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The stochastic formulation of  linear kinetic models is elaborated in order to introduce some new 
concepts and help clarify the meaning and role o f  residence time moments. Certain conditional 
moments are introduced. Multicompartment and steady-state dosing within the stochastic context 
are considered. A general model-independent formula for steady state volume o f  distribution and 
a new concept of  steady-state moments are presented. A technique for constructing a model of  a 
given topology from its moments is also given. 
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INTRODUCTION 

Moments of residence times with pharmacokinetic models have 
received considerable attention since the appearance of  a paper by Yomaoka 
et al (1) 9 years ago. They are "model- independent"  parameters, i.e., 
parameters that may be interpreted under somewhat general model assump- 
tions. As such, they also provide an interesting characterization of specific 
models. A discussion of  the latter is given by Matis et al. (2), who indicate 
how moments arise when pharmacokinetic models are given a stochastic 
formulation. However, it appears that much confusion remains about the 
interpretability of moments. This paper elaborates the stochastic formulation 
in order to introduce some new concepts and help clarify further the meaning 
and role of  moments. Certain important conditional moments are intro- 
duced. Multicompartment dosing and steady-state dosing within the 
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stochastic context are considered. The "model- independent  formula" for 
Vd~s (Ref. 3) is reconsidered and extended. A new concept of steady-state 
moments is presented. Through the use of the matrix exponential a large 
degree of  generality involving moments can be achieved. A technique for 
constructing a model of  a given topology from its moments is also given. 

THE M E T H O D  OF STATISTICAL MOMENTS 

A statistical model is a specification of  all or part of the joint probability 
distribution of  randomly occurring quantities. A classical method for 
estimating the parameters of such a distribution, originated near the turn 
of the century by Karl Pearson (4), is called the method of  moments (5). It 
is based on statistically independent replicates of observed values of  the 
random quantities. So-called sample moments are computed from these 
values and set equal to corresponding theoretical moments derived under 
the model and expressed in terms of the model parameters. The resulting 
equations are solved for estimates of the model parameters. These param- 
eters quantify, among other characteristics of the model, the magnitude of 
the random variability in the observed values. 

The method of  statistical moments described by Yamaoka et al. (1) is 
similar to the method of moments. It is based on observed concentration 
values. From these concentration values, other values are computed from 
formulas that we shall call moments from the data-curve formulas. These 
latter values are analogous to (but are not the same as) sample moments 
and are set equal to corresponding theoretical moments. The theoretical 
moments may themselves be the pharmacokinetic model parameters of 
interest, in which case the values from the moments from the data-curve 
formulas provide estimates of them. Or, if the theoretical moments are 
expressed in terms of other pharmacokinetic model parameters, which are 
the parameters of interest, estimates for the latter may be obtained by solving 
the resulting set of equations. The nature of these theoretical moments is 
described in detail in the next section. However, the following important 
points regarding them should be understood at the outset. Though the 
observe~ concentration values are subject to assay variability, the moments 
and other model parameters are kinetic and do not quantify the magnitude 
of this variability. In this respect the method of  moments and the method 
of statistical moments differ. The model parameters quantify the (average) 
time course of drug amount. Matis et al. (2) explain how they also quantify 
random kinetic molecular variability, another type of variability affecting 
the concentration values (see also below). However, this source of variability 
is usually less important than random assay variability. 



Moments of Residence Times 77 

Since both random assay and random kinetic molecular variability 
affect the concentration values, errors in the parameter  estimates (from the 
method of statistical moments)  occur. Even if the assay had great precision, 
and the effect of  molecular variability on concentrations were negligible, 
parameter  estimation error would still occur due to the numerical error 
involved in approximating theoretical moments,  defined by integrals of 
continuous functions, by the discrete moments from the data-curve formulas 
based on a limited number  of  concentration values. Interestingly, to date 
quantification of error in parameter  estimates from any of these three sources 
cannot be found in the pharmacokinet ic  literature. In other words, we have 
no standard error formulas for parameter  estimates produced by the method 
of statistical moments. On the other hand, in certain cases standard error 
formulas for parameter  estimates produced by the method of moments do 
exist. 

Matis et al. (2) give a compartmental  model for the kinetics of  a particle 
of  drug, which specifies the probabilities that the particle is in various 
compartments  at a given time. The total t ime the particle resides in a given 
compartment,  or in the body, is called a residence time and is a randomly 
occurring quantity. The statistical moments  of  the residence time in the 
body are the theoretical moments  involved in the method of statistical 
moments.  Thus, the use of  the word "statistical" in the method's  name can 
be rationalized. With Pearson's method of  moments  the involved theoretical 
moments  are also statistical moments,  but they are moments  of  observable 
random variables. The residence time of a drug particle is not observable. 
This is another  important  difference between the method of moments used 
by statisticians and the method of statistical moments used by phar- 
macokineticists. As the reader can plainly see, the terminology currently in 
use can be confusing, and one needs to be careful, tn this spirit we commence 
our technical presentation. 

S T O C H A S T I C  F O R M U L A T I O N  

Notation of Matis et al. shall be used. Specifically, let k0, for j =  
0, 1 . . . .  , n, i = 1, 2 , . . . ,  n, i # j ,  be a probability intensity coefficient relating 
transfer of  the particle from compartment  i to compartment  j. Compar tment  
0 represents the system exterior. More precisely, let the conditional probabil- 
ity that the particle enters compar tment  j during the interval (t, t + u), given 
that at time t it resides in compartment  i, be given by k~u+ eu(u) , where 
e 0 is a function of u such that e o ( u ) / u ~ O  as u ~ 0 .  In other words, up to 
a quantity e~(u) that is "o f  smaller order than u," the probability of  interest 
is proportional  to u with proportionality constant k,~. This assumption 
implies not only a first-order character to the system, but also a homogeneity 
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insofar as the conditional probability is independent of t itself. This assump- 
tion is really all that is needed to compute the conditional probabilities that 
the particle is in various compartments at time t, given that at time 0 it is 
in a certain compartment. (Various other assumptions are listed by Marls 
et al., but they are not needed for this purpose.) Let K be the familiar n • n 

rl 

matrix whose i, j element is k~j, where ka = - ~ j = o j ~  ko. Let w~j(t) be the 
probability that the particle is in compartment j at time t, given that at time 
0 it is in compartment i. Then the matrix W ( t )  = (wo( t ) )  is simply given by 
W ( t )  = e K', where the involved exponential is the matrix exponential. This 
follows from standard methods for Markov processes; see, e.g., Ref. 6. 

Marls et al. discuss the total time z~j that a particle resides in compart- 
ment j ~s 0, given that at time 0 it is in compartment i. Its mean, or first 
moment, is simply - k  ~ where K -1 = (k~ They also give a formula for its 
variance, or second central moment, and discuss an application of  these 
formulas based on the idea that estimates of the k~j may be obtained directly 
from concentration data by nonlinear regression and then substituted into 
these formulas. With the method of statistical moments per se one proceeds 
differently. One estimates the moments of residence times directly from 
concentration data, and then, in addition, one might invert formulas for 
these moments to obtain estimates for the k~j. The model of Matis et al. 
must be elaborated in order to discuss the residence time in the body. The 
moments of this residence time are involved in the method of statistical 
moments. 

Before describing this elaboration, attention should be focused on a 
second assumption, namely, that the real parts of the eigenvalues of K are 
negative. This assumption equivalently means that on the average the particle 
cannot reside forever in the body, i.e., that indeed K -~ exists. Therefore, a 
system satisfying this assumption is said to be nonsingular. Marls et al. 
describe this assumption by saying that it "insures system stability." It will 
be useful in the sequel to note now that this assumption is also equivalent 
to 

fora l l  /3>-0, lim t~e K'=O (1) 
t ~ o o  

as is shown in Appendix A. 
To elaborate the stochastic model we consider the input process. For 

the moment suppose simply that Ni particles are introduced into compart- 
ment i at time 0. Then the expected number Aj (t) of particles in compartment 
j at time t is given by ~i N~wo(t),  which is just the amount of drug in 
compartment j at time t given by familiar deterministic linear kinetic theory 
with given K matrix. (If  the eigenvalues of K are distinct, this is a sum of 
exponentials; however, distinct eigenvalues are not being assumed.) We 
shall henceforth refer to the expected number of particles as the amount.  
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The probabili ty that a particle chosen at random from the total drug pool 
( N I + N 2 + ' "  . + N ,  particles) is in compar tment  j at time t is given by 
Y~ piw~(t), where Pi = N~/Y~j Nj. This is just a weighted average of  the w;j(t) 
for fixed j. Let p be the column vector of  weights (p~, P2, �9 �9 �9 Pn)', where 
the prime denotes vector transpose. Let hj be the column vector of  length 
n consisting of all zeros except in position j, where there is a 1. Then the 
probabili ty in question may also be written more compactly as p'eKthj, and 
Aj(t) may be written Np'emhj, where N = ~ j  Nj. Lastly, the probability 
that a particle chosen at random from the total drug pool is still in the body 
at time t is given by ~j  , m ,  , m .  p e  n j = p e  l ,  where 1 is the column vector 
consisting of all ones. The expected number  of particles in the body at time 
t is Zj Aj(t) = Np'eml .  

The residence time that must now be considered is the time T that a 
particle chosen at random from the total drug pool resides in the body. 
This is a well-defined random variable whose cumulative distribution func- 
tion F must be F(t) = 1 - p ' e m l ,  i.e., the probability that the particle exits 
from the body before time t. Its density f is obtained by differentiating F 
with respect to t, i.e., f ( t ) = - p ' K e m l .  The statistician would identify T 
with a survival time variable, the time the particle "survives" in the body. 
Often the cumulative hazard function H of a survival time variable is of  
interest (7). This is the function 

fo H ( t ) =  f ( r ) / [ 1 - F ( z ) ]  d'c. 

In the specific situation at hand, 

H(t)  = -  p 'KeK~l/p 'eK'l  dr (2) 

(For a one compartment  model, all quantities are scalars, and H ( t ) =  
-5'o K dr = -Kt . )  In general, the relationship 1 - F(t)  = e -H(~) holds (where 
the involved exponential is now the scaler exponential).  So specifically, 
p 'eml  = e -H('~, where H ( t )  is given by Eq. (2). Therefore, the total amount  
of drug in the body is always given by an interesting monoexponent ial  
Ne -'~'~, one whose argument H, however, is not generally linear in time. 
Of  most interest to us, though, are the moments  of  T. 

Define the function 't t on the set a > 0 by 

,.Ir(c~) = t~- lemdt .  

For ~ to be well-defined, i.e., for the involved integral to exist, ( i )  must 
hold. When K is the identity matrix, this is the matrix analogue of  the 
gamma function F, and the usual argument establishing the familiar recur- 
sive relationship F(o~ + 1) = a F ( a )  also establishes ~ ( a  + 1) = - a K - ~ ( a ) .  
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In detail: 

and then integrating, 

d t,~e Kt = ott'~-teKt+ t~Ke m 
dt 

0 =  c e ~ ( c ~ ) + K ~ ( ~  + 1) 
o 0  

Therefore, the rth statistical moment of T, defined by Mr =So trf(t) dt, is 

Mr = -p '  trKe m dt 1 = - p ' K ~ ( r +  1)1 = r!p '(-K)-r|  (3) 

Note that the nonsingularity assumption is sufficient to assure the existence 
of moments of all orders, not just the first moment. The first moment M1 
may be called the mean residence time. 

In order to finally relate the Mr to the method of statistical moments 
one needs to consider a probability distribution on T different from that 
specified by the dens i ty f  One needs to consider the conditional distribution 
of T, given that the particle exits the body from some given compartment. 
There are in general several such conditional distributions, one for each 
possible compartment from which exit to the system exterior is possible, 
i.e., one for each 1 such that kro r 0. Let L be the set of I such that k~o ~ 0, 
and for 16 L, let Et be the event that the particle exits the body from 
compartment /. Conditional on Er occurring, the expected value of T will 
generally be different from M~, the unconditional expected value of T. 
Similarly for moments of  higher order. 

Appendix B sketches an argument for the fact that the conditional 
probability that a particle chosen at random from the total drug pool is in 
compartment j at time t, given that E~ occurs, is p'emhjh~K-lht/p'K-~h~. 
(The vectors hj and ht are defined above.) Then the conditional probability 
that a particle chosen at random is in the body at time t, given that E~ 
occurs, is the sum of these ratios over j, namely p'K-%mht/p'K-~h~ (since 
Y~j hjh~ is the identity matrix and since K -1 and e m commute.) Therefore, 
the conditional distribution function of T, given that Et occurs, is 

Fl(t) = 1-(p'K-leK'ht/p'K-~ht)=p'K-~(I-eK')h~/p'K-~ht (4) 

The conditional density of T, given that Et occurs, is f~(t)= 
-p '  eK'h~/ p' K-l  hl. 

The conditonal rth moment of T, given Et, may now be computed 
(similar to the way Mr is computed): 

M , ~ = - P ' ( I o  trem dt) h'/p'K-~h'= -P'q~(r + a )h'/p'K-~h' 
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Therefore, 

= -r!  p'(-K)-(r+l)hl/p'K-lhl 

Note that in a similar way 

trAm(t) dt= Np'(f ~ treKt dt)h~ 

(5) 

Mlr = t rA , ( t )  dt A t ( t )  dt  (7) 

The quantity on the right side of Eq. (7) can be estimated from a moments 
from the data-curve formula. Such a formula, then, is estimating a condi- 
tional moment of T as defined above. That is, under the homogeneous 
first-order assumption and assumption (1) only, the right side of Eq. (7) is 
not only estimable, but physically interpretable as well. This interpretability 
holds regardless whether elimination to the system exterior takes place from 
any compartments other than compartment l! 

Formula (5) has been derived by Niiesch (8) (readers wishing to follow 
the recursive-type argument in more detail shoutd see this paper). In that 
paper moments are discussed. However, they are defined simply by the 
right side of  Eq. (7), rather than in some physically interpretable way. In 
the special case p = hi, Cobelli and Toffolo (9) give a formula for Mll: 

k ~1 ~j 
M,,= ~ - ~ k  

j=l  

which the reader can easily derive from Eq. (5). The ratio kJ~/k u is interpret- 
able as the probability that the particle resides in compartment I at some 
time point, given that it resides in compartment j at some earlier time 
point (10). 

A basic probabilistic identity gives 

Mr = 2 e,M,, (8) 
IcL 

where e~ is the probability that a particle chosen at random from the total 
drug pool exits the body from compartment k In Appendix B it is shown 
that et = - k t o p ' K  ~h~. Clearly, this quantity can be estimated by the total 
amount of  drug eliminated from compartment l to the system exterior, 
expressed as a fraction of  N. This fact, in conjunction with the ability to 
estimate the M~r with the usual moments from the data-curve formulas, 
allows Mr to be estimated. Actually, from the point of view of this paper, 
the moments from the data-curve formulas should be regarded as a general 
class of formulas that provide estimates of all the terms in Eq. (8), i.e., the 

= Nr! p ' ( -K)  (r+i)h I (6) 
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el as well as the MIr, and therefore, also provide an estimate of  Mr. It must 
be recognized though, that one's ability to estimate Mr in this way depends 
on one's ability to identify those compartments  from which elimination can 
occur and to measure concentrations over time in these compartments,  as 
well as the total amounts of  drug eliminated from each of them to the 
system exterior. Often, the additional assumption that for some m, em = 1 
is made. When this is possible, all other el = 0 (since Y'I~L el = 0), Mr = M,,r, 
and only concentrations from compar tment  em need be measured. This 
special case forms the context in which the method of statistical moments 
has, for the most part, been previously discussed. 

A number  of  authors have previously made the point that when mean 
residence time is defined by Vdss/CL, and where the reference compar tment  
is compar tment  m, then mean residence time is given by the right side of  
(7) with r = 1 and l =  m, but only under the additional exit assumption 
em= 1 (e.g., 11, 12). The definition of mean residence time given in this 
paper,  i.e., M1, has the advantage that it is defined independently of 
steady-state considerations and corresponds to a bona  fide mean, i.e., the 
statistical mean of T. 

On the other hand, the quantity MI depends on p, the fractionalization 
of  the total drug pool into the various compartments  at time 0. At time t, 
fractionalization of the total drug remaining in the body into the various 
compartments  is z = (p 'em)/ (p 'eK' l )  (in row vector form), and if t is now 
taken to be time 0, then the mean residence time of a drug particle chosen 
at random from this smaller pool is -zK-11.  Clearly, Vdss/CL also suffers 
from the disadvantage of depending on p. In fact, below we extend the 
stochastic formulation to the steady-state situation, compute Vdss and CL, 
and observe that M~ = V d J  CL. 

In the special case r = 1 and the two-compartment  open model with 
elimination from both compartments,  Eq. (8) appears  in a paper  by Collier 
(13). The arguments in that paper  are not based on stochastic kinetics, and 
the author describes M ,  as "the mean residence time of drug in compar tment  
l," clearly a very inaccurate and misleading description. The mean residence 
time in compar tment  l of  a particle chosen at random from the drug pool 
must be -p 'K- lh t ,  which surely is not Mn.  

In a later paper  by Cobelli and Tottolo (14), where a similar special 
case is considered and the same basic formula appears,  the author 's  describe 
Mn as "the expected time a particle will spend in the system before leaving 
it for the last time from compar tment  l," a better but still somewhat imprecise 
description. 

S T E A D Y  S T A T E :  M U L T I P L E  BOLUS DOSES 

Suppose next that Ni particles are introduced into compartment  i at 
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times O, 6, 2 6 , . . . ,  16. Let s = 16. Then the expected number Aj( t )  of particles 
in compartment j at time r >- s is given by ~l k=O~i N p i w ~ ( t - k 6 ) ,  where N 
and the Pi are as above. Again, this is the familiar expression for amount 
of  drug. The probability that a particle chosen at random from the total 
drug pool of ( l+  1)N particles is in compartment j at time t is given by 

1 i 

l+ l k~=o~i PiWij( t -k3)  

This probability may also be written 

1 2 P'e~(~-k~)hj = p ' e m ( I - e  K('+')~)(I--e-K~) 1hi (9) 
l+1  k=o 

using the matrix analogue for the sum of a geometric series. The amount 
Aj( t )  is given by ( l+  1)N times the expression on the right side of Eq. (9). 
Let R = N~ 6, the "rate" of drug administration over the interval & As l ~ co, 
while N, p, 6, and A = t - s  remain constant, Aj(t)  tends to 

AT.ss(A) = - R 3p' eK(~-a)( I -- e-Ka)-lhj (10) 

[since e m ~ 0  and t - ( l +  1)6 = A - 6 ] .  This is the steady-state amount in 
compartment j, A time units into the dosing interval, whence the notation 
on the left side. (The B is for multiple bolus doses.) If  moreover, t = s, then 
using a little algebra, one finds for the steady-state amount at the beginning 
of the dosing interval 

Af, ss = R 3p' ( I  - eKa)-'hj (11) 

Next, we wish to consider a constant rate infusion. Regarding a constant 
rate infusion as the limit of multiple (equal) doses, where each dose and 
the dosing interval decrease in a constant ratio, is commonplace to 
pharmacokineticists. If this point of view is taken, then, as 3 o 0 ,  while 
R remains constant, A j B ~ - R p ' K - ~ h j .  {To see this, observe that, by 
l 'Hospital 's rule, for all i, h ~ ( I - e ~ ) h ~ / 3 ~ - h l K h ~ ,  so that [ ( I -  
e K ~ ) / 3 ] - ~ - K  ~.} However, it is physically impossible for N to remain 
proportional to 3 as 3 ~ 0; after all, N-> 1. So, strictly speaking, a constant 
rate infusion must be regarded differently. 

STEADY STATE: CONSTANT RATE INFUSION 

Suppose that the time some given particle enters the body via compart- 
ment i can be any time in the interval (0, s) with equal likelihood. That is, 
suppose that the time this particle enters compartment i is a stochastic 
variable whose probability density function is given by the constant function 
g(r)  = 1/s for all r e  (0, s). Then the probability that the particle enters 
compartment i during any interval of length u is u~ s, so that of Ni particles 
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entering compartment i, each obeying this uniform probability law, (Ni / s )u  
particles on the average enter during any such interval. The number R~ = 
Ni/s  is the "rate"  of infusion and is a constant. However, in contrast to 
the homogeneous law governing the kinetics in the body, the conditional 
probability that the particle enters the body via compartment i during the 
interval (t, t + u), given that at time t it has not yet entered the compartment, 
is given by (s - t)-lu, which is dependent on t. 

The probability that the particle is in compartment j ( j  = 1, 2 , . . . ,  n) 
at time t_>sis  

x~(t)= f f  g ( z ) w o ( t - r ) d r = s - l h ' i ( - K - l e  K(t " )+K-lem)hj  (12) 

Letting this equation apply to each of N~ particles entering compartment 
i, we have that the expected number A~(t) of particles in compartment j at 
time t is given by ~ N~xo(t), which can be written N ~ipixo(t) with N and 
the pi defined as before. Define R = N/s ,  the "global rate of infusion." 
Also, let A = t -  s. Then 

Aj(t) = R p ' ( - K  'eKa+ K-~eK')hj (13) 

As the N~ and s-~m, while the R~ and A remain constant, Aj(t) tends to 

A ~ s ( A ) = - R p ' K  leKahj (14) 

This is the steady-state amount in compartment j at A time units after steady 
state is "at tained" and the infusion is terminated, whence the notation on 
the left side. If, moreover, t = s, then the steady-state amount is 

AJ, ss = - r p ' K - l h j  (15) 

Therefore, at steady state, the amount in the body is 

f A t -Rp 'K-11  = RM1 (16) Ass = ~, j.ss = 
J 

The steady-state volume of distribution referenced to compartment j is then 

Vd~ ) = VdjRM1/ A[ss (17) 

where Vdj is the (absolute) volume of compartment j. But the apparent 
steady-state volume of compartment l referenced to compartment j is 

= �9 At.JAj.~.  So, Eq. (17) is equivalent to 

Vd~ ~ Vd ~) . RM,/A[.ss (18) /,SS 

Clearance, referenced to compartment j, CL ~ ,  may be defined to be  the 
ratio of R to steady-state concentration in compartment j. So, by Eq. (17), 
the familiar formula Vd~)=M~CL 0~ is seen to be derivable from the 
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principles of stochastic kinetics! Using Eqs. (6)-(8) and (15), one can give 
the following extension of the Benet-Galeazzi formula: 

[;o ]/[Io ~ V d f =  N ~, e~ tC,( t )  dt Cl ( t )  dt C j ( t )  dt (19) 
I ~ L  d 

where C j ( t ) =  A j ( t ) / V d ~  and A j ( t )  is computed as with bolus dosing, and 
Ct( t )  and A t ( t )  are similar. When ej = 1, Eq. (19) gives the usual formula. 

It is also of interest to consider steady-state amounts and volumes 
stratified by the events El. This allows an interpretation of each individual 
term in the sum on the right side of Eq. (19) and thereby a decomposition 
of V d~  ) into a sum of (newly defined) steady-state volumes. The probability 
that a particle is in compartment j at time t >-s and  exits the body from 
compartment l, given that it is in compartment i at time 0, is 

xij(l)(t) = - g ( r )k lop '  eK( ' - ' ) h jh }K - l h~  dr  

1 t - i e K ( t - - s )  _ = s  k, oh~(K K-leK')hjh}K-lht (20) 

Then, as above, the expected number of particles at steady state in compart- 
ment j that exit the body from compartment l is 

I Aj(,),~ = Rk,  o p ' K - ' h j h j K - ' h t  (21a) 

Therefore, at steady state the amount in the body that exits from compart- 
ment l is 

A[,).s~ = Z AJ(,).~s = Rk,  op 'K-2h ,  = e ,RMt,  (21b) 
J 

A new steady-state volume of  distribution may be defined by 

Vd ~) - Vdj '  I l -(t),~ - A(l) ,~/Aj ,  ss (22) 

We have 

So, 

(J) �9 e ,RMl , /  A~ss Vd(1).ss = Vdj 

Vd u) = etM11CL u) t* ( / ) , s s  

Therefore, Vd~l,s s is seen to be the "/th term" of the sum in Eq. (19). 

(23) 

(24) 

STEADY-STATE RESIDENCE TIME MO MENTS 

In this section a new class of estimable residence time moments is 
defined. As mentioned above, the Mr depend on p, the fractionalization of 
the total drug pool into the various compartments at time O. What are the 
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moments of the residence time when p is the fractionalization of the 
steady-state total body amount into the various compartments? That is, 

I I consider the fractionalization given by ~r~ = Ai.ss/A.,s, i = 1, 2 , . . . ,  n, and the 
distribution of the time remaining in the body of a particle chosen at random 
from the steady-state pool with probability or/of being chosen from compart- 
ment i. Then the cumulative distribution function of the time such a particle 
remains in the body is 1 - I r 'eml.  From Eq. (3), the moments corresponding 
to this distribution a r e  M r ,  ss = r! ~- ' ( -K) - r l .  However, from Eqs. (15) and 
(16), ~r' itself is - M ~ 1 p ' K  -1 and depends on the fractionalization of the 
drug pool at time 0. Therefore, 

Mr, ss = r! p ' ( - K ) - ( r + ' ) l / p ' K - ' l  (25) 

In the same way, conditioning on the events E~, 

M~r,~s = - r !  7r ' ( -K)-(r+l)hr/~r 'K-lhl  = r! p ' ( -K) - ( r+2)h l /p 'K-2h ,  (26) 

which, using Eq. (6), is 

o / ; o  o M1r,~s = ( r+  1) ' t~+lAl(t) dt tAt(t)  dt (27) 

We have that el, s~ = - k l o p ' K - 2 h l / p ' K - ~ l .  This probability can be estimated 
by infusing to steady state, terminating the infusion, measuring the total 
amount of drug eliminated from the body from compartment l during the 
subsequent decline, and expressing this amount as a fraction of A~. In this 
regard As~s can itself be estimated via Eqs. (8) and (16). Finally, analogous 
to Eq. (8), 

Mr, ss = ~ el,~sMtr,~ (28) 
l ~ L  

so that M~,~s can be estimated from drug concentrations over time after 
bolus dosing and from amounts of drug eliminted from the body after bolus 
dosing and after termination of steady-state infusion. 

INVERSION OF THE MOMENTS FORMULAS 

In this section we consider the problem of solving the system of 
equations 

M r = r ! p ' ( - K )  rl=Cr, r = l , . . . , m  (29) 

for K, where the cr are specified constants and m is a number chosen so 
that the system has a unique solution. The number m is either the number 
of elements in K or a smaller number when certain constraints are put on 
K;  see below. The ability to solve system (29) is potentially useful in a 
number of ways. Most importantly, if the method of statistical moments is 
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used to estimate the moments  Mr, and these estimates are given by the or, 
then estimates of  the kij can be obtained by solving system (29) (assuming 
some specific pharmacokinet ic  model).  In general, the solution to system 
(29) produces a specific instance of a model of  given topology (i.e., a given 
number  of  compartments  with specified first-order homogeneous connec- 
tions between them) from its moments,  when these moments are known. 
Note that system (29) is highly nonlinear in the unknowns kij. 

As an example of  a solution to system (29), consider two curves shown 
in Fig. 1. The solid curve is the amount  of  drug (i.e., mean number  of  drug 
particles) in the central compar tment  of  a two-compartment  open model, 
where elimination occurs only from this compartment ,  after a bolus dose 
of drug is introduced into a drug depot (a first-order absorption compart-  
ment). The governing rate constants are kl0 = 0.8, k12 = 0.05, k21 = 0.9, ka = 
2.5. These constants determine a set of  moments  c ,  The dashed curve in 
the figure is the amount  of  drug in the central compartment  of  a one- 
compar tment  open model, after a bolus close of  drug is introduced into a 
drug depot. The two governing rate constants were obtained by solving 
system (29) for K, subject to constraints deriving from the topology of this 
special model (see below). (In this case m = 2.) Their values are k~0 = 0.716, 
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ka = 3.1. This is typical of  what one would obtain when for the purposes 
of  data analysis a one-compartment  model is assumed, but where the true 
(unknown) model is a two-compartment  model, and one estimates the rate 
constants with the method of statistical moments.  The dashed curve lies 
above the solid curve. This is because the residence time in the peripheral 
compar tment  of  the true model must be accounted for by a residence time 
in the central compar tment  of  the assumed model that is longer than the 
residence time in the central compartment  of  the true model. (However,  
see the discussion section.) 

One technique for solving system (29) is to proceed directly and, using 
a good mathematical  program for solving nonlinear equations, e.g., ZSPOW 
from IMSL (15), search through " K  space" for the solution. This would 
involve an inversion of the K matrix each time a value of K is examined, 
and each such inversion entails both computer  time and numerical error 
(although the latter can be well-controlled using double precision, but at 
the cost of  increased computer  time). Alternatively, one can use the program 
to solve (29) for (the elements of) K -1, and, having this solution in hand, 
then invert it to obtain K. This is the tack we took to produce the results 
presented above. 

Since we constrained K to be mammil lary with exit from the central 
compar tment  only, K -1 had to be constrained accordingly. Constraints on 
K can often translate easily into constraints on K -1. The relationships can 
be determined upon visual inspection, keeping in mind the characterization 
that - k  ~ is the mean (total) residence time of a particle in compar tment  j 
when it is in compar tment  i at time 0. For example, when exit is only from 
compar tment  1, then for all i, k il = k 1~. This is because no matter where a 
particle begins, it must initially enter compar tment  1 at some time, and, 
once it does, its subsequent path among the compartments  is stochastically 
determined irrespective of  where it has been before entering compartment  
1. For another example, when, in addition, all compartments  are connected 
only via compar tment  1, i.e., the so-called mammillary structure, then for 
all j, the k ij are equal for all i # j .  In general, constraints can be implemented 
with ZSPOW in the usual way by defining a transformation between a set 
of  unconstrained variables, numbering (possibly) fewer than n 2, and the 
variables U j, and then conducting the search in the unconstrained space. 
We have found that the computat ion proceeds faster and more reliably if 
the additional constraints - k  ~ -> 0 are also incorporated (using the squaring 
transformation).  

D I S C U S S I O N  
o o  

It is often asserted that the function gt(t)= At(t)/So Al(r) d~ has the 
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mathematical form of  a probability density and that its moments can be 
taken to be meaningful pharmacokinetic parameters (e.g., 8, 17). In no 
previous paper, though, has it really been made clear how gt may be 
physically interpreted, particularly when elimination from the system can 
occur from several compartments. In this paper we show that g~ =f~, the 
conditional density of the residence time in the body of a particle chosen 
at random from the total drug pool at time 0, given that this particle exits 
the body from compartment 1 [see Eq. (4)]. This fact leads to the conclusion 
that in general the (unconditional) mean residence time of a particle chosen 
at random from the drug pool at time 0 can be expressed as a weighted 

c o  

average of the ~o tg~(t) dt over all l corresponding to compartments from 
which drug may leave the system [see Eq. (8)]. In the case that drug can 

# o o  

leave the system only from compartment m, thenJ0 tgm(t) dt is the mean 
residence time. This last fact is emphasized by certain recent authors (e.g., 
11, 13), but still not recognized by others (e.g., 8,17). In addition, use of 
the weighted average, along with the extension of  the stochastic formulation 
to the steady-state context, leads to a generalization of the Benet-Galeazzi 
formula [see Eq. (19)]. 

It should also be emphasized that a few items are not discussed in this 
paper. 

Although consideration of the method of statistical moments has moti- 
vated certain discussion, this paper is not about the estimation of moments 
per se from concentration data. Formulas for estimating moments from 
limited concentration data vary and are not given here. Rather, our focus 
has been on the quantities being estimated, what they mean, and their 
relationships to the rate constants k o. 

The reader might have noticed that only the means of the numbers of 
particles in compartments have been mentioned, and the variances or other 
moments of  these numbers have not been discussed. These moments are 
usually thought to be of  little interest to pharmacokineticists because it is 
felt that the numbers of particles are usually quite large and therefore little 
affected by stochastic behavior. Indeed, in this paper, for expository pur- 
poses, the amounts of drug, i.e., the Aj, have been identified with the mean 
numbers of particles. I feel, on the other hand, that a discussion of the 
stochastic effect on the (true) amount of drug would be beneficial, and such 
a discussion is in preparation. This present paper has dealt with the moments 
of the residence time. 

An example of solving for the k,j, given the moments M,, has also been 
given. This particular example illustrates "fitting" one model to a second 
and different model. The fitting is done by equating moments, parameters 
whose definitions are independent of the topologies of both models. There- 
fore, the two models need not share any topological features. In fact, strictly 
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speaking, even the drug input parameters of the first model, i.e., N and p, 
need bear no reiauonsmp to u~u~c of the second model. 

So this fitting technique is very general. However, whereas values for 
the k U of  model 1 result, values for volume parameters of model 1 cannot 
be obtained solely from the moments of model 2. How might such parameters 
be obtained from volume and other parameters of model 2? One possibility 
is to compute an "apparent  volume" for model 1: 

v 4 . '  ' = aj, ss/A~,s~ 

where Vdj and A~ss are the volume and steady-sate amount for compartment 
I j of  model 2, and aj,~ is the steady-state amount for compartment j of  

model 1. If R is taken to be the same for both models, then by Eqs. (6) 
and (15), 

I0 o v4 = a / t )  dt G( t )  at (30) 

The integral of aj can be obtained from p and the k~ of model 1, and the 
latter results from the moments of model 2. The integral of Cj, however, 
cannot be obtained from the moments of model 2. More fundamentally, 
the definition of vdj requires the identification of the j th  compartment of 
model 1 with some specific compartment of model 2 and so is not indepen- 
dent of the topology of model 2. However, with such an identification, and 
if concentrations are measured from this compartment, then the integral of 
Cj can be estimated directly from these measurements. So the definitional 
dependence on the topology of  model 2 is rather weak. Moreover, with this 
definition 

a~ A ~  djZ= Vdj- , = Va ' 
j,ss Aj ,  ss 

since by equating moments, the first moments, in particular, are made equal, 
and so a~s = A~s. That is, as a by-product of this definition, the steady-state 
volumes of  distribution of the two models must be equal. 

Lastly, from Eq. (30), S~ cj(t) dt =~o Cj(t) dt, where cj(t)= aj(t)/vdj. 
In other words, vdj is defined such that the areas under the concentration 
curves (or, equivalently, the clearances) of the two models must be equal. 
This by itself does not imply that the two concentration curves are identical. 
However, for the example depicted in Fig. 1, the two concentration curves 
are virtually identical, in contrast to what is seen in the figure itself where 
the two amounts are plotted. Since they are identical, this must, moreover, 
be independent of the value of Vdl. 
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APPENDIX A. NONSINGULARITY ASSUMPTION 

In this Appendix a proof  that the nonsingularity assumption is 
equivalent to assumption (1) is outlined. Recall that the nonsingularity 
assumption states that the real parts of all the eigenvalues of K are negative. 
Begin with the observation that a nonsingular complex matrix P exists such 
that T =  P-~KP is upper triangular, i.e., all elements below the diagonal 
are zero (16). The eigenvalues of K, A1, A2,. �9  An, are identical with those 
of T. We have e r r = P - l e t u P  is upper triangular with eigenvalues 
e ~,', e ~2', . . . ,  e *-'. Under assumption (1), e r, _~ 0 as t ~ ce, whence the e A'' ~ O, 
and so the real parts of all the ;t~ must be negative. Conversely, if for all i, 
Re(A~) < 0, then by repeated use of t 'Hospital 's rule, for all i, for all fl -- 0, 
tr  as t~oo,  whence for all fl>-O, t~eT'~o,  and so assumption (1) 
must hold. 

APPENDIX B. A CONDITIONAL PROBABILITY 

By dividing the system exterior itself into compartments QI, 16 L, such 
that a particle is in Q~ if and only if it exits the body from compartment I, 
it again may be shown by standard methods for Markov processes (6) that 
the probability that a particle is in Q~ at time u, given that it is in compartment 

1.~ l ~ t {  lt r - 1  K ( u - - t )  j at time t < u, is ,~1o,,j~1,- e -K-~)h t .  Consequently, the probability 
et that a particle chosen at random from the total drug pool exits the body 
from compartment I is -k~op'K-lh~. As a further consequence, the probabil- 
ity that a particle chosen at random from the total drug pool is in compart- 
ment j at time t, and thereafter it exits the body from compartment 1, is 

t K t  ! --1 (p e hj)(-kjohjK ht). The conditional probability that a particle chosen 
at random is in compartment j at time t, given that El occurs, is the ratio 
of  this product to et, namely p'e mhjhjK, -1 hJp 'K-1  hr. 
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