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In this paper we present a simple, general methodology for the generation of 
high-order operator decomposition ("splitting") techniques for the solution of 
time-dependent problems arising in ordinary and partial differential equations. 
The new approach exploits operator integration factors to reduce multiple- 
operator equations to an associated series of single-operator initial-value 
subproblems. Two illustrations of the procedure are presented: the first, a 
second-order method in time applied to velocity-pressure decoupling in the 
incompressible Stokes problem; the second, a third-order method in time 
applied to convection-Stokes decoupling in the incompressible Navier-Stokes 
equations. Critical open questions are briefly described. 

KEY WORDS: Splitting methods; operator decomposition; Navier-Stokes 
equations; pressure. 

1. I N T R O D U C T I O N  

In this article we int roduce a new methodology for the development  of 

simple, high-order opera tor-decomposi t ion  (or "splitt ing") techniques 
(Strang, 1968; Marchuk,  1971; Yanenko,  1971) for the solut ion of time- 
dependent  differential equations.  We consider the general init ial-value 
problem, 

du 
~ = _A(t) _~ + _ , ( t ) ,  +_f(0, 0 < t < r  (1.1) 

with initial condi t ions  _u(t= 0)=_u 0. Here u e ~ /  is the solut ion vector, t 
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is time, T is the final time of integration, _A(t) and _B(t) are general linear 
(or linearized) time-dependent operators, and f(t) is data. The operator _B 
may be considered more generally to be related to a Lagrange multiplier, 
as described in Section 3. Although for our applications (1.1) represents a 
semidiscretization of a mixed initial-/boundary-value-problem partial 
differential equation, that is, _A and _B are matrices resulting from the 
discretization of spatial differential operators, the procedures proposed 
should be equally applicable to systems of ordinary differential equations. 

It is often desirable to treat the d and _B operators of (1.1) 
"separately." First, it may be the case that d and _B are difficult to invert 
as the ensemble _A + _B, but are readily inverted independently. This occurs, 
for example, for A and _B corresponding to the one-dimensional con- 
stituents of a multidimensional spatial operator (Douglas, 1955; Peaceman 
and Rachford, 1955); for fluid flow equations, with _A representing the 
Coriolis force, a magnetic field, a Boussinesq temperature coupling, or 
(stiff) reaction kinetics (Bussing and Murman, 1988), and _B representing 
the "classical" Navier-Stokes problem; for the incompressible Stokes 
problem, with _A representing the divergence of the viscous stress tensor 
and _B representing the pressure term and incompressibility constraint 
(Chorin, 1970; Temam, 1984; Orszag, Israeli, and Deville, 1986). 

Second, even when the operators d and/or _B are not readily inverted 
independently, splitting may still be advantageous if the _A operator (say) 
is stiff relative to a computationally intensive _B operator (Hofer, 1976; 
Gear, 1980); in this case, temporal decoupling is desirable in order to avoid 
unnecessary solution of the _B system. Examples of this very common 
occurrence include: the system of ordinary differential equations describing 
the behavior of a collection of electronic devices, with _A and _B representing 
the "fast" and "slow" components/equations, respectively (White and 
Sangiovanni-Vincentelli, 1987; Saleh and Newton, 1989); the equations of 
reactor kinetics, with _A representing the equations for prompt neutron den- 
sity and B representing the equations for delayed neutron precursor density 
(Chao and Attard, 1985); a partial differential equation with a mesh spacing, 
and hence explicit time-step restriction, that is widely varying over the 
domain, with _A representing the fine-mesh equations and B representing 
the coarse-mesh equations; the incompressible Navier-Stokes equations, 
with _A representing the nonsymmetric, anisotropic convective terms 
(treated explicitly), and _B representing the Stokes operator (treated 
implicitly) (Ewing and Russell, 1981; Pironneau, 1982; Benqu6, Ibler, 
Keramsi, and Labadie, 1982; Gresho, Chan, Lee, and Upson, 1984). 

In this article we introduce a new procedure, an "operator-integration- 
factor" method, which allows for the simple generation of high-order split- 
ting techniques for equations of the general form given in (1.1). The outline 
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of the paper is as follows. In Sec. 2 we introduce the new approach and give 
several examples of schemes derived from the operator-integration-factor 
formalism. In Sec. 3 we apply these schemes to two problems arising in the 
simulation of incompressible flows, and give empirical evidence of the 
accuracy and efficiency of the methods. Lastly, in Sec. 4, we conclude 
with a brief description of outstanding questions that need to be resolved 
if operator-integration-factor methods are to be used with complete 
generality. 

Notat ion.  Unless otherwise indicated, we shall denote a matrix in 
~ x •  d as _A (capital underscore), and a vector in N~*" as _u (lower case 
underscore); on occasion we shall also write _u= ui = {ul  ..... u ~ }  r, where 
superscript T denotes transpose. The inner product will be denoted 
/AT/) - -  ~;7,~ r 

- - - , - i =  i u~v~. Boldface vector notation, u = {ul ..... ud} v, will be reserved 
for vectors in physical space (e.g., ~d  for d =  2 or 3), with the associated 

- Z  d dot product written as u. v -  ~=~/A~v,. 

2. OPERATOR-INTEGRATION-FACTOR PROCEDURE 

2.1. Operator Decoupling 

To begin, we write (1.1) in terms of an integrating factor in A, 

d 
{ %(t)}  = [_B(t) _. + / ( t ) 3  (2.1) 

in which t* is an arbitrary fixed time. The integrating factor n (t*;*) is 
defined by the set of ,/~/'2 differential equations, 

d r)(,.;t ) -Q~*; ' )_A(t )  (2.2) 

Q(,*;,*I = I  (2.3) _a 

where / is the identity operator. We remark that in the case where 
_A(t l )  _ A ( t 2 ) =  _A( /2 )_A( t l )  for any times tl, t2, such as when A is time inde- 
pendent or diagonal, 13 (t*;t) coincides with the exponential matrix, _~A 
exp[~l* A_( t ' )d t ' ] ;  for A(t) that do not commute, this scalar formula does 
not apply to the matrix case (Strang, 1990). Note it is assumed that all 
boundary conditions in space are already imposed on the discrete operators 
of (1.1), and thus (2.1) represents a restatement, not reformulation, of (1.1). 

Integration of (2.1) requires the evaluation of integration-factor terms 
of the form 

(2.4) 
where _~ may be u, B_u, o r f  To avoid explicit construction of the Q matrix, 
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we introduce an auxiliary variable, ~(t*;t/(s), and associated initial-value 
subproblem 

(d_~ 
'* ;~ 

}(s)=_A(t+s)~(1*;')(s), O<s<(t*-t)  (2.5) 
ds 

_~'*;')(s = 0) = _~(t) (2.6) 

from which we can then find 

Q~*;')_~(t) = _~('*;t)(t* - t) (2.7) 

The final relation (2.7) follows from multiplying (2.5) by t~('*;t+"} and _~a 
using (2.2), (2.3), and (2.6). Q may be thought of as the response matrix 
for the initial-value problem (2.5), and is also closely related to the Floquet 
matrix in the case where A(t) is time-periodic. In what follows we shall 
refer to Eqs. (2.5)-(2.7) as the associated-initial-value-problem process. 

On the basis of Eqs. (2.1) and (2.5)-(2.7) the original coupled problem 
(1.1) can be broken into two effectively decoupled subproblems, (2.1) is 
integrated in the new variable 

which is, in turn, evaluated from the associated initial-value problem 
(2.5)-(2.7). The particular numerical method generated by this operator- 
integration-factor approach is determined by the particular (finite- 
difference) time-stepping schemes chosen for (2.1) (scheme SB) and (2.5) 
(scheme SA); the resulting method will be denoted SB/SA. Note that the 
operator-integration-factor procedure is not a time-stepping scheme; 
rather, it is a procedure for the generation of time-stepping schemes. As a 
result, many of the methods generated by the operator-integration-factor 
approach are similar to known methods originally derived in a different 
fashion (see the references in the Introduction); other operator-integration- 
factor-derived schemes, however, appear to be new. 

The use of integration factors in the numerical solution of partial 
differential equations, although not new (Rogallo, 1977; Spalart, 1986; 
Canuto, Hussaini, Quarteroni, and Zang, 1987), has been limited in the 
past primarily to diagonal operators, with no attempt at systematic 
operator decomposition. The use of integration factors in ordinary differen- 
tial equations is more widespread, with application primarily to the 
splitting of coupled linear time-independent (..A )/nonlinear (B) systems 
(Palusinski and Wait, 1978). These ordinary-differential-equation methods 
typically involve explicit construction of the matrix exponentials, (2.4), in 
a preprocessing stage of the computation. In contrast, in the method 
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proposed in the current paper, the integration-factor matrices are never 
formed; rather, we evaluate the action of the Q matrices through solution 
of the associated initial-value problem, (2.5)-(2.7). The "action" approach 
offers advantages over the "explicit" exponentiation approach in generality 
(e.g., the treatment of time-dependent, and even nonlinear, A), efficiency 
(e.g., the use of matrix-free evaluation of sparse operators), numerical 
stability, and simplicity. Recently proposed Krylov approximation methods 
(Freisner, Tuckerman, Dornblaser, and Russo) may improve the efficiency 
of the explicit exponentiation techniques for certain classes of problems. 

In order to more clearly illustrate the basic concepts, we now turn to 
several examples of schemes derived from the operator-integration-factor 
approach. 

2.2. Examples of Schemes 

As described in the previous section, our operator-integration-factor 
approach involves discretization of (2.1) by a scheme SB, and discretization 
of (2.5)-(2.7) by a scheme SA. In the SB discretization of (2.1) the 
approximation to u at time t ~ will be denoted un=_u~t(t" ), where t ~ =nAt 
and At is the time step. In the SA discretization of (2.5) and (2.6) the 
approximation to ~('*;') at "time" s=mAs  will be denoted ~(t*;0m= 
~(~'s;')(mAs), where-As is the "time step" within the subproblem (2.5) 
and (2.6). Note that temporal discretization of (2.5)-(2.7) is defined 
to comprise both the approximation of (2.5) and the replacement of 
~(t*;t)(s=0)=_~(t) by ~/ t*; ' )~  (2.6). The resulting discrete 
approximation of (2.7) is denoted 

sA ) ___ (2.8) 

with As chosen such that ( t* - t ) /As  is integer. 

2.2.1. Euler Backward/Euler Backward 

We take t* = t n+l in (2.1) and apply the Euler-Backward scheme (SB) 
(Gear, 1971) to the resulting equation to arrive at 

u n + l - S  ~~ + fn+l]  (2.9) 
A ( ~ A  - - _ 

where f "  =f(tn).  Note that there is no "mixing" of operators on the right- 
hand side owing to the fact that the integration-factor term reduces to the 
identity operator for t = t ' + l ;  this is essential in achieving the desired 
decoupling of _A and B. To evaluate the exponential factor in (2.9) we apply 
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the associated-initial-value-problem process (2.5)-(2.7), discretizing (2.5) 
by the Euler-Backward scheme (S~) with As = At, 

~_ (tn+ l;tn)l __ ~l(tn+ l;tn)O = As_A( t~ + 1) O(tn+ l;tn)l (2.10) 

~l(tn+ 1; tn)o = ~rt (2.11 ) 

S A { Q(g_An+ I;tn)U n } ~- U (ln+ l;tn)l (2.12)  

Recall that the superscript -) rn in 0 (e'+~;'")~ refers to the ruth sub-time-step 
within the subproblem (2.5); here, rn = 0 or 1 since As= At. 

In order to more clearly demonstrate the decoupling effected by (2.9) 
and (2.10) we summarize the Euler-Backward/Euler-Backward scheme, 

u n + l  -- ~_(tn'l;tr')l ~- ZltFB(tn + 1) _un+l _.~. f n  + 1] (2.13) 

~l(tn+l;tn)l __ g n = dt_A(t,+ 1) ~l(tn+l;tn)l ,(2.14) 

Written in this form it is clear that the operator-integration-factor 
approach with Euler-Backward/Euler-Backward time differencing is, in 
fact, equivalent to the "standard" splitting approach proposed by 
numerous authors; the scheme is first order in time and unconditionally 
stable (assuming, for example, _uT_A_u < 0, uTBu < 0). 

2.2.2. Crank-Nicolson/ Crank-Nicolson 

We take t* = t "+1 in (2.1) and apply the Crank-Nicolson scheme (Se) 
(Gear, 1971) to the resulting equation to arrive at 

At 1) u~+l + f ~ + l )  + 
- = T - 

(2.15) 

where for simplicity of notation we introduce g"=B_(t")u_"+f ~. To 
evaluate the two exponential factors in (2.15) we apply the associated- 
initial-value-problem process (2.5)-(2.7), discretizing (2.5) by the Crank- 
Nicolson scheme (Sa) with As = At. The resulting equations for the _u n and 
g" integration factors are then 

flu.+l.t~)l --u-(t~+ltn)~ =-~AS[A_(tn+l)~tU~ _( )_~(t~+l;t")o] (2.16) 

~(t"+l;t")~ = u" (2.17) 

SA{Q_ ~"+I;t")R n } ~ ~_( tn+t;tn)l (2.18) 
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and 

~ ( t n + l ; t n )  1 _ ~(t.+x;~.)o = A s  E-A(t~ + 1) ~(~o+~.~,,)1 + A(t~) ~(t .+~;t . )0]  ( 2 . 1 9 )  
- 2 - - 

At 1) 0(~,+~;~,)1 + 
~(~.+~;,~)1- u~ =_~_ [_A(t~+ _A(t") _u"] (2.23) 

~(t, +,;t,) 1 _ g  ~ = _~_ E A(t~ + A t  1 ~(~,,+~;~~ + _A(t ~) _g~] (2.24) 

The resulting method is quite close to the classical second-order "method 
of approximate factorization" (Marchuk, 1971; Yanenko, 1971; Ames, 
1977), albeit derived in a very different fashion. Note that replacement of 
~('"+~;~~ in (2.22) with g~ destroys the second-order accuracy of the 
method; we have verified this empirically (and accidentally) in the Stokes 
solver described in See. 3.1.3. As for the Euler-Backward/Euler-Backward 
scheme of the previous section, the Crank Nicolson/Crank-Nicolson 
method completely decouples the inversion of _A and _B, thereby permitting 
more effective solution methods to be pursued. 

2.2.3. Backward-Differentiation/Runge Kutta 

We take t * = t  n+l in (2.1) and apply the Qth-order Backward- 
Differentiation scheme (S~) (Gear, 1971) to the resulting equation to arrive 
at 

Q 
~n+l __ E flqSA{Q~(A_ n+l; tn+l-q)~-n+l--q} = /3/z~t[~B(tn+ 1) un+l D[_ fn+ 1] 

q=l 
(2.25) 

where the /3q, /3' are the Backward-Differentiation coefficients (e.g., for 
Q = 3 ,  fl~ = -18/11,/32=9/11 ,/33 = -2/11,/3' =6/11). To evaluate the Q 
exponential factors in (2.25) we apply the associated-initial-value-problem 
process (2.5)-(2.7), discretizing (2.5) by the classical fourth-order explicit 
Runge Kutta scheme (SA) (Gear, 1971) with As=At/M (M~>I and 
integer): For q = 1 ..... Q, 

~y(tn+l;tn)O= gn (2.20) 

SA{_Q~,+~;,O)_gn} _ ~(,,+~;~,)i (2.21) 

respectively. 
We summarize the Crank Nicolson/Crank-Nicolson scheme as 

u ,+l  ~(,,+t.,,~l At [(_B(t,+l)_u~+l+f,+l)+~(~,+~;,,,)l ] (2.22) -_u ' =-~- 
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~l(tn+l;t n+l q)m+ l 

with 

and 

- A ( t  "+1 q q - m  As )  (t (''+*;tn+~-q)m g o - - _  

/~(t~+~;,,,+l q),, As ) 
g l  = -A( t n + l  q q- (m q- 1/2) As) ~u_ + T g_o 

/ 

/ ~(tn+l.ln.l-q, m A s  ) 

, , + T g  , / 

g3 = d( t~ +1 - q + (m + 1 ) As)(O <'+ 1;,,,+ l-q)m + asg2) 

rn 1 tn-I-q n AS 
=_~( * ;  , ), q - - ~ - ( g o - } - 2 g l q - 2 g 2 q - g 3 )  

m = O  ..... q M - 1  

~.l(tn+l;tn+l-q)O~.un+l q 

(2.26) 

(2.27) 

SA { {2~n+ 1; tn+t-q)u_ n +1 -- q} =--- ~ (tn+ 1; tn+l-q)qM (2.28) 

For convenience we have chosen As to be the same for all Q subproblems. 
The complete Backward-Differentiation/Runga Kutta scheme com- 

prises (2.25) and (2.26)-(2.28). Unlike the Euler-Backward and Crank- 
Nicolson schemes of the previous subsections, the Backward-Differentiation/ 
Runga-Kutta  method admits no simple interpretation as a classical 
splitting scheme, and is, indeed, better described as a generalized, high- 
order subcycling approach (Gresho, Chan, Lee, and Upson, 1984). The 
method is formally order rain(Q, 4) in time. Although there is no stability 
restriction on At in the implicit treatment of (2.25), stability of the explicit 
subproblem (2.26)-(2.28) requires a s < < . a S o r ,  with Ascr determined 
(roughly) by the condition that the spectrum of As_A lie within the absolute 
stability region of the explicit Runga-Kutta  scheme. 

The Backward-Differentiation/Runga-Kutta method is of interest in 
problems in which _A is stiff, or difficult to invert, relative to a computa- 
tionally intensive _B system; this may occur, for example, when B represents 
a constraint, and therefore must be treated implicitly. To illustrate this 
point we consider, for purposes of comparison, solution of (1.1) [not (2.1)] 
by a standard semi-implicit scheme, with _A treated by a modified third- 
order Adams-Bashforth technique (Gear, 1971; Ho, 1989), and _B by the 
Qth-order Backward-Differentiation scheme. The critical time step for such 
a method is determined by the stability of the Adams-Bashforth method 
applied to A, and will be denoted At . . . . .  f. In the limit that inversion of the 
B system is infinitely more expensive than evaluation of the A operator, the 
Backward-Differentiation/Runge-Kutta scheme applied to (2.1) with time 
step At will be 5 P = a -A t~At  ..... f faster than the Backward-Differentia- 
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tion/Adams-Bashforth method applied to (1.1); in practice, the actual 
speedup, 6 e', will be slightly less, 5: '  < a. (Note this analysis presumes that 
the time step in the standard semi-implicit approach is stability, not 
accuracy, limited.) 

3. APPLICATION TO INCOMPRESSIBLE F L O W  

We present here two examples of application of the methods 
developed in the previous section to important problems in the simulation 
of incompressible fluid flows: the first a velocity-pressure decoupling of the 
Stokes problem; the second a convection Stokes decoupling of the 
Navier-Stokes equations. 

3.1. A Fu|l-Implieit Incompressible Stokes Method 

3.1.l. Governing Equations 

The equations governing the time-dependent incompressible flow of a 
highly viscous Newtonian fluid in a fixed domain t'2 in ~ d  are the Stokes 
equations, 

(2--~u = V2u - Vp + f (3.1) 
0t 

V . u = 0  (3.2) 

with no-slip boundary conditions 

u = 0  (3.3) 

applied on the domain boundary c?Q. Here u ( x , t ) = { u l ,  u2, u3} = 
ui(x, y, z, t) i + u2(x, y, z, t ) j  + u3(x, y, z, t) k is the velocity, p(x, y, z, t) is 
the pressure, and f(x, y, z, t) is an applied force. The density of the fluid is 
taken to be unity, and the viscosity is folded into time and the pressure. 

We next consider a variational (e.g., finite element) discretization of 
(3.1)-(3.3). In particular, we construct a semidiscrete (in space) approxima- 
tion to (u, p )~  (X, g), (u h, Ph)~ (Xh, Yh). Here (X, Y) are the spaces in 
which the variational formulation of (3.7)-(3.3) is well posed, and Xh c X, 
Y:, ~ Y are appropriate conforming approximation subspaces (Girault and 
Raviart, 1986). We then choose a basis for (u~, Ph), writing uh(x, t ) =  
_u~(t)_~h(x), ph(x, t)=_p~(t)_cp:,(x); for example, a nodal basis satisfies 
0hi(x:~) = c5•, where _x h is some unisolvent set of basis points, and 6u is the 
Kronecker delta symbol. The discrete equations for the basis coefficients 
(U-h, Ph)~ ( ( ~ ) d ,  ~d:) are then given by 

Mh dUh Lhuh + r - -Dh Ph + Mhfh (3.4) 
- d t  - - - - - 
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Oh "-uh =0  (3.5) 

where M h e R ~ . . . .  r L h ~ N ~  • ~, and D_h E (NJu • y )a  are, respectively, the 
basis-specific mass, - V  2, and gradient matrices derived from the corre- 
sponding bilinear forms in the variational formulation of (3.1)-(3.3). The 
vector _fh contains the _Oh basis coefficients of an appropriate projection 
or interpolation of the continuous force f. We assume that all essential 
boundary conditions (3.3) are implicitly represented in (3.4) and (3.5) 
through elimination of appropriate basis coefficients. In essence, (3.4), (3.5) 
can now be considered as a system of ordinary differential equations, 
amenable to classical "method-of-lines" discretization in time. 

Complete numerical resolution of (3.4), (3.5) requires two further 
steps: choice of a time-stepping scheme; and choice of an inversion proce- 
dure for the resulting implicit equations (we consider only implicit methods 
given the relatively severe stability restrictions associated with the 
Laplacian operator). A common approach to this discretization/solution 
problem comprises: a standard full-implicit time-stepping procedure, such 
as Euler-Backward, Crank-Nicolson, or Backward-Differentiation; Uzawa 
transformation of the resulting fully discrete system to d + 1 "uncoupled" 
elliptic equations (Arrow, Hurwicz, and Uzawa, 1958; Glowinski, 1984; 
Temam, 1984; Girault and Raviart, 1986; Cahouet and Chabard, 1986; 
Maday, Patera, and Rcnquist, 1987; Bristeau, Glowinski, and Periaux; 
Maday, Meiron, Patera, and Rcnquist); solution of the elliptic equations 
by iterative procedures such as the conjugate gradient method (Golub and 
van Loan, 1983). This approach, though viable, suffers from the fact that 
the Uzawa pressure equation involves an inverse Laplacian, and therefore 
must be solved as a nested elliptic iteration. 

It is clear that a time-splitting approach to (3.4), (3.5) that would 
reduce the resulting implicit equations to more tractable (e.g., truly 
decoupled, that is, non-nested) form while simultaneously maintaining 
high-order accuracy is highly desirable. In the two subsections that follow 
we propose two such methods based on the Euler-Backward/Euler- 
Backward and Crank-Nicolson/Crank Nicolson schemes presented in 
Sec. 2. 

Remark 1. The time-stepping procedures developed in the current 
article should be applicable to a wide range of variational (and non- 
variational) spatial discretizations. For purposes of numerical example, 
however, we shall focus primarily on one particular variational spatial 
treatment, the Legendre "P~xPN_2" spectral element Stokes and 
Navier-Stokes discretization (Maday, Patera, and Rcnquist, 1987; 
Rcnquist, 1988; Maday and Patera, 1989). Spectral element discretizations 
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are especially appropriate candidates for time-splitting approaches given 
the rapid growth of the extreme eigenvalues of spectral operators 
(Weideman and Trefethen; Vandeven, 1990); high-order time-splitting 
methods are of particular interest in the spectral context given the rapid 
convergence rate of spectral methods in space (Canuto, Hussaini, 
Quarteroni, and Zang, 1987). 

Remark 2. We note that although splitting approaches have not, to 
our knowledge, been applied to (3.4), (3.5), they have been vigorously pur- 
sued in the context of the pressure-Poisson form of the Stokes problem 
(Chorin, 1971; Temam, 1984; Kim and Moin, 1985; Orszag, Israeli, and 
Deville, 1986; Zang and Hussaini, 1986; Karniadakis, Israeli, and Orszag, 
1990). In many cases the divergence form of the Stokes problem, (3.4), 
(3.5), is preferred over the Poisson form of the equations, in that the for- 
mer, unlike the latter, makes no assumptions as regards boundary condi- 
tions or the form of the stress tensor; in particular, the divergence represen- 
tation can readily treat free surface flows (Ho and Patera, 1990a; Ho and 
Patera, 1990b), and flows involving variable viscosity or complex rheology. 
The divergence form of the equations also offers a better theoretical 
framework, especially as regards the analysis of spatial discretization errors. 
For these reasons we believe that the success of splitting methods for the 
Poisson formulation does not mitigate the need for corresponding progress 
in the divergence approach. 

3.1.2. Euler-Backward/Euler-Backward 

We apply the Euler-Backward/Euler-Backward method of Sec. 2.2.1 to 
(3.4), (3.5), with _A associated with -_L h, and _B associated with the 
pressure/divergence "I)_h system." The resulting method can be written, 
analogously to (2.13), (2.14), as 

Mh_u~, +1 - -M ~'(t"+l;t')l = D r - n + l  f-hn+l ] - h--'~, A t [ _  h Ph + _M h ( 3 . 6 )  

O h .U~+I  = 0  (3.7) 

_M~(t'+lz"ll-_Mhgh AtL ~1 (t'+l;tn)l (3.8) hU_h , n __ __ - - h - h  

where _"7, = uh,~,(t'). Note that _Mh, _Lh, and _D h are not functions of time, 
and thus time-level superscripts are omitted. We next apply a "Uzawa" 
procedure to (3.6), (3.7), arriving at the final set of equations 

Mh_U~ +1 /1At ~'(t '+l; t ' ) l  A D r ~ n + l  n + l  --~h"-h = t [ _ h g  h + M h f  h ] (3.9) 
/IA- 1D T _ n + l  ~( t  n+ --Dh "~_,~h_ -h_Ph =Dh" ( - U h -  ~;t')l/At+rn+l~-'h J (3.10) 

__i ~(F~+l;tn) l  n A , [  ~( tn+l; tn)  1 (3.11) 
hU_h - -  m h O h  = - - z ~ . ~ h U _ h  
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which must be solved at each time step. Note that (3.6)-(3.8) and 
(3.9) (3.11 ) are discretely equivalent. 

These equations are completely decoupled, requiring d elliptic solves in 
(3.11), and one elliptic solve in (3.10). Although the elliptic operator in 
(3.10) may appear nested, the spectral element mass matrix is, in fact, 
diagonal, and thus _Mh 1 requires no iteration. (Finite element mass 
matrices would need to be "lumped" to avoid nested elliptic solves.) We 
note that the operator _Eh --D_h._Mh ~ T = D_ h in (3.10) plays the role of a 
Laplacian; _E h is, in fact, a "complementary mixed" formulation of the 
Laplacian which is, unfortunately, less readily preconditioned than the 
standard variational form. 

Remark  3. If we were to apply the standard (unsplit) Euler back- 
ward method to (3.4), (3.5), and then apply the Uzawa procedure, the 
resulting discrete pressure operator would be _S h= --Oh 1 -_H h D h, where 
H h = L j , +  ( l /At)_Mh is the discrete Helmholtz operator. Hence, iterative 
inversion of _S h requires d elliptic (Helmholtz) solves for each pressure 
iteration, that is, the iteration involves nested elliptic solves. Nested 
iteration is eliminated by the splitting methods described in this paper. 

3.1.3. Crank-Nicolson/Crank Nicolson 

We apply the Crank-Nicolson/Crank-Nicolson method of Sec. 2.2.2 
to (3.4), (3.5), with _A associated with --_Lh, and _B associated with the 
pressure/divergence "Oh system." The resulting method can be written, 
analogously to (2.22)-(2.24), as 

Mh_u~+~_Mh~to+~;,o/1 At r n+l - ,+ = T  [(D-h-Ph +Mhf~ .~ )+Mhg~ ,  ';,,~1] (3.12) 

D_h ._u~ +1 = 0  (3.13) 

M ~l(tn.l;tn)l z~t [-r  ~(tn+l;tn) 1 ..L n 
h -h  - - -mh~nh= - - T  L - - ~ h ~ - h  "-LhU-h] (3.14) 

m ~(tn+l;tn)l n z~t r l  ~.(tn'l;tn) 1 n 
h_Sl, -- -Mhgh-- --~-  k--~h~h +--Lhgh] (3.15) 

where gh= _Ms r , n n D-h _Ph + fh" We then apply a Uzawa procedure to obtain 

Mh~]n q-1 A/[ ~( ln+l;tn)l At T ,4-[ .+1  ~ n+l;ln)l] - = - -  _ + Mhf h )+  _Mhg(h ~ (3.16) e~h-~h 2 [(D-h Ph 

_ _ D h .  * t - - I T ~ T  n + l  - -  [?~( tn+l ; tn ) l /A t~_ fn+l  ~(tn+l;tn)l - ~lh ~--h_Ph =Dh'~-_~h /~ ' - - ' -h  +g_h ) (3.17) 
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m ~(tn~L;tn)l zJ t  r [  ~(tn+l;tn) 1 n h_,_,,, - mh_u~ = - ~  L-~h-"h +-Lh-uh] (3.18) 

. ,+ At FL a(,,,+~;,,,)l +_Lhg~] (3.19) Mh_g~' ';'"~' - _Mh_gT, = - - ~ -  L _ ~ , ,  

which must be solved at each time step. The computational procedure and 
complexity are the same as for the Euler-Backward scheme (3.9)-(3.11), 
save for the additional elliptic solve, (3.19). 

It is of interest in the case of this Crank-Nicolson scheme to note that 
(3.16)-(3.19) is equivalent to 

M h (  "~'+ 1 -  -u~ ) -  At 

1 , 1 f ,+ l  _ , [(Dhph +-Mh_h ) + ~ D  v , _ t _  h_Ph + _ M ~ L ) ]  

Z]t 2 kt~lt, -ht 'h  +-fh --(-Mh D-h-Ph+-fh)] (3.20) 
+ - # - g ~  J t  " 

D_ n + l  h "-uh = 0  (3.21) 

It is seen that the method corresponds to an "unsplit" Crank-Nicolson 
scheme augmented by an additional term which is formally O(zlt2); indeed, 
(3.20) has the form typical of splitting approximations. The value of the 
operator-integration-factor approach is in providing a systematic proce- 
dure by which to generate consistent approximations which, by construc- 
tion, admit decoupling of the constituent operators. Note that at steady 
state all splitting errors vanish in (3.20); this does not, of course, imply that 
arbitrarily large time steps should be taken, given the behavior of the 
Crank-Nicolson scheme for large At. 

3.1.4. Numerical Results 

We consider here the two-dimensional model problem analyzed in 
detail by Deville, Kleiser, and Montigny (1984), and Orszag, Israeli, and 
Deville (1986). The governing equations (3.1), (3.2) are solved in a domain 
.(2 defined by 0~<x~<2~, - l < y < l .  The velocity u = u l ( x , y , t ) i +  
u2(x, y, t ) j  is required to be 2~z-periodic in x, and to satisfy no-slip 
boundary conditions, (3.3), in y, ul(x, +_ 1, t )= u2(x, _+ 1, t )=  0. The initial 
conditions are taken to be the least-stable eigenfunction of the Stokes 
operator, 

ul o(X, y) -- sin x(a cosh k sin ay - cos a sinh y) (3.22) 

u2 o(x, y) = cos x(cosh k cos ay - cos a cosh y) (3.23) 
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where a ~ 2.883356, for which the exact solution is then 

u l ( x ,  y,  t) = sin x ( a  cosh k sin ay  - cos a sinh y)  e -~~ (3.24) 

Uz(X , y, t) = cos x(cosh k cos ay  - cos a cosh y)  e - ~  (3.25) 

p ( x ,  y, t ) =  - 2 ( c o s  a cos x sinh y ) e  ~ (3.26) 

with eigenvalue 2 ,.~ 9.313739. 
Our  numerical tests are for the case of the Legendre " P N  • P N - 2 "  

spectral element Stokes discretization (Maday,  Patera, and RCnquist, 1987; 
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Fig. 1. In (a) we plot the velocity error measured in the relative HLnorm, e., at time T=  0.1 
as a function of the time step At  for solution of the two-dimensional, unsteady Stokes problem 
(3.1), (3.2) subject to initial conditions given by (3.22), (3.23). In (b) the corresponding 
pressure error measured in the relative LZ-norm, ep, is shown. The results are obtained using 
the Euler backward/Euler backward method (3.6)-(3.11) ((3) and the Crank-Nicolson/ 
Crank-Nicolson method (3.12)-(3.19) (rq). For comparison we also show the results using 
the classical first-order Stokes-splitting scheme (0) .  
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RCnquist, 1988; Maday and Patera, 1989) using K =  6 elements, each of 
polynomial order N in each of the two spatial directions. In all cases the 
discrete equations are integrated to a final time T =  0.1, at which time the 
solution has decayed to roughly 1/3 of its initial amplitude. The velocity 
error, e., is measured at time T in the (relative) Hi-norm (Adams, 1975) 
in space [ x~a=2 2 1/2; H1]l/2/[~=d~--? IIUi(', T)H the z..~i=l Ilui( ", T)--Uh,Ati( ' ,  T)II 2 
pressure error, ep, is measured at time T in the (relative) L 2 norm, 
HP(', T)  -- ph,~t(., T)IIL2/Hp(', T)HL2. Spatial convergence is examined by 
considering the dependence of e, and ep on N for sufficiently small At; 
temporal convergence is examined by considering the dependence of e, and 
ep on At for sufficiently large N. 

We begin by examining the temporal error by plotting in Figs. la and 
lb the velocity and pressure errors, respectively, as a function of At for the 
Euler-Backward and Crank-Nicolson Stokes schemes of Secs. 3.1.2 and 
3.1.3. We take a polynomial order of N =  8 in each element, which is suf- 
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ficient to ensure that there is effectively no spatial contribution to the error. 
It is seen that, consistent with our formal expectations, the Euler-Backward 
and Crank-Nicolson schemes are first- and second-order accurate in time, 
respectively, in both the velocity and the pressure. The very significant 
advantage of greater than first-order methods is clearly demonstrated by 
the large reduction in error of the Crank-Nicolson scheme relative to the 
Euler-Backward method. Note that at At  =0.01 the error in the Crank- 
Nicolson scheme is 1.65 x 10-3; this time step is roughly .1 the time scale 
of the eigenfunction decay (1/2), and roughly 10 times the critical time 
step that would result were an explicit scheme used for the viscous terms. 
By virtue of elimination of nested iterations, both the Euler-Backward 
and Crank-Nicolson methods promise to be faster than corresponding 
standard Uzawa Stokes-decoupling procedures; however, we have not yet 
performed a fair comparison between the two approaches. 

We have also plotted in Figs. la and lb the velocity and pressure 
errors obtained using a Legendre "PN X PN" spectral element approxima- 
tion (Karniadakis) of the classical first-order Stokes splitting scheme based 
on a pressure-Poisson equation with invisicid Neumann boundary condi- 
tions (Chorin, 1970; Temam, 1984; Orszag, Israeli, and Deville, 1986). 
Although the error in the velocity is, first order, the pressure converges 
much more slowly owing to the incorrect (inviscid) boundary condition. 
This poor convergence is by no means a general indictment of the Poisson 
approach, for which numerous high-order extensions have been proposed 
(Kim and Moin, 1985; Orszag, Israeli, and Deville, 1986; Zang and 
Hussaini, 1986; Karniadakis, Israeli, and Orszag); it does, however, 
indicate the tendency of the divergence form of the equations to produce 
more uniformly convergent schemes in time and space. In fairness to the 
Poisson schemes it should be noted that the divergence-form uniformity 
comes at some cost. Although the new schemes proposed in this article and 
the pressure-Poisson approaches both require the same number of elliptic 
solves per time step (d+ 1), the latter involve only "standard" Laplacian 
discretizations, whereas the former also generate the more problematic 
_Eh system described in Sec. 3.1.2. 

Lastly, as regards spatial convergence, we have verified that the Euler- 
Backward and Crank-Nicolson schemes converge to the exact solution 
exponentially fast in N for sufficiently small At,  as would be expected for 
a spectral approximation to an infinitely smooth solution. In contrast, 
whereas the first-order pressure-Poisson approach does achieve spectral 
accuracy in the velocity, it cannot achieve spectral accuracy in the pressure 
without postprocessing owing to the incorrect (inviscid) boundary condi- 
tion. Higher-order methods in the Poisson context improve the pressure 
convergence significantly. 
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3,2. A Lagrangian/Subcycling Method for the Incompressible Navier-Stokes 
Equations 

3.2.1. Governing Equations 

We consider here the full incompressible Navier-Stokes equations 
(Temam, 1984; Girault and Raviart, 1986) governing the time-dependent 
flow of a viscous Newtonian fluid in a fixed domain f2 in Nd, 

- - =  - u - V u  + vV2u -V(p/p)  + f (3.27) 
0t 

V. u = 0 (3.28) 

with no-slip boundary conditions 

u = 0  (3.29) 

applied on the domain boundary ~?s The density and kinematic viscosity 
of the fluid are denoted p and v, respectively. As for the Stokes problem, 
we consider the semidiscrete (in space) approximation (nh, Ph) to (n, p) 
obtained from a variational discretization (Girault and Raviart, 1986) of 
(3.27)-(3.29), 

d u - h  _ 
-Mh dt C-h(U-h)u-h--v-Lhu-h+D-r(-ph/P)+-Mhf-h 

D_h ' u h = 0  

(3.30) 

(3.31) 

with _Mh, Lh, D-h, and -fh defined as for (3.4), (3.5). The convection matrix, 
_C~,(_uh) e ~ x  • y ,  represents the discrete form of n. V, which can be written 
in convective, conservative, or skew-symmetric form. 

3.2.2. Backward-Differentiation/Runge-Kutta Method 

We apply the Backward-Differentiation/Runge-Kutta method of 
Sec. 2.2.3 to (3.30), (3.31), with _A associated with -_Ch, and _B associated 
with the full Stokes operator. The resulting method can be written, 
following (2.25), as 

~MhI~_nhq-I ~ (tn+l;t"+l-q) rl l--q}] 
- ~qSA{QMilCh~V,:+,~,U_h + 

q = l  

, n + l  T n +  , , -  f n + l  = ~3t[--VLhUh +Dh(_ph 1/p)+C~h_h ] 

D_h "_u7,+1 = 0 

(3.32) 

(3.33) 

854'5 4-2 
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where u~ = u~,,~,(t"), and the/~q,/~' are defined in Sec. 2.2.3. Here U~+l(t) 
is the ( Q -  1)th-order polynomial extrapolant of the discrete velocity on 
the time interval (t ~ + ~ - QAt )  <<. t <~ t ~ + ~ based on _uT, ..... u_7, + ~ - Q; for exam- 
ple, for Q =  1, U]+~(t)=_u~ (Maday, Patera, and Rcnquist). Following 
(2.26)-(2.28), we then solve 

For q = 1,..., Q, 

n ~ (tn+l'tn+l-q)m mhgo = - - C _ h ( U _ h + l ( t n + l - q + m A s ) ) u h  , 

Mh-gt = -Ch(U_7,+ ~( tn+ l - q  + Em + 1/2 ] As))  (fi~ '~ ~ ) ' ~ + 2  _go) 

[/~(tn+l't n+l q)m AN 
-Mhg2 = ---~ht-~hr t , , , , + l ( t ~ + l - q + [ m + l / 2 ] A s ) ) ~ u _ h  , +--f-g1 ) 
Mhg3= ~+1 ~ + l - q +  1] ~ (t~+l"~n+l - - C h ( U h  (I [ m  Ar AS))(Uh ' -q)m Aft Asg_2 ) 

~(tn+l;tn+l-q)m+l ~(tn+l't n+l q)m 
_% - _uh ' + (_go + 2_g~ + 2g 2 + _g3), (3.34) 

m = 0,..., q M -  1 

with 

and 

-uh~ (t,+l-t,,+t, q)0 =uhn+t q (3.35) 

S A {  Q_ (tn+l;tn+l-q)_Mh-I C h(U_t~n+l (.)) II hn+l-q}  ~ "ha('"+~;Z"+~-qlqM (3.36) 

Effective linearization is critical to the success of the integration-factor 
approach. 

We remark that examination of the left-hand side of (3.32) suggests 
that, by virtue of the integration-factor decomposition, we have replaced 
the sum of the unsteady and convection terms in (3.30) with a single sub- 
stantial derivative. To see this more readily, we consider the initial-value 
problem (2.5)-(2.7) associated with the q =  1 integration factor of (3.32) 
prior to spatial and temporal discretization, 

d~(,"+l;t")(s) 
- u ( x ,  t" +s) .V~/~~ 

ds 

fi('"+l;'~ s = 0 )  = u (x ,  t") 

(tn+l"tn) ( Q _.(,,' .)vU~X, t n) = fi(t"+~;t"~(x, s = At)  

O < s < A t  (3.37) 

(3.38) 

(3.39) 



Splitting Methods 281 

It follows from the solution of (3.37), (3.38) that (3.39) can also be written 
a s  

where 

) ~(t,,+l;tn) ,,~v u(X(x, t'), t') dr', t" ~ _ u ( x , . ) V U ~ ,  t n ) = l l  X - -  ,, (3.40) 

tn+ i f ,  

X(x, t) = x - J, u(X(x, t'), t') dt' (3.41) 

is a Lagrangian position variable. It is then clear from (3.40) that the left- 
hand side of (3.32) is, indeed, an approximation to the substantial 
derivative, that is, an approximation to the space-time derivative following 
a material point in the fluid. As a corollary, we note that, in the steady 
state, the left-hand side of (3.32) is a streamline-upwind approximation to 
the convective term (Brooks and Hughes, 1982), with O(At) Q errors in 
streamline integration of the diffusive terms committed in (3.32), and 
O(At) 4 errors in characteristic-foot location and dispersion committed in 
(3.34)-(3.36). 

The Backward-Differentiation/Runge-Kutta method is similar to two 
methods previously proposed for the treatment of the Navier-Stokes equa- 
tions. First, from the Lagrangian interpretation, (3.37)-(3.41), the method 
can be viewed as a "characteristic" scheme of the variety introduced by 
Ewing and Russell (1981), Pironneau (1982), and Benqu6, Ibler, Keramsi, 
and Labadie (1982). Second, from the subproblem treatment, (3.34)-(3.36), 
the method can be considered to be a "subcycle" technique, as described in 
Gresho, Chan, Lee, and Upson (1984). The relationship between these two 
methods has not, to our knowledge, been previously recognized. The merit 
of the operation-integration-factor derivation approach lies in the efficient, 
systematic extension of these concepts to higher-order discretizations; from 
the upwind arguments of the preceding paragraph, high-order methods for 
convection-Stokes splitting should be considered a necessity. 

Remark 4. The operator-integration-factor approach presented in 
the current article arose, in fact, through recognition of (3.40) and sub- 
sequent generalization. Analyses of these pre-operator-integration-factor 
convection-Stokes "characteristic" methods may be found in Ho, Maday, 
Patera, and Rcnquist (1990). 

3.2.3. Numerical Results 

In this section we consider solution of several two-dimensional 
problems by the Backward-Differentiation/Runge-Kutta method. To 
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completely characterize (3.32), (3.33) we need to specify the spatial dis- 
cretization and Stokes solver: the spatial discretization will be taken to 
be the Legendre "PNXPN_ 2" spectral element approximation (Maday, 
Patera, and Rcnquist, 1987; Rcnquist, 1988; Maday and Patera, 1989) 
characterized by K, the number of spectral elements, and N, the order of 
the polynomial approximation in each element in each spatial direction; 
the Stokes system will be solved by the Uzawa procedure described in 
Sec. 3.1.1 (see Remark 3). 

To begin, we consider a simple model problem proposed by Kim and 
Moin (1985). The governing equations (3.27) (3.29) are solved with p = 1 
and v=l/2rc 2 in a domain O defined by - l ~ x ~ < l ,  - l ~ < y ~ < l .  The 
velocity u=u~(x,  y, t ) i+u2(x ,  y, t)j  and pressure p are required to be 
2-periodic in x and y. The initial conditions are taken to be 

ul o(X, y) = -cos  rex sin roy (3.42) 

u 2 o(X, y) = sin 7cx cos ~y (3.43) 

for which the exact solution is then given by 

ul(x, y, t) = ( - c o s  ~x sin ~zy) e t (3.44) 

u2(x, y, t) = (sin ~cx cos ~y) e -t  (3.45) 

p(x, y, t) = - (cos  2~x+ cos 2~y) e-2'/4 (3.46) 

In order to investigate temporal convergence the solution is integrated to 
a time T =  1.0 with different At; N is maintained sufficiently large (N=  12) 
to ensure no spatial contamination of the error. We have also confirmed 
exponential convergence in space with increasing N (for sufficiently small 
At). In all cases K =  4 spectral elements are used. 

We plot in Fig. 2 the velocity error in the H 1 norm at time T =  1.0 as 
a function of At for Q = 1, 2, 3. As expected, the Backward-Differentiation/ 
Runge-Kutta method is Qth-order accurate. We note that for Q = 3 and at 
At=0.1 (o = 16) the realized speedup over our reference standard semi- 
implicit method is 5 P' = 8. [See Sec. 2.2.3 for definitions of a, 5 ~, and ~ ' ;  
for this Navier-Stokes application At ..... r derives from the usual Courant 
condition, with a Courant number C=-max~(lulAt ..... r/"z/x") =0.25 
for our reference standard semi-implicit (Backward-Differentiation/ 
Adams-Bashforth) method (R0nquist, 1988). Owing to the larger 
absolute stability region of the fourth-order Runge-Kutta scheme as 
compared to the third-order Adams-Bashforth scheme, we choose 
As=min{Asor =4At . . . . .  f ,  At} in (3.34).] Although the solution 
(3.42)-(3.46) is admittedly simple, this example nevertheless demonstrates 
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the potential of the method to permit large effective time steps while 
simultaneously achieving high accuracy through higher-order discretiza- 
tions. The large speedup is due to the fact that, in standard semi-implicit 
treatment of the Navier-Stokes equations, the stability-determining and 
work-intensive operators do not coincide. 

As our second test case we consider a steady Navier Stokes solution 
proposed by Kovasznay (1948). The governing equations (3.27)-(3.29) are 
solved with density unity and viscosity v = 1/40 in a domain f2 defined by 
- 1 / 2  <<. x <~ 1, - 1 / 2  <~ y <<. 3/2. The velocity U=Ul(X, y, t ) i + u2(x, y, t ) j  
and pressure p are required to be 1-periodic in y; on x = -1 /2  and x = 1 
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Fig. 2. The velocity error measured in the HLnorm,  e,, at time T =  1.0 as a function of the 
time step At for solution of the two-dimensional, unsteady Navier-Stokes equations (3.27), 
(3.28) subject to initial conditions given by (3.42), (3.43). The results are obtained using the 
Backward-Differentiation/Runge-Kutta method (3.32)-(3.36) for Q = 1 (�9 Q = 2 ([]),  an 
Q = 3  (~ ) .  
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we impose Dirichlet boundary conditions consistent with the exact steady 
(and two-dimensionally stable) solution, 

u~(x, y )  = l - e ~x cos 2zy (3.47) 

u2(x, y) = 2e ~ sin 2~y/2~ (3.48) 

p(x ,  y) = (1 - e2;"~)/2 (3.49) 

where 2 - - 1 / 2 v - ( 1 / 4 v 2 + 4 ~ 2 )  1/2. The streamlines of this solution are 
depicted in Fig. 3. In order to investigate "temporal" convergence the 

j f  

- , ,  ' , - -  

. . . .  , , , ,  , �9 , 

Fig, 3. Steady state streamline pattern for the Kovasznay (1948) flow for viscosity v = 1/40. 
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solution is integrated to a steady state with different At; N is maintained 
sufficiently large ( N =  11) to ensure no spatial contamination of the error. 
Note that since the Backward-Differentiation/Runge-Kutta method is a 
splitting technique, "temporal" errors remain even at steady-state; from the 
discussion of the previous section, we recognize these error as errors in the 
upwind approximation of the convection terms. In all cases we use K =  8 
spectral elements. 

We plot in Fig. 4 the velocity error in the relative H 1 norm at steady 
state as a function of At for Q = t, 2, 3. As for the periodic test problem, the 
Backward-Differentiation/Runge-Kutta method is Qth-order accurate. The 
positive effect of increasing the order of the scheme is again pronounced, 
with a several order-of-magnitude difference between the error in the Q = 1 
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Fig. 4. The steady-state velocity error measured in the relative HLnorm, e., as a function of 
the time step At for solution of the two-dimensional Navier-Stokes equations (3.27), (3.28) 
with exact solution given by (3.47) (3.49). The results are obtained using the Backward- 
Differentiation/Runge-Kuna method (3.32)-(3.36) for Q = 1 ( �9 ), Q = 2 ([]),  and Q = 3 ( A ). 
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(first-order upwind) and Q = 3 approximations at the largest time step, 
At = 5 x 10 3. For this problem the maximum speedup over our reference 
standard semi-implicit method is 5P '~3;  for larger At the scheme is 
unstable. The instability is caused by "nonlinear" aggravation of discon- 
tinuities in derivative propagated into the computational domain by the 
inviscid convection subproblem; these discontinuities originate in the non- 
zero normal derivative of the velocity, (3.47), (3.48), at inflow (x = -1/2). 
In practice this problem should arise only infrequently, as physical 
problems approximated by Dirichlet inflow boundary conditions will have 
small normal derivative at inflow if the artificial inflow boundary is suf- 
ficiently far "upstream." [-Note that nonzero Dirichlet conditions are 
imposed on the hyperbolic subproblem (3.34)-(3.56) only on those 
segments of the boundary ~?~2 for which u. n < 0, where n is the outward 
normal on ~; no boundary conditions are imposed where u-n  ~> 0.] 

Lastly, we consider the "real" problem of unsteady two-dimensional 
moderate-Reynolds-number flow in a periodic eddy promoter channel 
(Karniadakis, Mikic, and Patera, 1988). The governing equations 
(3.27) (3.29) are solved in the domain f2 shown in Fig. 5a, with d/h = 0.4, 
b/h=0.5, and L/h=6.666. The velocity u = u l ( x ,  y, t)i+u2(x, y, t) j  is 
required to be L-periodic in x, and to satisfy no-slip boundary conditions 
on the cylinder and channel walls. The pressure is written as 

p(x, y, t)= y, t) dp --~x x (3.50) 

where/~(x, y, t) is L-periodic in x, and dp/dx is a constant driving force 
independent of time and space. [Note that our calculations here differ from 
those in Karniadakis, Mikic, and Patera (1988) in that the latter are at 
constant flowrate, not constant pressure gradient.] At a Reynolds number 
of R = (dp/dx) h3/2pv 2 ~ 140 the flow undergoes a supercritical Hopf bifur- 
cation to a (two-dimensionally) stable steady-periodic state with non- 
dimensional period Tp (equal to the dimensional period normalized by 
2pv/(hdp/dx)). Our test problem is for R=540,  with all calculations 
carried out to sufficiently long time to achieve a steady-periodic state. The 
K =  33, N =  7 spectral element spatial decomposition is shown in Fig. 5a. 

We show in Fig. 5b the streamlines of the Backward-Differentia- 
t ion/Runge-Kutta solution with Q = 3 and At = 0.35 (a = 40) at R = 540 at 
one time in the steady-periodic cycle. [The time steps quoted are non- 
dimensional, normalized by 2pv/(hdp/dx).] The simulation predicts a 
period of Tp=14.38, which is within .2% of the "exact" period 
Tp.ref= 14.35 obtained in a high-resolution (in space and time) reference 
calculation. The method achieves a realized speedup of 5P'~ 14. A second 
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(b) 
Fig. 5. Unsteady two-dimensional moderate-Reynolds-number flow in a periodic eddy 
promoter channel (Karniadakis, Mikic, and Patera, 1988). The Navier-Stokes equations 
(3.27), (3.28) are solved in a domain D shown in (a) with d/h = 0.4, b/h = 0.5, and L/h = 6.666 
at a Reynolds number  R = (dp~-x)h3/2pv z= 540. The calculations are performed using the 
K =  33, N =  7 spectral element mesh shown in (a) combined with the Q = 3, a - 40 Backward- 
Differentiat ion/Runge-Kutta temporal scheme described in (3.32)-(3.36). The streamlines at 
one time in the steady-periodic cycle are shown in (b). 

calculation performed with Q = 2 and At = 0.17 (a = 20) predicts Tp = 14.44, 
with a realized speedup of ~ ' ~  10; this lower-order calculation is both 
slower and less accurate than the Q = 3  simulation, demonstrating the 
merit of high-order approximation of moderate-Reynolds-number flows. 

We note that the Backward-Differentiation/Runge-Kutta method 
applied to the eddy-promoter problem will be unstable for sufficiently large 
At. This instability can be understood as follows: during the inviscid 
convection subproblem, (3.37)-(3.39), viscous normal boundary layers in 
u(x, t n) are steepened in proportion to At, with no mechanism for viscous 
saturation--this will occur, for example, on the upstream face of the eddy- 
promoter cylinder in Fig. 5. Upon temporal and spatial discretization, 
(3.34)-(3.36), this steepening tendency will be manifested, for sufficiently 
large At, or equivalently, sufficiently low spatial resolution, in the genera- 
tion of spatial oscillations, or wiggles. These wiggles then lead to 
breakdown through the nonlinear coupling of the convection operator. The 
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steepening phenomenon places a fundamental limitation on the computa- 
tional savings possible with pure-convection subcycling. 

The eddy-promoter calculations indicate the potential of the Back- 
ward-Differentiation/Runge-Kutta method to accurately simulate real fluid 
flows; indeed, the method has been applied to numerous other two- and 
three-dimensional Navier-Stokes and natural convection problems with 
similar success. The two major problems with the method are: first, resolu- 
tion difficulties arising from the purely inviscid nature of the convection 
subproblem; second, as currently formulated, the efficient divergence-form 
Stokes splitting methods of Sec. 3.1 cannot be exploited in (3.32). 
Numerous potential solutions exist to these problems, one of which will be 
described in the next section. 

R e m a r k  5. We have also applied the Backward-Differentiation/ 
Runge-Kutta method with a Legendre PN X PN spectral element discretiza- 
tion of the Poisson (rather than divergence) form of the Navier-Stokes 
equations (Karniadakis), and the classical first-order invisicid-boundary- 
condition Poisson splitting scheme described in Sec. 3.1.4 (Chorin, 1970; 
Temam, 1984; Orszag, Israeli, and Deville, 1986). The resulting method 
behaves in a fashion similar to the divergence-discretization/Uzawa solver 
method described above, save that: 5P'/5 e is lower, given the greater 
efficiency of the split-Poisson solvers as compared to Uzawa iteration; the 
larger At  results are less accurate, in that the first-order Stokes splitting 
errors dominate. 

4. CLOSING REMARKS 

We restrict our closing remarks to two comments, the first an exten- 
sion of the basic operator-integration-factor concept, the second a current 
limitation. As regards the former, it is clearly of interest to extend the 
operator-integration-factor splitting approach from two operators to many 
operators, that is, to consider methods for decomposition of the system, 

du_= 
A_p(t) u +  f ( t ) ,  0 < t < T  (3.51) 

dt - - p = l  

into P decoupled subproblems, each subproblem involving only a single 
operator _Ap. This decomposition is readily achieved; the operator-integra- 
tion-factor approach, (2.1), (2.5)-(2.7), is intrinsically recursive, permitting 
high-order nested splitting methods to be constructed through repeated 
application of the integration-factor/subproblem process. One example of 
multioperator splitting germane to problems addressed in this article is a 
three-operator pressure-diffusion-convection nested decomposition of the 
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Navie~Stokes equations. This decomposition would partially alleviate the 
problems associated with the convection-subcycling scheme of the Sec. 3.2 
by permitting controlled diffusion between pressure solves, thereby 
softening the inviscid effects of the convection step, and by permitting the 
methods of Secs. 3.1 and 3.2 to be used in concert. 

We now turn to a significant limitation of the current operator- 
integration-factor approach as applied to partial differential equations. We 
note that the continuous-in-space analogues to (2.5) and (2.6) will have an 
initial-condition-boundary-condition incompatibility at s = 0 in that, unless 
Av = 0 on 3f2 for all admissible v (-- "Hypothesis A"), d~/ds on ~f2 from 
(2.5) will be inconsistent with the value imposed by (say) homogeneous 
Dirichlet boundary conditions. In essense, whereas in the unsplit equations 
u adjusts itself so that Au+ Bu + f =  0 does vanish on 3f2 after a singular 
transient, by eliminating B u + f  from (2.7) we reintroduce this transient, 
and singularity, at every time step. Low-order convergence results. 

The results of this paper can be understood in light of these remarks 
as follows. First, the high-order convergence of the Crank Nicholson 
scheme is due only to fortuitous cancellation. The Stokes splitting does not 
honor Hypothesis A, and, as expected, other high-order choices for SA and 
S,  do not yield high-order convergence. Second, the convection-Stokes 
splitting does honor Hypothesis A owing to the appearance of the 
(vanishing) velocity in front of the gradient operator, thus explaining the 
very good "characteristic" results. We note that at inflow Hypothesis A is 
not exactly satisfied, perhaps causing the difficulties described in Sec. 3.2.3. 

Numerous approaches are possible to eliminate the requirement of 
Hypothesis A; future work will address which, if any, of these techniques 
will prove practical and stable. 
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