SPACES OF PIECEWISE-CONTINUOUS ALMOST-PERIODIC FUNCTIONS AND
ALMOST-PERIODIC SETS ON THE REAL LINE. 1II .

A. M. Samoilenko and S. I. Trofimchuk UDC 517.91

The authors consider a series of spaces of piecewise-continuous almost periodic
functions and study the properties of the elements of these spaces. The theory de-

veloped in the paper is then applied to investigate almost periodic linear pulse
systems.

1. In this paper, which is a sequel to [1}, we study spaces of piecewise-continuous
almost periodic (p.c.a.p.) functions.

1.1. We consider one general construction (all the notation is taken from [1]). Let
T€% , and arrange the real numbers of T in a strictly increasing sequence {tn}. The set
s(T) = {tp} will be called the support of T. Thus, we have defined a map s:¥— A The set
s(¥) is obviously invariant under the map 6g, 65(T) = T + s.

We introduce a Hausdorff metric x in s() ; if P, Q€s(¥) and F,(P) is a closed a-neigh-
borhood of the set P (in the usual topology of R), then

L(P,Q=inf{a: F,(P)DQ, F,(Q>F}
(x may take the value +» for certain P, Q).

Let ® be a subset of ¥ such that & os(¥) and 6,(®) =& VsER. Let § denote a metric on
® with the following properties:

al) 6(9,(T), 6,(@) =8(T, Q) ¥s

a2) % (T, Q<3(T, Q%

a3) 8(6,(Q),Q) <|sl s, Q.

In addition, we will need a commutative binary operation in @ — the sum of sets —:
G X @—@ , with the following properties:

b0) (T—P)+a=(T +a) — (P +ay

bl) s(T—=P)=s(T) U s(Ph

b2) 6(T1_,T2: Py~ P,) <max (8 (T, Py), 8 (T, P,)).

The map 6;: @ X R—~® defines a continuous dynamical system in (,8) (because, by con-
ditions al, a3, we have

5(8,(Q), 6,(T) <|s—r|+ 6@, T).

Examples of spaces (§,8,—,0) are the space (%, p,—,68) studied in [1] (recall that in
that paper . denoted the free union of sets [2]) and the space (s(¥), % U,8, (U denotes
union of sets).

As done in [1], we can define in (@, §, 8,) the notions of a.p. sets in Bohr's sense
(briefly: §-a.p. sets in Bohr's sense) and a.p. sets in Bochner's sense (6-a.p. sets in
Bochner's sense). An important distinction between the present, general situation and that
considered in [1] is that these notions need not coincide, since (@, 8§) is not complete.

Example. Consider the following set in the space (s(¥), %, U, 8

+oo0 » ,
T={]@z+2%;, 2z+2*=0"+2" nez}

k=0
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Taking into account that x{(T + 2Km, T) = 2-(k+1) for arbitrary k, m, that the set {2Km} is

relatively dense in R for fixed k, m€, and that lim 9% 0 we see that T is a X~a.D.
.k—)—{—oc

set in Bohr's sense. On the other hand, it is easy to verify that, starting from the sequence
(T +2"%, it is not always possible to extract a subsequence that converges in (s(¥),x) , and
therefore T cannot be x-a.p. in Bochner's sense. ’

Nevertheless, a look at the proof of Theorem 1 in [1] will show that §-almost periodic-

ity in Bochner's sense always implies §-almost periodicity in Bohr's sense [ (®, 8) does not have
to be complete for this to be true].

1.2. Fix some space (@, §, —, 6). Let x(t): R > R be a p.c. function with discontinui-
ties of the first kind (possibly zero) over a set T€®. To fix ideas, let us assume that x(t)
is left continuous.

Definition 1. The pair X = (x(t), T) will be called $-a.p.p.c. in Bohr's sense if

I'y) for every ¢ > 0, there exists a set Q¢ of numbers 1, relatively dense in R, such
that

|2t — x| <e FERNFe(s(T)
[the elements of Q. will be called £-a. periods of x(t)];
;) T is a 8§-a.p. set in Bohr's sense; ,
I's) ¥a>0 the function x(t): R\ Fy(S(T)) » R is uniformly continuous.
The set of all $-a.p.p.c. functions in Bohr's sense will be denoted by AP (&, 8).

We claim that, given a pair X, we can choose the set Q¢ in such a way that any t€Q, will
also be an e-almost period of the §-a.p. set T in Bohr'‘s sense.

LEMMA 1. Let T be a §-a.p. set in Bohr's sense. Then %¥n >0 gL (M) >0 such that for
every positive y < n and every interval J of length L(n), there exists an integer m such that
my€J and

(T, T+ my<n (1)

Proof. Indeed, by the definition of a §-a.p. set in Bohr's sense, it follows that
¥n>0 gL, (1/2) >0 such that in any interval (a, b) of length L,(n/2) there exists w such that
8(T, T + w) < n/2. Let L(n) =L,(n/2) + n, and, in any interval (a, ) of length L(n), pick
out a subinterval (a + n/2, 8 — n/2) of length L,(n/2) with the above w, such that 4 = [w -
W2, o +n/2l = (¢, B) . Obviously, for positive y < n it follows from the Dirichlet principle
that there exists m for which my¢€A < (&, B). At the same time, § (T, T+ my) < 8(T, T + o) +
| @ —my|[<Tn.

LEMMA 2. Let X = (x(t), T) be a $-a.p.p.c. function in Bohr's sense. Then ¥1 >0 gL
(n) > 0, 8§(n) > 0 such that,. for every positive y < 8(n) and every interval J of length L(n),
there is an integer m such that myeJ and

|2+ my)— x| <n WIERNFn(s(T)) (2)

Proof. By condition I';,4/n>0 gL, (0/2) > such that in every interval of length L,{n/2)
there exists 1 such that

[E+ v — x| <2 NtERNFup(s(T).

The function x(t) is uniformly continuous on R\ Fy2 (s (7)) . Let &(n) < n/2 be a positive num-
ber such that for any ¢, "€ R\ Funp s(T), |’ — | << 6{n) (in that case t', t" must belong to the
same interval in R\ Fne (s(T))) , we have |x () —x () [<<n/2. Let L(n) =L, W/2) + & (). Take any
interval (e, B) of length L(n). The subinterval (a + §/2, 8 — §/2) of length L.{(n) contains

T such that [x(f+7) —x (G {<N/2 YVEER \ Fnps (7). For a positive y < 8(n), there must be an
integer m such that my ¢lt —6/2, t+ 8/2] < (&, B). Moreover, if 1€ R\ Fy (s(T)) and we define

t' =t + my — v, then [ —t]=|my-—1|<<8/2<<n/4, and therefore FERNFupe 68(T)) and t?, t are
in the same interval in RN\ Funo (s(T)). Consequently, iffgR N Fn (1), then |x{t + my) —x <
[x(t) —x (¢ +my—v) |+ | x (EFmy—1) —x (¢ + myp) | <n.

LEMMA 3. Let the pair X = (x(t), T) be §-a,p.p.c. Then ¥M>.0 gl (n)>0, § M)>>0 such

that for every positive y < §(n) and very interval J of length L(n) there exists an integer m
such that my¢ J and both inequalities (1) and (2) hold.



Proof. The proof follows [3, 4] (Appendix, Sec. 6). Let L, /8), Ly m/8), 8 /8) be the
constants existing according to Lemmas 1 and 2 for n/8 > 0, L = max(L,, L,). For any inter-
val of length L(8) and every positive number vy < 8(n/8), there exist integers m, m' such that
the interval contains points my, m'y with

ST +my, Th /8, |x(t+m'y)— 2B <08  \EERN Fuys (s(T) (3)

Since |my — m'y|, the differences m — m' may take only finitély niany values n;, i = 1,...,p.
For each nj there exists a pair (mj, mj) satisfying (3) — fix this pair once and for all.
Define A=max|my|, [=L+2h Let J = (e, a + &) be any interval of length &; then, by the

1 ,

foregoing reasoning, the subinterval J'”=(oc+7u, a4+ A4+ L) will contain numbers my, m'y such
that (3) is true and also my—m'y = ny = (m;—~)y. Let ¢ =m — my; then obviously gy€J .
Further, we have ; AR

S(T+agp,T)=8T+m—m)y, TI<T +my,T)+ 6(T + my,
T4+my—my)=8(T 4+my, T)+8(T,T + myyp) <n/d

We now show that if {€R\ Fn(s(T)), then 7+ gy ER\ Fnpe(s(7)). Indeed, otherwise it would follow
that, for some s€7, |f+gy—s|<n/2. Taking into account that §(T + gy, T) < n/4, we see that
for this s, by property a2 of the metric §, there exists a number r¢7T such that |s—(r+ gy <<
n/2. Finally, we obtain |f—r|=|t+gy—s+ =+ gy)I=|t+ ¥ —s+|s—(r +gv)|<<n and
therefore t€Fy(s(T) and (G R\ Fn{(s(T)). Consequently, for ¢ R\ Fn(s(T)) , we have the follow-
ing chain of inequalities:
fxCE+ g —x@|=lx(t+n —m)y)—x @) =|x @+ m'y—mpy)—
—x(t+my)| |+ my)—x@]<n/8+n8<n.

COROLLARY. The pair X = (x(t), T) is a §-a.p.p.c. function in Bohr's sense if and only
if: ') for every £ > 0 there exists a set @ of numbers 1, relatively dense in R, such that
(T + 1, T) < € and

X+ ) —x@)|<e WtERNFe(s(T)U Fel(s(T—1).

Indeed, suppose that condition I' is fulfilled. Then T is obviously é-a.p. Fix an arbi-
trary € > 0. By condition T there exists a relatively dense set Q¢/, such that for T€€,

|2+ D= x| <eld NLEM =R\ (Fers (s(T) U Feua (s(T — 1)),
' 8(T + 1, T) < /4.

But then % (T -+ =, T)<e/4 and therefore Fep(s(T — 1)< Fe(s(T)). Consequently, Feu(s(T—7)U
Feop (s(T)) < Fe(s(T)) and if t€R\ F:(s(T)), then f€M. Finally, we see that for T€Qy.

1x(t+v)—_x(z)|<s/4<.e; 3t € R\ F: (s(T))-
We now prove the validity of condition I'; (weak uniform continuity). Fix a > 0. By the
foregoing reasoning, for any positive e < a there exists a number L(e/4) > 0 such that Yfa-
gt € (&, @ + L (e/4)):
(T 4+, T)<<el4,
[x@F+ 1) —x ()| <<e/d NtERNFenu (s(T)

Consider the p.c. function x(t) over the interval [-e, L(e/4)]: for any ¢ > 0 one can find a
positive number &(e) < €/2 such that ¢, ¢ €0, L /)], |£ — '} <<8(e) we have lx () —x ()| < /2
[for(#, ¥y N T = @]. Now let the numbers #, # €R\F, (s(T) be such that |t — &/ << ® (e} [in that
case t; and t, (#, < %) lie in the same interval of R\ F,(s(T) ].

If ¢ ER\Fa (s(T) = R\ F: (s{T)), then by the inequality y (T + 1, TV<{(T + 7, T)<<e/4 we must
have f, — 1 ER\ Feu (s(T)), and therefore jx () — x(f) [<|x () —x(— D]+ x(l4— 1) —x (2 —o)|+
[2(t,—T)—x(t) | <&, (,—0 L—DNT =@, 1€lly— L(s/4), 1], & <2L(e/4).

Conversely, suppose that conditions I';-T'; are fulfilled. By Lemma 3, we may assume that
the set Q¢ consists of '€-a. periods common to T and x(t), and the truth of the inequality
(24 1) — x (D <& for all t€ R\ Fe(s(T) implies its truth for allfe (R\F.(s(T) (| (R\Fe (T + 7))

Definition 2. Given functions X = (x(t), T), Y = (y(t), P), we can define multiplication
by a scalar aX = (ax(t), T); addition X + Y = (x(t) + y(t), T — P); multiplication X+Y = (x
(t)y(t), T — P); if x (/) = 0 Yt€ R, then we can also define the quotient Y/X = (y(£)/x(t),
T — P).

340



THEOREM. 1. The space AP(®,8) is closed with respect to addition and multiplication.
If XcAP(§,8) is such that x(f)s=0 y¢ and ¥a>0 gule)>0 such that |[x(#)|>= n (@) FEERN
Fo(s(T)), then X~'= (x'(#), TYe AP (G, ).

LEMMA 4 [weak boundedness of a function X€AP(®,0) 1. If X = (x(¢), TVCAP(G,8), then
va>0 3M(@)>0 such that |x(®) < M(a) 3 €R\F,(s(D)’

Proof. By Lemma 3,%ta>>0 3L (¢/4) >0 such that any interval of length L(a/4) > 0 will
contain a number 1 for which

x{t 4+ 1) — 2 ()| < a4 HERNFan (T 80 + 1. TN < 5. (4)

The (p.c.) function x(t) is bounded on [0, L(a/4)]: x(t) < m(a/4). Let t€R\F,(s(T). The
interval (t — L(a/4), t) contains a number T such that (4) is true, and then s = -7 ¢ (0,
L(a/4)). We claim that s¢ R\ Fap (s (7)); otherwise, there would be some r ¢ T |for which |s —
r{<<a/2, and by (4) this r determines a number p €T such that |7+ T—p|<<a/2, and there-
fore

[t—p|=|t— T—r 7 T—pl<tal L al2=aqa, tEF(s(T).
Finally, |x(s)— x()| = |x{t — 1) —x ()| < a/4, |x(}) ]'<lx(s)~;— (O] + x| <ald + m(a/4) = M {a).
LEMMA 5 [uniform almost periodicity of a finite number of functions in AP(®,8]. Let
X, =8, T,)cAP(@,8). Then for every € > 0, i = 1,...,m, there exists a set Qg of numbers
7, relatively dense in R, such that
[+ ) —x (D] <e LERNF: (5(TY))
and ' 8(T; + 7, T)<<e Mi=1,...,m.

Lemma 5 may be derived from Lemma 3 in exactly the same way as Lemma 3 from Lemmas 1 and
2 (obviously, the proof need be carried out only for the case m = 2).

Proof of Theorem 1. A (Addition). By Lemma 5, %e>0 gL(s/2)>0 such that any interval
of length L(e¢/2) will contain a T for which §(7T +'%,T)<Ce/2, 8(P+ 1, P)<<elZ; |x(t + ) — x (Dj<<e/2
VEERN Fep (5T |y (4 0)—y (O)[<e/2 YEERNFer2 (s(P). But then (T —P)+7, T — P)=8(T + 1) —
P+, T—=P)<max(§(T+1,7),8(P+,P)<e, and also [x(f+1)+ylt+1)—x @ +y@)|<e YR\
Fopp (s{TYUs(P)y> RN\ Fe (s (T — P)).

B (Multiplication). Fix an arbitrary number € > 0. Considered over the set R\ Fep
STNIRN\Fep (s(P)l', the function |{x(t)| [respectively, |[y(t)}|] is bounded by M(e/2) by Lemma 4.
s
7
dense in R, such that §(T 4+ 7,T)<<y, §(P +1,P)<<nm,

Cx D=2 <y WLERNFn(s(T) D R\ Fe (s(T)),
g +n=ygB)]<n VEERNF,(s(P) D R\Fe (s (P)).

Further, if ZER\F.(s(T)), then 74 t1cR\Fepn(s(T) (otherwise there would exist p€7T for which
lt+1—p|<e/2 and r€T for which|p— (r + 1) |<<2n<<e&/2, so that finally [f—r|=|i+1—p+
p—+1)|<e). But then, fort€Q,, we have [x((+ Dyt + o —x@OyvOIK|*xCE+D||y(E+ 1) —y@B]+
O x ¢t + D—x@)] <e YEER \ Fe(s) (T)) N (RN Fe (s (P) =R\ F; (s(T— P)).

C (Existence of X"'). Fix an arbitrary number ¢ > 0. By assumption, considered on the
set R\ Fep (s(7)) , the function [x(t)| is bounded away from zero: |x(f)|>u(e/2). Let n = min
(e/4, ep?). Then, since X is §-a.p.p.c. there exists a set Qn» relatively dense in R, such that
Ve [x(C+v)—x®|<<n YEERNF(s(T), 8(T+'v, Th<<q. If fER\F:(s(T)), thené4 tER\

Fer2 (5(T)) (see part B of this proof) and therefore, ifT€Q, , then

S D — 2B = 2+ D — 2O [ D2+ D™ <up~? (£/2) <o e RNF. (s(T),
This completes the proof of Theorem 1.

Putting q _—_—.min( M“1> and using Lemma 5, we see that there exists a set Dps relatively
\

1.3. Let x(t): R > R be a piecewise-continuous function with discontinuities of the first
kind (possibly zero) at the points of a set TE€®. To fix ideas, let us assume that x(t) is
left continuous. Consider the space 9% of all such pairs X = (x(t), T).

Using condition I', it is not difficult to introduce a uniform topology on 9% and, along
the lines of the above construction, to define the. concept of an a.p. function in Bohr's
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sense, ultimately obtaining a space AP (@, 8) — this is one of the specific features of the
class of p.c.a.p. functions with which we are concerned.

Let a be a positive rational number,
Voo = MMM Uy, ={(X,Y) =[x, T); (4 &), PleMxM:8(T,P)<aq,
[x@0) — y (O] <a FERNF, {s(T— P)}.

The following properties are obvious:

cl) a YXem X, X)eUy

c2) if (X,Y)eU,, then also (¥,X)eU, (i.e., U7 = U,

c3) if (X,Y); (Y,2)€Uqp, then (X,Z)cUy

c4) U, N Uy = Unina,r-

Therefore [5], the family of sets U, forms the base of a uniformity 9 for M, so that
9N is endowed with a uniform topology. In (M.) a sequence X, = (x,(t), T,) converges to an

element X = (x(t), T) if and only if, for every £ > 0, there exists n, such that, for all
n=ny, 8(T, Tp) < &,

[, ) —x () | <e YEERNFe (s(T—T)
It is a relatively simple matter to prove that (M,9/} is a Hausdorff uniform space (but not

complete). 9n is invariant with respect to translation: if X=(x(#),7) €M, then also 64(X) =
(x(f+59), T —s)¢Mm. Moreover, if U, is an element of the base of the uniformity U, then for

any s¢R _
(6,(X), 8, (") U= (X, YIEU, ¥X,Y. (5)

(We also observe that the map 6,: MxR—M is not jointly continuous in all its arguments.)

The definition of a 6-a.p.p.c. function in Bohr's sense, given in the corollary to Lemma
3, may now be rephrased in our new terms:

Definition 3. A pair X =(x(#, 7)€ is a d-a.p.p.c. function in Bohr's sense if, for every
element V of the uniformity 9[, there exists a set of numbers T, relatively dense in R, such
that (0, (X),X) € V.

Definition 4. A pair X = (x(t), T) is a 6-a.p.p.c. function in Bochner's sense if, from
every sequence {hk} of real numbers, one can extract a subsequence {h,} = {hkn} such that in

(MM, U) , for some Y ¢,

lim ehn (X) == Y
oo

THEOREM 2. A function A< that is §-a.p.p.c. in Bochner's sense is also é-a.p.p.c.
in Bohr's sense.

The converse need not be true. An example of a é-a.p.p.c. function in Bohr's sense that
is not 8-a.p.p.c. in Bochner's sense is the pair X = (0, T), where T (s, 1) is the set de-
scribed in the example at the beginning of this paper.

Proof. By the Aleksandrov— Urysohn theorem [5, p. 248 of Russian translation], the uni-
form space (9%, W) is metrizable as a Hausdorff space with countable uniformity base, and by (5)
and the proof of the metrization lemma in [5] we may assume that the metric d generated by Y
has the following invariance property:

d(@,(X), 6,(Y) =d(X,Y) WseR ¥X,YeM. (6)
In what follows, AP,(®, 6) will denote the subspace of (#,d) consisting of all $-a.p.p.c.
functions in Bochmer's sense.

Let ACAP,(®,8); II(A)=1{6,(4), s€R}. Obviously, I(A) is invariant with respect to trans-
lation 8¢ and, therefore, we can define a map 6,:T(4)xR—[I(4). Let w(s) = d(6g(A), A). We
will prove that limw()= 0. Indeed, if this were not true, there would exist a sequence sn >

50

0, n » +o, such that ©(s))>¢,>0 %n Since AEAPh((S, 8), we can extract from {sn} a sub-
sequence {sy} such that for some Ygzm 11m esk (X)=Y. It is easily verified that Y = X and

therefore lim o(s;)=0, contrary to the 1nequa11ty u)(sk) g, Yk
Ertoc
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The map 6, T (A)xR—TI(A) is uniformly continuous, because
| 4(0,(X), 6, (V) =d(Or (X), V) <A Beer (X), X) + d(X, V) =
= d Beer (A) A d (X, V) = 0 (s — 1) + d (X, V).
Let H(A) denote the closure of N{A) in (9, 4). It is_easy to verify that H(A) is invariant
with respect to translation 6g and, therefore, we can define the map 64: H(A) x R » H(A),

which is also uniformly continuous. (If X, Y € H(4), then there exist sequences {X,}, {Y .} <
M(A) such that X, + X, Y, > Y as n > »; since

d{6 (X,), 8 V)< os—r)+dX, Vi) ¥
passage to the limit gives ' »
d{8,(X), 6, N<Kols—r) +d(X,T)).

We now consider the continuous dynamical system (H(A), 85). Now all the arguments in
Sec. 3 of [1] [other than those requiring the space (H(A), d) to be complete] go through for
this system; we may therefore consider Theorem 2 proven. Moreover, on the same grounds, we
arrive at the following conclusion: -

THEOREM 3. A¢AP,(®,8) if and only if the set H(A4)= Closure{f, (4), s€¢ R} is compact in
(M,9(). Under those conditions /B €H{4; we have H(B) = H(A) and so
H{A)yc AP, (8, 8) < AP (S, 5).

2.1. Definition 5. Let APH(R) denote the subspace of AP(¥,0) consisting of all the
functions that satisfy conditions H,, H;, H, of [1]. Let(®,9) dencte the subspace of (M, %)
consisting of all the functions that satisfy condition H, of [1].

THEOREM 4. APH(R)= AP (%.p) 7% = AP, (%, o) N 9.

Proof. It will suffice to show that A2 (%, p) N R 4P, (A, )N %. Let A=(a(#). Lyc APH(R),
I1(A) = {6,(4), <€Rj. The set II(A) is invariant with respect to 84, and so the map 6, Il (4}xR-—
I(A) is well defined. Set w,(s)=infia: (6 (A), A)€U,}, 6,(s])=sup|a(t’)— a(")|, where the supremum
extends over all t' < t" such that |¢'— || g-[, #,1NL = @. By condition H,, lhin]‘ o, (Ish=0

and since @A(s)gmax(]‘si, o,(sD), it follows that also lime, (5= 0. The map §; I(A)xR-—-T1(4}

=0
is uniformly continuous. Indeed, fix an arbitrary number & > 0 and take § > 0 such that, if
|8, theno,(s])+|s|<e/Z. Then for any |t—r|<<d, X,V €li(A):(X,V)€Uep, we have (8., (A),
AYEUgp =10, (X), 0, (X)) EUsso; (X, V) €U,y = (0,(X), 8, (YNEUes2» and finally (8,(X), 6, (Y)) €U

Let H(A) denote the closure of I(A) in (57,2). We clzim that A{A)czm. If B = (b(t),
K)e H{A), there exists a real sequence {s,} such that 05, (A)=(a( +s;), L—s,)~>Bas n > =,
Let t' < t" be numbers such that [/',#]K = ¢f. There exists x>0 for which [t/ —x, t" + 2|1 K =
p; for this » , choose n, so that yn>n, (6s,(4). B)€U,u. But then, if n>7n,, necessarily
[t — w4, ¥ +w/M4I (L —s,) =&, and so

et +s)—alt’ +s,) | <o, ([ —1°l) Yn>n,

Noting that the sequence of functions a(t + s,) converges uniformly in the interval ¥ —wi4,
" +w/4] to b(t) as n > =, n>=7, we obtain gb(z")-b(t")fgdA(ft'—‘Z"D, that is, B€®M.  We have
also shown that if o, (|sf)=sup|{b(f)—b(")| , where the supremum extends over all t' < t" such
that |/, 10K = &, |’ —#'<[s|, then o,(|s]) <o,

Now H(A) is invariant under translation 8¢, so the map 8g: H(A) x R » H(A) is well
defined. We will now show that it is uniformly continuous. For any B&H(4), let wB(s) =
inf{a:(0:(B), B)elU,} : obviously, og(s) Kmax (|s|, og(ls])) <max(s|, s,([s])). Now fix any number
€ > 0 and choose & > 0 so that, if|s|<§ , we have max(|s|, o,(/s[))<<e/2. Then for any |t — r| <
8, X,YeH(A); (X,Y)EUep, we have (6,(X), 6,(Y)eUsp and (0,(X), 6,(Y))€Usz , so that (8,(X), 8,(V)) €U..

Thus, we can consider the continuous dynamical system {H(A),8,,U). We claim that the
space (H(A),%) is complete. If Y, =(y,(®), T,)€H(A) is a Cauchy sequence, then 7,¢% is also
a Cauchy sequence, and, since (¥, p) is complete, there exists a set 7T < ¥ such that Th ~ T,

n » o, Let p, = p(Tn, T) + 0, n » »; we may assume without loss of generality that ppy, <

On ¥n. Now, considering the set Gp, = R\ Fap,, (s (T)) = R\ (Fo,, (S(THU Fp,, (s(T))) and letting n=em ,
we can define a sequence of functions y,(f): y,(# €C (G,), which is a Cauchy sequence; hence
there exists a function y(f)€C(G,) such that y,(t) converges to v(t) uniformly on Gy as
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n > », In addition, for any t,, t, that lie in the same interval of &G,, we have |y, ({)—
Yn ()| <o, (8 —1]) 5 hence also |y(t)—y () I<<o, (4, —4,)). Since G, < Guui; [JG,=R\T, there

m

exists a function y(t)Z[y(t): R\ T » R] such that y,(/) Zy(f) on each of the sets Gy as n + =
and moreover y(t) satisfies condition H, of [1]. Extending the definition of y(t) to the
points of s(T) so that it becomes left continuous, we obtain Y = (y(¢),T)€M. It is not hard
to see now that limY,=Y3; this, since H(A) is closed, implies that the space (4 (4),) is
indeed complete. ™%

Theorem 4 now follows from Theorem 1 of [1] and the remark just before formula (6).
2.2. We now point out the most important properties of the space APH (R) — AP{H, o).
A. APH(R) is closed with respect to addition and multiplication by scalars.

This follows from Theorem 1 and the fact that if X, YéRN , then X -+ Y ER, aX €N yYa€R.

B. By Lemma 4, a function XeAPH(R) is weakly bounded. There exists an unbounded
function A=APH(R) (compare Theorem 23.1 in [3]). ’

Indeed, let T ={nlUf{n +c, > ., where {cn} is an a.p. sequence such that 0 < cp < 1/4
and infc, =0; let a(t): R - R be a function such that :

a(f):{(t—n)+cn-l’ tE(n,fZ+cn];
0, te(n+cy n410

Obviously, (a(f),T)€éM, the function a(t) is unbounded [since a(n + c,) = cp! + ¢4l and, in
addition, T is a p-a.p. set [1]. We will show that A satisfies condition T';. Fix an arbitrary
number £ < 0.25. The sequence {q,}, ¢, = max{c,,e} » will be a.p., and, since §,>e>0, the se-
quence {qp'} will also be a.p. Let Qg be the set of e/2-a. periods common to {qp'} and {cp}.

We claim that if p¢ Q., then

et py—at<ce/2 WHERNS(T). (7)
Indeed, if t€ R\ F.{(s(T)), then either 1) f€(m -+ ¢, +¢&, m-+ 1—s; for some m and then, in view

of the inequality {¢mip — ¢ | <<€/2., we havet—%—pe(m-i—p-i-c +e, mA4prl—elcmAp, n+p+
Cm+p]’ so that (7) is true; or 2) t&{m-+=e, m--c¢,—¢l and therefore ¢y > 2e. In that case

also r‘——oﬁ(m—,-a——a, m-tpt+em—elS(mtp, m+p-+ ool and Cop 22 Cp— 1 Oy — Cmyp | =8, so that
g7t —c—nl, a7 —c—jI_p Finally, we obtain
)y —alt+p)| =leg! — b, | = 1z — gk, | <o/

Consequently, ACAPH (R).

C. 1. The space APH(R) is not closed with respect to multiplication. 2. If A, B e
APW(R), then AB¢ APW (R). 3. IfACAPH®RL|a(f)|>u>0 %t, then A1 APW (R).

Let us prove, say, 1). Let A be the function constructed in the previous example.
Then A%¢ %, since a?(n -+ ¢,) — &° (M= 2 + & >2; but mf‘ =0, (R+cp ) N T =6

D. 1. Properties H,, H;, H,, H; of [1] are independent of one another.

2. From a geometrical point of view, it is convenient to identify §-a.p.p.c. functions
= (a(t), T) and B = (a(t), P) for which s(T) = s(P). This identification is also important
because, otherwise, the distributive law may not hold formally in AP(@,d) . 3. A matrix-valued
function M = {Mij}, i=1,...,n; j=1,...,m, is said to be 8-a.p.p.c. if M, =(m;;{§),T;;¢
AP(®,8) i,j.. In view of Lemma 5, given any such function and an arbitrary € > 0, there exists
a set Qg of numbers T, relatlvely dense in R, such that

ST, T +0 <z, [M{E+1)—M [(Bf<<e vffx\ FS\sz))
where T = —Ty;, M(f) = iry; {t1, 8-} is some matrix norm.

E. 1. Let B=(bif. F)EAP(@, ; Ne (2) = mes (F . (S{TW N4, ¢ 1l Suppose that b(t) is bounded,
[ () [<<m Y4, and A (t) + 0 as € = O+ uniformly in fER Then b(t) is an S-a.p. Stepanov
function and therefore, if b(t) is uniformly continuous over R, then b(t) is an a.p. Bohr
function. In particular, all functions in APW(R) are S-a.p.

2. APH(R) contains functions that have no mean (in the usual sense, and they are there-
fore not a.p. in Weyl's sense).
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Proof. 1. Fix an arbitrary positive number & < 0.5 and an e-a. period t of B. Then
) —b+1)|<<e W ERN Fe (s(T)),
and if @ = F (s(TH)N[t, 1+ 1], D" = : ft—{— \CD’ then

-1

Slb(u}—fb.(u‘ﬁt) = { el 4 [ ] 1 <20 () + o

(I;' o o
2. Let T:{n}ujjn»!— -é—cos?n}_ and define a function f(t): R - R by
o {0, ze(nw 1/2e082n, n+ ;.-
_? 2{cosn |7, tE(n,n =~ 12 cos? n].
As in the case of B, one shows that (f{#),T)¢ APA(K). Further,

n4-1
1

Eff(u)du-——-
8

1 n
3 cos—2
P n+1‘/_Jcos k&,
=0
but the limit of the expression on the right as n » « is +x (this is readily proved with the
help of Birkhoff's ergodic theorem).

3. In conclusion, we consider the question of a.p.p.c. solutions in APW(R) for pulsed
systems.

The method we propose here, in principle, reduces the investigation of an a.p. pulsed
system to the thoroughly studied continuous extension of a minimal system of the translation
type on a metric compact space, while the results themselves are obtained in terms of pulsed
systems. For simplicity's sake, we confine attention to linear systems

dx/dt = A{) x + a(®),

8
Axly, = Fix+ [ (8)
where (€7, t;<<tu1 i fi x€R% F,eM,(R), T ={}€8, s(T)={t;1 pr: T —s(T)is the canonical
map of T onto the quotient set s(T) It may happen that T # s(T), in which case (8) will
be an abbreviated notation. for the pulsed system
dx/di = A{t) x + a(t),
Ax l‘ti =(Dj-x +{Pj1
where (E 4 ®;) x + @; = Hi, £ O ... O Hy, (%), Hy(x)=(E + F)x + [i, igtrs ey lin} = pr= {5}
It is natural to consider the translation of (8) for arbitrary s¢R:
dx/dt = A{t + s)x + a(t 4 ), (9)

Ax{t[_s = Fix+fi.

The sequence {t; — s} is conveniently reindexed so that the resulting sequence {ti(s)} lies
in % ; in that case, for some integer k(s), we have f,(s) = f;iips —s i » and (9) becomes

dxldi = At +s)x+a(t + )
Axliys = Fivrne + /‘H-k(s) .

Definition 6. System (8) is said to be p-a.p. if A(t) and a(t) are S-a.p. functions,
{fi} and {F;} are a.p. sequences, T is a p-a.p. set.

Given functions (4 (Z) a(®), 0 R—-M_{R)xR"XR and a vector (F,, f;, 1)}, we introduce
the notation L(t) and L,

If (8) is a p-ra.p. system, then any sequence of real numbers {sﬂ:} will contain a sub-
sequence {sp} = {skm} such that in S and 2., respectively,

Lt + sm) > L*(8) = (A* (), a* (1), 0),
Latrsmd = Lo} = {(Fp 17 DY {Ea (sm) — 7} ~0.

The systems obtained by all such limit passages
dx/dt = A*(f) x + a* (i),

(10)
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Axls =Fx+ 1, (11)

will be called the H-class of system (8) (after passing to the limit we may have {}@%, so
that it will be necessary to shift all the indices of the sequence again). It follows from
the results of [1] and the properties of Stepanov a.p. functions that an H-class is uniquely
defined by any of its representatives. After the necessary definitions, one can speak of
compactness of an H-class and of the fact that (11) defines a linear extensionover a minimal
two-sided stable system of translations acting on H; it should be observed, however, that the
linear extension will not define a continuous semigroup on H x R, since the solutions of
(11) need not be continuous ("semigroup'" — because the matrices E + F; may be singular).

3.1. Let us assume from now on that system (8) is p-a.p. By [1], ty = an + cq, where
{en} is an a.p. sequence. Define dy = (a + 1)n + ¢, then D = {d,} is a p-a.p. set, dp; —

d,>=1 ¥n.
Definition (see [6, 7]). A p.c. function x(t): R + R with discontinuities of the first
kind on T will be called an N — p-a.p.p.c. Levitan function if

1) ¥e>0 and 3yN>0 there exists a relatively dense set Q¢ y of € — N-a. periods t
(that is, numbers such that .

[x(t£ 1) —x@O)<e YE(RNF: (s(T))N[— N, N]);
2)¥e>0 FYN>0 (e, N)>0: QquvE Ququn S Qe,n.

Our aim is to prove the following propositions, which are analogues for a.p. pulsed
systems of theorems of Favard and Levitan, respectively.

THEOREM 5. If no homogeneous pulsed system in the H-class of system (8) has nontrivial
bounded solutions, then a bounded solution x*(t) of any system (11) will be zn element of
APW(R) [to be precise: (x* (), T*) € APW (R) ].

THEOREM 6. If the only bounded solution of a homogeneous pulsed system is trivial,
then any bounded solution of the corresponding nonhomogeneous p-a.p. system (8) is an N —
p-a.p.p.c. Levitan function.

To prove these theorems, we will need the following results, presented here without
proof.

LEMMA 6. If f(x) is S-a.p., then.¥e>0 26>0:

x40
sup S]i(u)!du<s.
X€ER bt

LEMMA 7. Let f(t): R > R be an a.p. function in Bohr's sense (an N-a.p. function in
Levitan's sense), () =/t +rn) for {€(t,.tap1]. Then (o), T)EAPW(R), (o), T) is an N — p-
a.p.p.c. function in Levitan's sense).

Define a function 4(#):R — M, (R)XR"X R:
(Z‘)={Ln+1, FE(dnt1— 1, dnpil; (12)
L(t—n), ) tE(dn, d,;_!_]——- l].
Obviously, given system (8) we can construct & (f) , and conversely.
LEMMA 8. If (8) is a p-a.p. system, then () is an S-a.p. function.

LEMMA 9. Let £*(f) lie in the H-class H) of &(f). Then (10) will be true for some
sequence {sm}, and if d = tn + n then, replacing &, L and d in (12) by &*, L* and d¥%, we
obtain an expression for &= (1).

Lemma 9 shows that each function &*c H (%) uniquely determines a certain p-a.p. system
in the H-class of system (8).

Proof of Theorems 5 and 6, following [7], Chap. VII. Consider the trivial bundle (H(¥)X
R", n, H(¥)). Let %(t) be a bounded solution of (8) and

Rt —n), €(dn dnyr—1I;
£() = | %t + O + AX], (¢ —dap),
te(dur1— 1, dupal-
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A direct check will show that: x(t) is continuous and bounded over R; Lemma 6 and the inequal-
ity ”A;ﬁn”s;ﬁk(g[HIFn“—kuanSQCT<:oo imply that x(t) is alsc uniformly continuous over R. The
set Q, = {¥% (¢ + ), x(s)), s€R} is bounded in H(¥)xR" and therefore, if Q is its closure, then
7(Q) = H(L). Fix an arbitrary L*¢H(¥%)and let ¥{f-+h)—%*(#). Since x(t) is uniformly con-
tinuous, we can find a bounded continuous function x*(t): R + RD such that x(t + hy) » x*(t)
as k » +o uniformly over compact subsets of R. In addition, by Lemma 9, the function ;*(ﬁ==
x*(t 4+ n), with #€(,,tat1l, is bounded by a solution of system (11). 1. Suppose the assump-
tions of Theorem 5 are valid. Then %*(t) is the unique solution of (11), and therefore x*(t)
is the unique limit funection of x(t + hy). Thus the set a~{£*)1Q is a singleton and so the
map w:Q-—>H (%) is a homeomorphism. But then x*(t) is a.p. in Bohr's sense, and by Lemma 7
(&*(D,T*)EAPHV(R). 2. Suppose that the p-a.p. system (8) has a unique bounded solution X
(t). Then WscR the set w Y4 (f+s)NQ is a singleton and therefore, if we consider w(Q,)
as a metric subspace of H(¥), it follows that the function

L+ )~ (L ({t+3), x(s)),
defined in m(Q,), is continuocus.

Consequently [7], x(t) is N-a.p. in Levitan's sense and the proof of Theorem 6 is -com-
pleted by referring to Lemma 7.
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DUAL APPROXIMATION OF RANDOM EVOLUTIONS IN AN AVERAGING SCHEME

A. V. Svishchuk UDC 519.21

We consider a double approximation of semi-Markov random evolutions, namely, the
averaging and diffusion approximation, when the balance condition is not ful-
filled. Double approximation algorithms are applicable for reserve and transport
processes and other stochastic systems in a semi-Markov random medium.

Algorithms of phase averaging of random evolutions, presented in [1] and developed in
[2, 3], define an average evolution, which can be considered as a natural first approxima-
tion of the original evolution in a gemi-Markov stochastic medium.

Algorithms of diffusion approximation of semi-Markov random evolutions (SMRE), presented
in [1] and developed in [4, 5], define the second approximation of the original evolution,
since the first approximation (the averaged evolution) is trivial when the balance condition
is fulfilled. '

In the present paper we use definitions, notation, and conditions introduced in papers
[1-6].
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