piecewise-continuous almost periodic 
functions and study the properties of the elements of these spaces. The theory de- 
veloped in the paper is then applied to investigate almost periodic linear pulse 
systems. 

i. In this paper, which is a sequel to [i], we study spaces of piecewise-continuous 
almost periodic (p.c.a.p.) functions. 

i.I. We consider one general construction (all the notation is taken from [i]). Let 
T~ , and arrange the real numbers of T in a strictly increasing sequence {tn}. The set 
s(T) = {tn} will be called the support of T. Thus, we have defined a map s:9/-+9/. The set 
s(9/) is obviously invariant under the map @s, 8s(T) = T + s. 

We introduce a Hausdorff metric X in s(9/) ; if P, Q6s(9/) and Fa(P) is a closed a-neigh- 
borhood of the set P (in the usual topology of R), then 

X (P, Q) = in[ {a: Fa (P) ~ Q, F~ (Q) ~ P} 

(x may take the value +~ for certain P, Q). 

Let ~ be a subset of 9/ such that ~ ~ s(9/) and Os(~ ) = ~ ~s6R. Let 6 denote a metric on 
with the following properties: 

al) 6 (08 (T), 0 s (Q)) -- 6 (T, Q) ~s; 

a2) X (T, Q) ~< 6 (T, Q); 

a3) 6(08(Q),_Q)~Is I ~'s, Q. 

In addition, we will need a commutative binary operation in (~- the sum of sets--: 
X ~-~ ~C~ , with the following properties: 

b0)  (T - -  P) ~-~--' - -  (T 4- a) - -  (P + a); 
b l )  s ( T ~ P ) = s ( T )  U s(P); '  

b2) 6 (T 1 - - T  2, Pi - -  P~)_<~- max (6, (Ti, P~), 6 (T.,, P~)). 

The map 88: | R - ~  d e f i n e s  a c o n t i n u o u s  d y n a m i c a l  s y s t e m  i n  (~,6) ( b e c a u s e ,  by con-  
d i t i o n s  a l ,  a3 ,  we have  

6 (% (q), O~ (T)) ~< I S .  r t + ~ (q, 7")). 

Examples of spaces (~, 6,~, 0s) are the space (9/,p, ~,Os) studied in [i] (recall that in 
that paper u~ denoted the free union of sets [2]) and the space (s(9/), X, U,Os (u denotes 
union of sets). 

As done in [i], we can define in (~, 6, 08) the notions of a.p. sets in Bohrts sense 
(briefly: 6-a.p. sets in Bohr's sense) and a.p. sets in Bochner's sense (6-a.p. sets in 
Bochner's sense). An important distinction between the present, general situation and that 
considered in [I] is that these notions need not coincide, since (~, 6) is not complete. 

Example. Consider the following set in the space (s(9/), X, U, 08) : 
+= 

T = U (2k~ " + 2-2~); 2~g + 2-k  = { 2kn + 2"~, n E~}. 
k=O 
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Taking into account that x(T + 2km, T) = 2 -(k+~) for arbitrary k, m, that the set {2km} is 
relatively dense in R for fixed ~, m~, and that tim 2-~+~)=0, we see that T is a x-a.p. 

set in Bohr's sense. On the other hand, it is easy to verify that, starting from the sequence 
o2~-~ {T+~ ,~=0 , it is not always possible to extract a subsequence that converges in (s(~),%) , and 

therefore T cannot be x-a.p, in Bochner's sense. 

Nevertheless, a look at the proof of Theorem 1 in [i] will show that d-almost periodic- 
ity in Bochner's sense always implies d-almost periodicity in Bohr's sense [(@, 6) does not have 
to be complete for this to be true]. 

1.2. Fix some space (~, 6, --, Os). Let x(t): R § R be a poc. function with discontinui- 
ties of the first kind (possibly zero) over a set T(~. To fix ideas, let us assume that x(t) 
is left continuous. 

Definition i. The pair X = (x(t), T) will be called d-a.p,p.c, in Bohr's sense if 

Fz) for every ~ > 0, there exists a set ~s of numbers z, relatively dense in R, such 
that 

[the 

also 

LEMMA i. Let 
every positive u < 
my ~ J and 

elements of ~s will be called s-a. periods of x(t)]; 

F~) T is a 6-a,p. set in Bohr~s sense; 

Fs)lYa>0 the function x(t): R \ Fa(S(T)) + R is uniformly continuous. 

The set of all 6-a.p.p.c. functions in Bohr's sense will be denoted by AP (~, 6)~ 

We claim that, given a pair X, we can choose the set ~ in such a way that any ~Q~ will 
be an s-almost period of the 6-a.p. set T in Bohr's sense. 

T be a d-a.p, se t  in Bohr's sense. Then~q>O ~L(~)>O such that for 
O and every interval J of length L(D), there exists an integer m such that 

6(T, T-k my) < ~ .  (1) 

Proof. Indeed, by the definition of a 6-a.p. set in Bohr~s sense, it follows t:hat 

~N> 0 ~LI (rl/2)~ 0 such that in any interval (a, b) of length Lz(~/2) there exists ~ such that 
6(T, T + ~) < q/2. Let L(q) = L1(q/2) + N, and, in any interval (~, $) of length L(I]), pick 
out a subinterval (~ + n/2, $ - ~/2) of length Ll(q/2) with the above m, such thai A = [m - 
0/2, ~-~ N/21 ~ (~, ~) . Obviously, for positive y < q it follows from the Dirichlet principle 
that there exists m for which m?CA ~ (~, ~). At the same time, 6 (T, T~-mT)~ (T, T-~ ~)~- 

LFMM~ 2. Let  X = ( x ( t ) ,  T) be a 6 - a . p . p . c .  f u n c t i o n  in Bohr ' s  sense .  Then ~ . ' > 0  NL 
(q) > 0, 6(q) > 0 such that, for every positive y < 6(q) and every interval ) of length L(~), 
there is an integer m such that my 6 J and 

I x (t + m y ) - -  x (t) I < n u t E R \ Fn (s (T)). (2)  

Proof. By condition F I, ~]> 0 NL~ (N/2)> O such that in every interval of length Li(q/2) 
there exists ~ such that 

I x( t  + "~) - -  x(t) l < ~l/2 ~ t  E R ' \  F~/~ (s(T')). 

The function x(t) is unifo'rmly continuous on R~F~I 2 (s (7)). Let 6(q) < q/2 be a positive num- 
ber such that for any t', t"E/?~f~/~ (s #T)), If'--t~l < 6 (N) (in that case t', t" must belong to the 
same interval in/~Fn/~ (s (7~)) , we have I x Q') -- x (t") I < q/2. Let L (N) = LI (N/2) + 6 iN). Take any 
interval (e, $) of length L(q). The subinterval (~ + 6/2, 6 - ~/2) of length L~(q) contains 

such that Ix(t-b~)--x(1)j<~l/2 ~V~t~ip, "X Fn/2(s(T)). For a positive y < d(q), there must be an 
integer m such that m? c [~ __ 6/2, �9 ~- ~/2] c (~, ~). Moreover, if ~ 6/~\F~ (s (T)) and we define 
t' = t + my - ~, then [~'--tI=Irn~--~l<6/2<~/4, and therefore t'~ ~l~F~/~(s(T)) and t', t are 
in the same interval in R~Fn/~ (s (T)). Consequently, if 16 R xx Fn (s (7)), then [ x (t z- m2) -- x (t) 1 < 
I x ( t ) - - x ( t + m v - - ~ ) l + l x ( t + m T - - ~ ) - - x ( t + m T ) l < ~ .  

LEMMA 3. Let the  p a i r  X = ( x ( t ) ,  T) be 6 - a : p . p . c .  Then ~ > . 0  ~L ( ~ ) > 0 ,  6 ( n } > 0  such 
that for every positive ~ < 6(n) and very interval J of length L(~)there exists an integer m 
such that m?~ fl and both inequalities (i) and (2) hold. 
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Proof. The proof follows [3, 4] (Appendix, Sec. 6). Let L: (N/8), is (N/8), 6 (~/8) be the 
constants existing according to Le~nas 1 and 2 for q/8 > 0, L = max(Ll, Li). For any inter- 
val of length L(6) and every positive number 7 < 6(q/8), there exist integers m, m' such that 
the interval contains points my, m'y with 

6(T + my, T~< ~/8, Ix(t + re'y) - -  x(t) I "< ~118 v t E R \ F w s ( s ( T ) ) .  (3 )  

Since imy -m'y[, the differences m- m' may take only finitely many values ni, i = 1 ..... p. 
For each n i there exists a pair (m i, mi) satisfying (3) - fix this pair once and for all. 

Define k=maxJmi? I, I=L+2L. Let J = (~, ~ + s be any interval of length L; then, by the 
i 

foregoing reasoning, the subinterval j" = (~ + ~, ~ + L + i) will contain numbers mT, m'7 such 
that (3) is true and also m~--m'y=n~?=(mi--r~) Y. Let q = m - mi; then obviously qyEd. 
Further, we have 

(T + qT, T) = 6 (T + (m --m~) ?, T) < 6 (T + tn~, T) + 6 (T + m~, 

T + my - -  m~) = 6 (T + my, T) + 6 (T, T + m~?) < rl/4. 

We now show that if tER~En(s(T)), then t+qyER~Fn/e(s(T)). Indeed, otherwise it would foIlow 
that, for some sET, I[+q?--sl~<N/2. Taking into account that 6(T + qT, T) < D/4, we see that 
for this s, by property a2 of the metric 6, there exists a number rET such that Is--(r+qy)!< 
q/2. Finally, we obtain It--rl----It+qy--s+ (s=- (r -/ qy)) ] =It+q~--sI+Is-(r+q?)I<a] and 
therefore IEF~(s(T)) and t~RN, F~(s(T)). Consequently, for tCR~F~(s(T)) , we have the follow- 
ing chain of inequalities: 

I x ( t +  qy)--x(t)l= Ix(l+:(m'--m;)y)--x(t}l [x(t+m'?--m~%,)-- 
- -  x (t + m'~) I + [ x (t + m'y) - -  x (/)1 < ~/8 + ~/8"< ~ 

COROLLARY. The pair X = (x(t), T) is a 6-a.p.p.c. function in Bohr's sense if and only 
if: F) for every e > 0 there exists a set ~ of numbers ~, relatively dense in R, such that 
6(T + ~, T) < e and 

lx (t + z) -- x (/)1 < ~ ~ t  E R ~ ( F ~  (s (T))U F8 ( s (T- -  ~))). 

Indeed, suppose that condition F is fulfilled. Then T is obviously 6-a.p. Fix an arbi- 
trary E > 0. By condition F there exists a relatively dense set ~/~ such that for ~6~,/~ 

I x ( t +  . ) - -  x (01 < ~/4 ~r E ~ = R \ ( ~ / ~  (s (T)) U F~/~ (s (T - -  ~))), 

6 (T + x, T) < ~/4. 

But t h e n  % ( T + ' ~ , T ) ~ e / 4  and t h e r e f o r e  F ~ / ~ ( s ( T - - g ) ) ~ F , ( s ( T ) ) .  C o n s e q u e n t l y ,  F~/4(s (T- -~) )U 
F~/,(s(T))~F~(s(T)) and if tER\F~(s(T)), then tEM. Finally, we see that for xEf~/, 

I x ( t +  ~)--  x(t)l <~ /4  < ~  ~tER\F~ (s(T)). 

We now prove the validity of condition r s (weak uniform continuity). Fix a > 0. By the 
foregoing reasoning, for any positive e < a there exists a number L(s/4) > 0 such that ~=- 

//-c 6 (c~, ~ + t (~/4)): 
(T + x, T) < e/4, 

I x (If + ~) - -  x (t) I < e l4  ~ ' t  E R ' N F , / ,  (s (T)). 

C o n s i d e r  t h e  p . c .  f u n c t i o n  x ( t )  o v e r  t h e  i n t e r v a l  [ - ~ ,  L ( s / 4 ) ] :  f o r  any  s > 0 one can f i n d  a 
p o s i t i v e  number 6 (~)  < ~ / 2  such  t h a t  ~7~t ", t" 6 [0, L (~/4)], It" - - t " ]  < fi (e) we have  Ix (t') - -  x (t")[ < ~/2 
[ f o r ( ( ,  t") ~ T =  ~ ] .  Now l e t  t h e  numbers  tx; t ~ R ' N F ~ ( s ( T ) )  be such  t h a t  I t ~ - - t ~ ! < " , t ~ )  [ i n  t h a t  
case t I and t 2 (t i ~. t~) lie in the same interval of R\F~ (s(7~) ]. 

If tiER\F=(s(T))~R\F~(s(T)), then by the inequality %(T+~, T)~_6{T+~,T)<~/4 we must 
have t,, x 6 R\F,/~ (s (T)), and therefore i.x (tl) -- x (~=) I ~- I x(If0 -- x (tl -- ~)I + I x (ll -- *) -- x (l~ -- ~) I + 
I x(t~ - - . ' 0  - -  x (t~) I < ~, ((t~ - -  x,  t ,  - -  x) N T = ~ ,  �9 G [t~ - -  L (~/4),  t , ] ,  e < 2L  (8/4)). 

Conversely, suppose that conditions rx-rs are fulfilled. By Lemma 3, we may assume that 
the set as consists of e-a. periods common to T and x(t), and the truth of the inequality 
Ix(t +z)--x(t) I<e for all t~R\F~(s(~) implies its truth for allt6(R\F~(s(T))) N (R\F~(s(T+.~))). 

Definition 2. Given functions X = (x(t), T), Y = (y(t), P), we can define multiplication 
by a scalar =X = (ex(t), T); addition X + Y = (x(t) + y(t), T - P); multiplication X-Y = (x 
(t)y(t), T- P); if x (t)=/=0 ~l-t6R, then we can also define the quotient Y/X = (y(t)/x(t), 

T - P). 
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THEOREM i. The space AP((~,8) is closed with respect to addition and multiplication. 

If X~AP(~,6) is such that x(0=/=0 ~ and ~a>0 ~(a)>0 such that [x(O]>~:~(a) ~ R \  
.F a (s (7")), t h e n  X -~ = (x -~ (l), T) ~ AP (03, 8). 

LEMMA 4 [weak boundedness  o f  a f u n c t i o n  X~AP(ff~,8) ] .  I f  X = (x(r T) { AP (@, 8), t h e n  
~/a > 0 ~M (a) > 0 such that ] x(f) [~ M (a) %+l ~7~\F~ (s(T))7 

Proof. By Lemma 3,~a>0 BL (a/4)>0 such that any interval of length L(a/4) > 0 will 
contain a number ~ for which 

The (p.c.) function x(t) is bounded on [0, L(a/4) ] : x(t) < m(a/4). Let t E 7~Fa (s (T)). The 
interval (t - L(a/4), t) contains a number T such that (4) is true, and then s = f ~ C (0, 
L(a/4)). We claim that s E )~Fa/2 (s (T)); otherwise, there would be some r C T [for which is - 
r l~a/2, and by (4) this r determines a number NE T such that Ir~-6T--Pl<a/2, and there- 
fore 

I t - - p l = I t - - ~ - - r + r + ~ - - p f < a / 2 + a / 2 = a ,  tEf~(s(T)). 

F i n a l l y ,  t x ( s ) - - x ( t ) t = l x ( t - - ~ ) - - x ( t ) l < a / 4 ,  [ x ( t ) ] ~ t x ( s ) - - x ( t ) [ - 6 ] x ( s ) l < a . / 4 + m ( a / 4 ) = M ( a ) .  

LEMMA 5 [uniform almost periodicity of a finite number of functions in AP(~,8)~]. Let 

X~-('xi(t),Ti)EAP(@,@). Then for every e > 0, i = 1 ..... m, there exists a set 9s of numbers 
~, relatively dense in R, such that 

and:8(T~+%T~)<s V ~ =  1 ..... m. 

Lermna 5 may be derived from Lemma 3 in exactly the same way as Lemma 3 from Lemmas 1 and 
2 (obviously, the proof need be carried out only for the case m = 2). 

Proof of Theorem i. A (Addition). By Lemma 5, ~s>0 NL(e/2)>0 such that any interval 
of length L(s/2) will contain a z for which 8(T+~,T)<e/2, 6(P+~,P)<s/2; ]x(t-6z),x(t)l<e/2 
lf-tER\F~/z(s(T)); [y( t -6~)--y( t )[<s/2  ~' t~R~F~I2 (s(P)). But then 8 ( ( T - - P ) - 6 %  T - -  P)----6((T+~)-- 
( P +  ~), T -- P) ~ max (6 (T+  ~, T), 8 (P + ~, P)) < ~, and a l s o  [ x (t -6 ~) + g (~ -6 ~) - -  (x (t) -6 g (0) [<  s ~?t E (R ~. 
F~/2 (s(T) U s (p))~ ~ R ~ &  (s(T - P)). 

B (Multiplication). Fix an arbitrary number ~ > 0. Considered over the set R~F~!2 
(s(T))[RXxF,/2(s(P))] , the function Ix(t) I [respectively, ly(t)I] is bounded by M(g/2)by Lemma 4. 

P u t t i n g  ~1 =,min T '  "2- M-~ and u s i n g  Lemma 5, we s e e  t h a t  t h e r e  e x i s t s  a s e t  at1, r e I a t i v e l y  

dense  i n  R, such  t h a t  6(r+~iD<n, ~(P + ~,~;<nl 
~' I x (t + ~) - -  x (01 < n ~ ~ E / ? \  Fn (s i7')) ~ R \ & (s (7')/, 

F u r t h e r ,  i f . t E R ~ ~ ' ~  (s(7")), t hen  t - t -~ /? 'x ,F~/~  (s(T)) ( o t h e r w i s e  t h e r e  would e x i s t  p ~T f o r  which 
It+~--pI~/2 andrET for whichlp__(r-6~)I:~2q~/2 , so that finally [t--rJ=}l+~p+ 
p--(r-~)i~s). But then, for~E~, we have ]x(l-6%)y(l-6#)--x(l)F(1)l~Ix(t-6~)[Ig(t+~)--F(l)l@ 
[y(t) J[ x (l -6 ~)--x(t)I ~s ~//E(R xx F~ (s) (T))) n (R~F~ (s (P))) ---- R~F~ (s(T-- P)). 

C (Existence of X-~). Fix an arbitrary number s > 0. By assumps considered on the 

setR\Fs/~(s(T)) , the function [x(t)I is bounded away from zero: Ix(r Let q = min 
(s/4, s~). Then, since X is 5-a.p.p.c. there exists a set,n, relatively dense inR, such that 

~ - ~ n  Ix ( t -k~) - -x ( t ) ]<~]  ~ ' I~R~,Fn(s(T)) ,  8 (T -6~ ,  T ) < ~ I .  I f  (~P.XxF~(s(T)) , t h e n t - b ~ R \  
F~/z(s(T)) (see part B of this proof) and therefore, if.~6Q~,, , then 

, Ix -~ (t + ~ ) -  x - i  (t) l f x it + ~) - -  x (t) 1" [Ix it) x (t + ~) 1] -~ :<  ~,~-~ (~/2) ~< ~ ~ t .E  R \ &  (s (T~, 
This completes the proof of Theorem i. 

1.3. Let x(t): R § R be a piecewise-continuous function with discontinuities of the first 
kind (possibly zero) at the points of a set T~. To fix ideas, let us assume that x(t) is 
left continuous. Consider the space 027 of all such pairs X = (x(t), T). 

Using condition F, it is not difficult to introduce a uniform topology on Y27 and, along 
the lines of the above construction, to define the. concept of an a.p. function in Bohr's 
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sense, ultimately obtaining a space AP ((~, 6) - this is one of the specific features of the 
class of p.c.a.p, functions with which we are concerned. 

Let a be a positive rational number, 

�9 U~ = 327 ~ FL~; U~ = {(X, Y) = [(x (t), T); (y (t), P)] E 922 x TR : 6 (T, P). < a.~ 

Ix (t) - -  y (0 [ < a ~7~t E / ~ F ~  (s ( T - -  P))}. 

The following properties are obvious: 

cl) y-a y - X ~  (X,'X)EUa; 
c2) if(X,Y)EU~,~then also (Y,X)EU a (i.e., U~ ~ = U~); 

c3) if (X,Y); (Y,Z) EUa/2, then (X,Z) EUh; 

C4) .U a ~ Y 5 ~- Umin(a,b). 
Therefore [5], the family of sets U a forms the base of a uniformity ~ for ~l, so that 

97~ is endowed with a uniform topology. In (9E.~) a sequence X n = (Xn(t), T n) converges to an 
element X = (x(t), T) if and only if, for every E > 0, there exists n o such that, for all 
n~n0 �9 6(T, T n) < s, 

[ x~ (t) - -  x (t) 1 < r ~ t  E R ~ F ~  (s (T~ " T)). 

It is a relatively simple matter to prove that (91q,~) is a Hausdorff uniform space (but not 
complete). 9~ is invariant with respect to translation: if X=(x({), T)~3%, then also es(X) = 
(x(tq-s), T--s) E9~. Moreover, if U a is an element of the base of the uniformity ~, then for 

any s E R  
(Os(X), O~(Y))EU,~=~(X,Y)EU~ t/'X,Y. (5 )  

(We a l s o  o b s e r v e  t h a t  t h e  map 8 , : ~ •  i s  n o t  j o i n t l y  c o n t i n u o u s  in  a l l  i t s  a r g u m e n t s . )  

The d e f i n i t i o n  o f  a 6 - a . p . p . c .  f u n c t i o n  in  B o h r ' s  s e n s e ,  g i v e n  in  t h e  c o r o l l a r y  t o  Lemma 
3, may now be rephrased in our new terms: 

Definition 3. A pair X =(x(t),T)EYf~ is a 6-a.p.p.c. function in Bohr's sense if, for every 
element V of the uniformity ~, there exists a set of numbers ~, relatively dense in R, such 

that (0~ (X),X) E V. 

Definition 4. A pair X = (x(t), T) is a 6-a.p.p.c. function in Bochner's sense if, from 
! 

every sequence {h~} of real numbers, one can extract a subsequence {hn} = {hkn} such that in 

(TE,-~) , for some FETE, 

lira 0h~ (X) =- Y. 

THEOREM 2. A f u n c t i o n  A E ~  t h a t  i s  6 - a . p . p . c .  i n  B o c h n e r ' s  s e n s e  i s  a l s o  6 - a . p . p . c .  
i n  B o h r ' s  s e n s e .  

The c o n v e r s e  need  n o t  be  t r u e .  An e x a m p l e  o f  a 6 - a . p . p . c .  f u n c t i o n  i n  B o h r ! s  s e n s e  t h a t  
i s  n o t  6 - a . p . p . c .  in  B o c h n e r ! s  s e n s e  i s  t h e  p a i r  X = (0 ,  T ) ,  whe re  T E ( s ( ~ ) ,  Z) i s  t h e  s e t  d e -  
s c r i b e d  in  t h e  e x a m p l e  a t  t h e  b e g i n n i n g  o f  t h i s  p a p e r .  

P r o o f .  By t h e  A l e k s a n d r o v - U r y s o h n  t h e o r e m  [5 ,  p .  248 o f  R u s s i a n  t r a n s l a t i o n ] ,  t h e  u n i -  
f o rm s p a c e  ( ~ ,  ~ )  i s  m e t r i z a b l e  as  a H a u s d o r f f  s p a c e  w i t h  c o u n t a b l e  u n i f o r m i t y  b a s e ,  and by (5 )  
and t h e  p r o o f  o f  t h e  m e t r i z a t i o n  lemma i n  [5] we may a s sume  t h a t  t h e  m e t r i c  d g e n e r a t e d  by tL 
has the following invariance property: 

d(0s(X),O 8 ( r ) ) = d ( X , r )  ~4LsER ~ X ,  YEgN. ( 6 )  

I n  what  f o l l o w s ,  APh(~, 6) w i l l  d e n o t e  t h e  s u b s p a c e  o f  ( ~ , d )  c o n s i s t i n g  o f  a l l  6 - a . p . p . c .  
f u n c t i o n s  in  B o c h n e r ' s  s e n s e .  

Let A 6APh(~, 6); I](A) = {0s (A), sE R} �9 Obviously, ~(A) is invariant with respect to trans- 
lation O s and, therefore, we can define a map 0~:~U(A)• Let ~(s) = d(Os(A), A). We 

I 
will prove that ]irn~(5)= 0. Indeed, if this were not true, there would exist a sequence s n § 

s-~0 

0, n § +~, such that e(s~)~g0>0 ~n. Since A6APh(~, ~), we can extract from {Sn} a sub- 
sequence {Sk} such tha~ for some YE931 lim 0s~,(X)----Y. It is easily verified that Y = X and 

therefore lira ~0 (s~) ----- 0, contrary to the inequality r (s~)~ s0 ~k. 
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The map O~: U(A)xP,-->-~(A) is uniformly continuous, because 

d (O~ (X), O~ (Y)) = d (0~_~ (X), Y) ~< d (0~_~ (X), X) + d ()i, Y ) =  

= d (0~_, (A), A) § d ( X ,  Y) = o (s - -  r) + d ( X ,  Y). 

Let H(A) denote the closure of ~(A) in (~27, ~O. It is.easy to verify that H(A) is invariant 
with respect to translation @s and, therefore, we can define the map @s: H(A) • R + H(A), 
which is also uniformly continuous. (If X, Y • f] (A), then there exist sequences {X=}, {Y~J 
~(A) such that X n * X, Yn § Y as n § ~; since: 

d,(o~ (x~), o~ 0%)) ~ ~o (s--  r) + d (X~, Y~) yn,  
passage to the limit gives 

d (% (X), Or (Y)) < o~ (s - -  r) + d (X, Y)). 

We now consider the continuous dynamical system (H(A), 8s). Now all the arguments in 
Sec. 3 of [i] [other than those requiring the space (H(A), d) to be complete] go through for 
this system; we may therefore consider Theorem 2 proven. Moreover, on the same grounds, we 
arrive at the following conclusion: 

THEOREM 3. AEAPh((~,6 ) if and only if the set H(A)=CIosurefO~(A), sER } is compact in 
(~JL~)- Under those conditions ~?~B,6H(A } we have H(B) = H(A) and so 

H (A) c AP~ (ff$, 6) ~ AP (~, 6). 

2.1. Definition 5. Let APE(R) denote the subspace of,AP(9/,p) consisting of all the 
functions that satisfy conditions H0, Hi, H 2 of [i]. Let(~,~) denote the subspace of(~2~,~) 
consisting of all the functions that satisfy condition H 2 of [i]. 

THEOREM 4.  APH (R) = AP (~[, 0) N 5~ = APh (9/, O) N 9%. 

P r o o f .  I t  w i l l  s u f f i c e  t o  show t h a t  AP (91, 9) ~ ~ AP h(~, o) N~yL L e t  A =(a(t), L)~ APH (R), 
H(A)=(0~(A), <~R}. The set ~(A) is invariant with respect to 0~, and so the map 0~! H(A)• 
~(A) is well defined. SetoA(s)=infia:(O,(A),A)6U=}, OA(ISl)--supla(l')--aff")I, where the supremum 
extends over all t' < t" such that ]t'--t ~l~[s[, .ff',t"]r]L-~ ~. By condition Hi, lim.~o A(]sD=0 

and since ~A (s) ~< max (] s [, OA([S[)) , it follows that also lim~(s): 0. The map 0s: [7(A)xR-~[I(A) 
S--0 

is uniformly continuous. Indeed, fix an arbitrary number e > 0 and take 6 > 0 such that, if 
]~i~6 , then o n (Is]) -~ [sI<s/~. Then for any {t--r[<6, X, )2 61J(A):(X,Y)EU~/2, we have (0:_r(A), 
A) ~ Us/~ ~ tot (X), ~)r (X)) ~ Us/~; (X, Y) 6U~ n r (0~ (X), 0,. (Y)) ~ U~/~, and finally (0~ (X), 0~ (Y)) ~ U~. 

Let H(A) denote the closure of ~(A) in (F~,VJ). We claim that ff(A) c-!~. If B = (b(t)~ 
K)6H(A), there exists a real sequence {Sn} such that OSn,(A)=(a(~+sn), L--sn)--~Bas n § oo, 
Let t' < t" be numbers such that [J',t"]~K= ~5. There exists z>0 for which [~'--• I"+x]~QK= 
$; for this ~, choose n o so that~n~n o (Os~(A),B)~Uz/4. But then, if n~)%, necessarily 
[t'--~/4, Y-~/4]~(L--sn)----~, and so  

]aft' +sn)--a(t" +S~)]<aAi['t'--t"]) ~ - n ~ n  o. 

Noting that the sequence of functions a(t + s n) converges uniformly in the interval ~J,'--~/4, 
t~q-• to b(t) as n + ~, n>/no, we obtain Ib(t')--b(f')!<~A(IF--f'I), that is, Bq~. We have 
also shown that if os (I s ]) ---- sup [ b(t')--b(f")l , where the Supremum extends over all t' < t" such 
that [t~,t"]NK = f~, It'--t"~-~]s], t h e n  os( [s l ) .~oA(]s ' i ) .  

Now H(A) is invariant under translation 8s, so the map 0s: H(A) x R + H(A) is weil 
defined. We will now show that it is uniformly continuous. For any B6H(A), let ~B(s) = 
inf{a:(Os(B), B)~Ua} : obviously, cos (s) ~ max (] s l, as([Sl))<rnax(]s[, .~A(]S[)). Now fix any number 

> 0 and choose 6 > 0 so that, if left<6 , we have max(Is I, oA(IsI))<s/2. Then for any It - r I < 
6, X, Y~ff (A); (X, Y) ~ i/~/~, we have (0~ (X), 0~ (Y))~ U~/~ and (0~ (X!, O r (Y)) ~ U~/~ , so that (0~ (X), 0~ (Y~)) ~Us. 

Thus, we can consider the continuous dynamical system (H(A),O~,qJ). We claim that the 
space (H(A),%~) is complete. If Y~-~(9~(t), Tn)~H(A ) is a Cauchy sequence, then Tn~9/ is also 
a Cauchy sequence, and, since (9/, 9) is complete, there exists a set T ~ ~ such that T n § T, 
n § ~. Let On = ~(Tn, T) § 0, n § =; we may assume without loss of generality that Pn+i < 
9,~ ~7~n. Now, considering the set Gm=I~,F~.o~(s(T))~R~(F~,~(s(T))UF~rn(s(Tm))) and letting n~m, 
we can define a sequence of functions 9~(t); 9n({)~(](Gm), which is a Cauchy Sequence; hence 
there exists a function F({)~C(Gm) such that yn(t)converges to y(t) uniformly on Gm as 
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n § ~. In addition, for any tl, t 2 that lie in the same interval of Gm, we have lya(t~)-- 

y~(t2) l~x(]t1--t2[) ; hence also ly(tl)--y(t2)I~c~A(Jtl--t21 ). Since O,~Gm+l; UGm=P,~T, there 
rn 

exists a function y(t)cg[y(t): R \ T § R] such that g.~(t)--~g(t) on each of the sets G m as n § 
and moreover y(t) satisfies condition H 2 of [i]. Extending the definition of y(t) to the 
points of s(T) so that it becomes left continuous, we obtain Y ---- (y (t), T) E g~. It is not hard 
to see now that limY~-----Y; this, since H(A) is closed, implies that the space (II(A),"~L) is 
indeed complete, n~ 

Theorem 4 now follows from Theorem i of [i] and the remark just before formula (6). 

2.2. We now point out the most important properties of the space APH (R)~ AP(gl, p). 

A. APH(R) is closed with respect to addition and multiplication by scalars. 

This follows from Theorem 1 and the fact that if X, Y E9% , thenX-6 YE9%, ~XE9% h/aER. 

B. By Lemma 4, a function X~APH(R) is weakly bounded. There exists an unbounded 
function A~APH(R) (compare Theorem 23.1 in [3]). 

Indeed, let T-~n}lJ{n+c~}+n=~_~, where {Cn} is an a.p. sequence such that 0 < c n < I/4 
and infc n =0; let a(t): R + R be a function such that 

/ ( t .  n) + ~ ,  t E (n, ~ + c~l; 
a(t)=[0,  t6(n+c.,  n+ll.  

Obviously, i(a(O,T)E~?, t h e  f u n c t i o n  a ( t )  i s  unbounded  [ s i n c e  a ( n  + c n) = Cn 1 + c n] and ,  in  
addition, T is a p-a.p, set [i]. We will show that A satisfies condition r z. Fix an arbitrary 
number g < 0.25. The sequence {q~ }, q~=max{c~,s} , will be a.p., and, since q~e>0, the se- 
quence {qn z} will also be a.p. Let ~g be the set of 8/2-a. periods common to {qn z} and {Cn}. 
We claim that if pEQ~, then 

'=ta (t + p ) - -  ,q (t) i <  s,.'2 "Mr ~_~-?\F~ (~T). (7)  

Indeed, if tCF<~F-~(s(T)), then either i) tE(mNcm+~, m+ l--;s~ for some m and then, in view 
of the inequality]fm+~--c~]<e/2, we have t-6pE(m+p-6c~-i-e, m-6pi- Iv-e]~(m~-p, r,z-6p~- 
Cm+p], so that (7) is true; or 2) tC(m-6e, m-~cra-=e] and therefore cm > 2E. In that case 
also l-6pE(~-'.-,0@e, rn+p-6Cm,,~, e ] ~ ( m L ~ p ,  m-~p-6 CA+D] and c ~ + p ~ c ~ - - ! c ~ , - - C ~ + p ] > e ,  so that 
q~1 = ~ I ,  a-~ = c-I  Finally, we obtain ,nz-~-r re+p" 

l a(t) --a(t-6 P) I = Ic7 ~ -  c-~ 

Consequently, AE ,PS 
C. i. The space APH(R) is not closed with respect to multiplication. 2. If A, B e 

APW(R), then AB~APllZ(7~). 3. If A ~APH (I~.~, la(~)l~ ~t>O ~t , then A -~PW(~). 

Let us prove, say, i). Let A be the function constructed in the previous example. 
2 Then A ~ 9%, since a ~(n ,~2 c~)-- a ~(n)= 2-~ ca >2.; but infc~--~0, (h-6 c n, n) ~ T = fZ~. 

n 

D. i. Properties H 0, H~, H~, H~ of [i] are independent of one another. 

2. From a geometrical point of view, it is convenient to identify 6-a.p.p.c. functions 
A = (a(t), T) and B = (a(t), P) for which s(T) = s(P). This identification is also important 
because, otherwise, the distributive law may not hold formally in AP(@,6) . 3. A matrix-valued 
function M = {Mij }, i = l,...,n; j = 1 .... ,m, is said to be 6-a.p.p.c. ifiVi~7=(mi~(t),T~])~ 
AP((~,6) ~i,]. In view of Lemma 5, given any such function and an arbitrary s > 0, there exists 
a set ~e of numbers Y, relatively dense in R, such that 

6 ( T , T + ~ ) < s ,  [ M ( t + ~ ) , M ( t ) [ < 8  ~ t E R \  F~(S(T)), 

where  T = ~ T~, M (t) = [~n~,~ (t)~, ~.~ ~ i s  some m a t r i x  norm.  

E. 1. L e t  B=(b(O.T)EAP(~i6)i-%~(t)=mes(F~(s(T))~[l,t§ Suppose  t h a t  b ( t )  i s  bounded ,  
Ib(t)l~m ~ t ,  and X s ( t )  § 0 a s  s § 0+ u n i f o r m l y  in  t~R. Then b ( t )  i s  an S - a . p .  S t e p a n o v  
function and therefore, if b(t) is uniformly continuous over R, then b(t) is an a.p. Bohr 
function. In particular, all functions in APW(R) are S-a.p. 

2. APH(R) contains functions that have no mean (in the usual sense, and they are there- 
fore not a.p. in Weyl's sense). 
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Proof. i. Fix an arbitrary positive number ~ < 0.5 and an s-a. period T of B. Then 

[ b ( t ) - -  b(t  + ~ ) l < ~  ~2t~ R\F~:Cs(T)) ,  

and i f  OD '_F~( s (T ) )  N [ t l t §  111 *; ' - - ---[ t , t+t]~X(D ', t h e n  

, + 1  

I b ( ~ ; - - b / ,  § ~) d~ = S I.....t#~ + Iil:..!d~<2~.~(t)+~. 
: (D" ~/~)" 

2. Let T={n}U!n--' ycos}n, and define a function f(t): R § R by 

f~<_.t.O,~ r E ( n +  1/2co@n, n + ~];..: 
.~. l - !21 cos n [ -~ ' ,  t E (n,-~ ;L  I : /2 cos 2 n] .  

As in the case of B, one shows that (f (t), T) E APH (R). Further, 

~.+1 I n 
1 (f (u)du = - -  V cos -2 k, 

n q - i  ~ n + l  .~  
k = O  

but the limit of the expression on the right as n § ~ is +~ (this is readily proved with the 
help of Birkhoff's ergodic theorem). 

3. In conclusion, we consider the question of a.p.p.c, solutions in APW(R) for pulsed 
systems. 

The method we propose here, in principle, reduces the investigation of an a.p. pulsed 
system to the thoroughly studied continuous extension of a minimal system of the translation 
type on a metric compact space, while the results themselves are obtained in terms of pulsed 
systems. For simplicity's sake, we confine attention to linear systems 

dx/dt = A (0 x + a (t), 

Ax [t~ = F~x + k, ( 8 )  

where iE~, f ~ t i + I  ~i ;  f~, xER~; FiEM.(R), T={h}E~, s (T )= {T j } ;  pr:  T--~s(T)is the canon ica l  
map of T onto the quotient set s(T). It may happen that T x s(T), in which case (8) will 
be an abbreviated notation for the pulsed system 

&~dr = A (t) x + a (t), 

w h e r e  (E + (Dj) x + % ---- H~.,+k O ... O H~o (x), H i (x)----(E + F~) x + f~, {t~o+k . . . .  , t~o} = pc -I  {Ti}. 

It is natural to consider the translation of (8) for arbitrary sER: 

dx/dt = A (t + s) x + a (t + s), ( 9 )  

A x l t ~ - ,  = Fix + h.  

The sequence {t i - s} is conveniently reindexed so that the resulting sequence {ti(s) } lies 
in~ ;in that case, for some integer k(s), we have t~(s)----t~.+~(~)--s~/-i , and (9) becomes 

dx/dt = A (t + s) x + a (t + s), 

Ax tt~(~ = F~+~(~) + f~+~(~. 

Definition 6. System (8) is said to be p-a.p, if A(t) and a(s are S-a.p. functions, 
{fi} and {Fi} are a.p. sequences, T is a p-a.p, set. 

Given functions (A(t), a(0,0): R-+M=~R)xT~XR and a vector (Fn, fn, i), we introduce 
the notation L(t) and L n- 

If (8) is a PTa. P. system, then any sequence of real numbers {s~} will contain a sub- 
sequence {Sm} = {Skm } such that in S and ~, respectively, 

�9 L (t + so,) --~ L* (t) = (A* (t), a* (t), 0), ( 1 0 )  

{L.+~(~)} -+- {L~} = {(F~, .f*~, 1)}, {t .  (sin) - -  t~}-.- 0. 

The systems obtained by all such limit passages 

dx/gt = A* (0 x + a* (t), 
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Axi,~ = e;x + f; (11) 

will be called the H-class of system (8) (after passing to the limit we may have {t~}~, so 
that it will be necessary to shift all the indices of the sequence again). It follows from 
the results of [i] and the properties of Stepanov a.p. functions that an H-class is uniquely 
defined by any of its representatives. After the necessary definitions, one can speak of 
compactness of an H-class and of the fact that (ii) defines a linear extensionover a minimal 
two-sided stable system of translations acting on H; it should be observed, however, that the 
linear extension will not define a continuous semigroup on H x Rn, since the solutions of 
(ii) need not be continuous ("semigroup" - because the matrices E + F i may be singular). 

3.1. Let us assume from now on that system (8) is p-a.p. By [i], t n = an + On, where 
{On} is an a.p. sequence. Define d n = (a + l)n + On, then D = {dn} is a p-a.p, set, dn+ z - 

d ~ I  ~n.  
Definition (see [6~ 7]). A p.o. function x(t): R § R with discontinuities of the first 

kind on T will be called an N - p-a.p.p.c. Levitan function if 

I) ~e>0 and ~7V>0 there exists a relatively dense set as,N of E -N-a. periods 
(that is, numbers such that 

I x (t +-- "~)-- x (t) l ~ e "Vt E (R\F~ (s (T))) n [ -  N, N]); 

2 ) - ~ s > 0  - ~ N > 0  3~l (e, N) > 0: ~,N---+O~IN~Q~,N- 

Our aim is to prove the following propositions, which are analogues for a.p. pulsed 
systems of theorems of Favard and Levitan, respectively. 

THEOREM 5. If no homogeneous pulsed system in the H-class of system (8) has nontrivial 
bounded solutions, then a bounded solution x*(t) of any system (ii) will be sn element of 
APW(R) [to be precise: (x* (t), T*)C APW (R) ]. 

THEOREM 6. If the only bounded solution of a homogeneous pulsed system is trivial, 
then any bounded solution of the corresponding nonhomogeneous p-a.p, system (8) is an N- 
p-a.p.p.c. Levitan function. 

To prove these theorems, we will need the following results, presented here without 

proof. 

LEMMA 6. If f(x) is S-a.p., then ~e>0 Ed>0: 

x+5 
If (U) I du < 8. sup 

x~R 0 
x 

LEMMA 7. L e t  f ( t ) :  R § R be an a . p .  f u n c t i o n  in  B o h r ' s  s e n s e  ( an  N - a . p .  f u n c t i o n  in  
L e v i t a n ' s  s e n s e ) ,  eO(t)----f(t+n) f o r  tE(t~,t~+l]. Then (~(I) ,TiEAPW(R),((~(t) ,T)  i s  an N - p- 
a . p . p . c ,  f u n c t i o n  in  L e v i t a n ' s  s e n s e ) .  

Define a function ~ (t):R-+M~(R)xRnx R : 

IL.+~, tE(d~+,--1,d.+,]; (12) 
~(t) = LL (t--n),  tE(d,~,dn+l-- I]. 

Obviously, given system (8) we can construct ~(t) , and conversely. 

LEMMA 8. If (8) is a p-a.p, system, then ~(/) is an S-a.p. function. 

LEMMA 9. Let ~*(t), lie in the H-class H(~) of ~(t). Then (i0) will be true for some 
sequence {Sm}, and if d n = t n + n then, replacing ~, L and d in (12) by ~*, L* and d*, we 
obtain an expression for ~s 

Lemma 9 shows that each function ~* E H(~) uniquely determines a certain p-a.p, system 
in the H-class of system (8). 

Proof of Theorems 5 and 6, following [7], Chap. VII. Consider the trivial bundle(H(~)X 

Rn, ~,H((~)). Let i(t) be a bounded solution of (8) and 

x( t - -n) ,  lE(dn, dn+I-- ll; 
A ~ A x(t) x( .+~ + O) + Ax I~.+~ (t --d,,+~), 

t E (d~+~-- 1, d,+~]. 
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A direct check will show that: x(t) is continuous and bounded over R; Lemma 6 and the inequal- 

ity I[ATltnII~x(f)IIllF~ll+ljf~ll~C<~ imply that x(t) is also uniformly continuous over R. The 

set Q~={(~(t+~,x(s)), sER} is bounded in H(~)• ~ and therefore, if Q is its closure, then 

~(Q) = H(L). Fix an arbitrary i x~H(~) and let ~(t--] h~)-~*(f). Since x(t) is uniformly con- 

tinuous, we can find a bounded continuous function x*(t): R § R n such that x(t + hk) % x*(t) 

as k § +~ uniformly over compact subsets of R. In addition, by Lemma 9, the function x* (t) = 
x*(t + n), with fE(tn, tn+1], is bounded by a solution of system (ii). i. Suppose the assump- 
tions of Theorem 5 are valid. Then i*(t) is the unique solution of (Ii), and therefore x*(t) 
is the unique limit function of x(t + hk). Thus the set ~-i(~)NQ is a singleton and so the 
map ~:~-+H(~) is a homeomorphism. But then x*(t) is a.p. in Bohr's sense, and by Lemma 7 

(x*(0, T*)CAPW(@). 2. Suppose that the p-a.p, system (8) has a unique bounded solution i 
(t). Then Vs~@ the set -1(~(t+~)NQ is a singleton and therefore, if we consider ~(Qi) 
as a metric subspace of H(~), it follows that the function 

(t + s) ~ (~  (t + s), x (~), 

defined in ~(Q!), is continuous. 

Consequently [7], x(t) is N-a.p. in Levitan's sense and the proof of Theorem 6 is com- 
pleted by referring to Lemma 7. 
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DUAL APPROXIMATION OF RANDOM EVOLUTIONS IN AN AVERAGING SCHEME 

A. V. Svishchuk UDC 519.21 

We consider a double approximation of semi-Markov random evolutions, namely, the 
averaging and diffusion approximation, when the balance condition is not ful- 
filled. Double approximation algorithms are applicable for reserve and transport 
processes and other stochastic systems in a semi-Markov random medium. 

Algorithms of phase averaging of random evolutions, presented in [i] and developed in 
[2, 3], define an average evolution, which can be considered as a natural first approxima- 
tion of the original evolution in a semi-Markov stochastic medium. 

Algorithms of diffusion approximation of semi-Markov random evolutions (SMRE), presented 
in [i] and developed in [4, 5], define the second approximation of the original evolution, 
since the first approximation (the averaged evolution) is trivial when the balance condition 
is fulfilled~ 

In the present paper we use definitions, notation, and conditions introduced in papers 
[ 1 - 6 ] .  
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