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SPECTRAL THEORY OF A STRING 

I. S. Kats UDC 517.9 

In this survey, we present the principal results of Krein's spectral theory of a string and describe its de- 
velopment by other authors. 

In this survey, we outline Krein's spectral theory of a string and consider its further development in the papers 
of other authors. Unfortunately, we cannot dwell upon the spectral theory of strings with masses of different signs 
(Langer [64]), strings with dipoles, and strings with matrix masses (Klotz and Langer [37]). Naturally, the choice of 
the material for this survey reflects the interests of the author. For this, I would like to apologize to the reader. 

1. Differential Operation of a String. Differential Equation of a String. Spectral Functions 

1.1. Let I be an interval of one of the following four types: I = (a, b), I = [a, b), I = (a, b], and I = [a, b], 

where _oo < a < b < +~o and, in the case of a ~  I ( b e  I), the equality a = - ~  ( b = + o o )  is excluded. On I, 

we consider a finite nondecreasing function M which may have intervals of constancy and nonzero absolutely con- 

tinuous, continuous singular, and discontinuous components. We put a 0 �9 = inf ~ t  and b 0 �9 = sup ~M,  where 

~M is a set of the points of increase of the function M. If  a ~ I (b ~ I), we assume that 

M(a) := inf M(x) (M(b) = sup M (x)). 
x~l  x~I 

With I and M, we associate a string S(I, M)  stretched by a unit force by I. For this string, M is a mass dis- 

tribution function in the sense that, for any x 1 < x 2, x 1, x 2 ~ L M (x 2 + O) - M  (x 1 -O)  is the mass of its part locat- 

ed in the interval [Xl, x2] ; here, for a e I (b ~ I), we assume that M(a - O) = M(a) (M(b + O) = M(b)). The 

left (right) end of  the string S(L M) (as well as the interval I) is called regular if a 0 > - o% M(a) > - ~ ( b o < 

+ o% M(b) < + ~) .  Otherwise, it is called singular. The end x = a (x = b) is called completely regular if a ~ I 

(be I). 

1.2. Extended Functions. In the case where I = (a, b), the differential operation l g [. ] introduced below 

acts on the set of ordinary complex-valued functions x ~ f ( x )  defined on I. But if the ends of the interval I are 

completely regular, then, in order to define the differential operation l M [. ], it is necessary to have extended func- 

tions. For example, if I = [a, b], we need functions f [ .  ] extended in both directions by adding to the ordinary 

functions I f~-~) �9 the numbers f - ( a )  and f+(b)  (for convenience, they are called the left derivative at the point 

x = a and the right derivative at the point x = b, respectively), i.e., f [ .  ] = { f ( .  ), f - ( a ) ,  f+(b)}.  In the case 

where only one end of the string S(L M)  is completely regular, e,g., the left one, we introduce functions extended 

to the left f [ .  ) that are obtained from ordinary ones by adding a single "derivative number" f - ( a ) ,  i.e., f [ .  ) = 

{ f ( -  ), f - ( a ) } .  In the case of I = (a, b], we introduce functions extended to the right f ( - ]  = { f ( - ) , f +  (b)}. For 
all indicated types of extended functions f ( .  ) is called their nonextended part. When speaking about extended 
functions, we shall, as a rule, omit the word "extended" replacing it by the corresponding brackets. The equality of 
extended functions, linear operations over them, and the operation of conjugation are defined in a natural way, 
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pointwise for a nonextended part and separately for the adjoined values (see [16], Sec. 1, Subsec. 1). Below, in the 

notations of the interval I and extended functions, we treat the bracket ( as [ if a e I and as ( if a ff I. The 

bracket } has the same meaning. 

1.3. Differential  Operation 1 [- ] --- lml [.  ] of a String S(I, M). 

Definition 1. Let I = ( a, b ). Then D = D M = DMI is a set o f  all functions f (. ) such that 

(i) f ( .  ) is locally absolutely continuous on (a, b}; 

(ii) at every point x e (a, b ), there exist finite left and right derivatives f - ( x )  and f+(x) ;  

(iii) there exists a function (p(. ) M-measurable on I such that, f o r  any two points x 1, x 2 e L the equal- 
ity 

x2+O 

f+-(x2) - f4-(Xl) = - S q)(s) dM(s)  (1) 
x 1 4-0 

holds fo r  all four  possible combinations o f  the sign (on the left-hand side, f4- (xj) is written with the 

same sign as xj + 0 on the right-hand side; j = 1, 2). 

Definition 2. For any function f (. } e DM1, it is assumed that 

l [ f ] ( x )  = lM[ f l ( x )  = 1Ml[f](x) = r V x e  I, 

where r ( . )  is a function f rom Definition 1. 

Remark.  This relation defines IMi [ f ] (x )  to within an equivalence with respect to the measure M. Clearly, 

for f ( .  ) ~ DMX and M-almost all x s I, 

d d 
lM[ f] (x  ) = (d)M(x----~f+(x) = (d)M(x-----~f-(x), (2) 

d 
where denotes the symmetric derivative with respect to the function M. In view of (2), we shall some- 

(d)M(x)  

times write the operation l M [. ] in the form d d which reflects the "general idea" of its action. 
(d)M(x) dx '  

In order to grasp the sense of the differential operation Iml [ �9 ] better, we now formulate several properties of 

the functions f ( .  ) e  DMS (see [23], Sec. 1, Subsec. 1; [36], Sec. 1, Subsec. 1): 

(a) f ( .  ) is linear on each interval of constancy of the function M; 

(b) if x is a continuity point of the function M, then f - ( x )  = f+(x) ,  even in the case where x = a E I or 

x = b ~ I ;  

(c) forevery point x 0 ~ (IX{b}), 
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f§  = lim f+(x) = lim f - (x) ,  
x S x  o xSx  o 

and, for every point x 0 ~ ( l \ {a}) ,  

f - ( xo )  = tim f+(x)= l imf - (x ) .  
xSx  o" xSx  o 

In view of the last property, we sometimes write f ' ( x -  0) and f ' (x  + 0) instead of f - ( x )  and f+(x), respec- 

tively (even if f - ( x )  and f+(x) are adjoined values). 

Finally, note that for any f ( .  ), g(. ) e DMI and any cq 13 e I, the following "Lagrange identity" is true: 

t3---0 
13+0 

f ( l[ f](x)g(x)  - f (x) l[g](x))  dM(x) = [ f  g]x c~• 
c~• 

(3) 

where [ f  g]x = f (x)g'(x) - f ' (x)g(x)  (see [23], Sec. 2, Subsec. t) for all four possible combinations of the signs 

+ of ~ and [3 which take the same values on the both sides of (3). 

1.4. Differential Equation of a String. 

Definition 3. A function u (.) is called a solution of the differential equation 

lMI[Y](X ) = g(x) (4) 

if u ( ' ) a  DMI and lM1[U](X) = g(x) forM-almostall x~  I. 

The differential equation 

lMF[y] - ~.y = 0 (5) 

is called the differential equation of a string S(/, M). If co > 0, the differential equation (5) with ~. = co 2 is satis- 

fied by an amplitude function of the string S(L M) oscillating with the frequency co. 
We can now explain the mechanical reasons for introducing the adjoined values. For example, assume that a 

string S ([a, b], M)  oscillates with a frequency co and that the fixture of its left end is such that the latter can slide 
without friction in the direction normal to the equilibrium position. In this case, in view of the appearing inertial 

forces, its amplitude function satisfies the boundary condition y+(a) = - o32maY (a), where m a = M (a + O) - M (a) 

is a mass concentrated at the point x = a. This situation is unnatural: Indeed, the boundary condition depends not 
only on the type of the fixture but also on the distribution of mass in the string and on the frequency of its oscilla- 

tions. By introducing an adjoined value y-(a), we eliminate this problem. The boundary condition now takes the 

form y-(a) = O. 
In the particular case where M is absolutely continuous, Eq. (5) is equivalent to the equation 

- y " -  Lp(x)y  = 0, x e  I, (6) 

for the nonextended part. Here, p (x) = M'(x)  a.e. in I. The properties of the solutions of Eq. (5) are similar to the 

properties of the solutions of Eq. (6), and the same true for the inhomogeneous equation 1Ml [y] - ~y = g(x) and 

the equation - y ' -  Lp(x)y  = 9(x)g(x)  (see [36, 23]). 
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1.5. Differential Operator  L 0 of a String S(I, M).  Let ~ be a Hilbert space :E(M2)(I) of complex-valued 

functions M-measurable on I and having an M-summable square. In this space, the scalar product is defined by the 
equality 

( f  g )o  = S f (x)g(x) dM (x). 
I 

More precisely, an element f of the space ~ is a family of its "representatives," i.e., of functions f s  ~(M 2) that 

pairwise coincide M-almost everywhere on L For these functions, we write f e  f or f ( -  ) s f (sometimes, when 

this does not lead to misunderstanding, we shall say, simplifying the situation, that functions f are elements of the 

space ~) .  By definition, (f, g)~D = (f' g )~ '  where f ~ f  and g ~ g. 

An element f e  ~ belongs to ~ '  if there exists a function f ~  f such that f ( x )  = 0 for all x in a certain 

neighborhood of each singular end of the interval I (if there are no singular ends, ~ '  = ~ ) .  

Definition 4. We say that an orderedpair {f g} e ~ 2  belongs to L~ if  one can indicate f ( .  )~  f with 

the following properties: 1 

(i) f < . ) ~  DM1; 

(ii) there exists a f~ I such that f ( x )  = f - ( x )  = 0 for any (x e 1, x < af); 

(iii) there exists bye I such that f (x) = f+(x) = 0 for any (x e I, x > by); 

(iv) lMsff] ~-g. 

It is obvious that /_~ is a linear relation in ~ .  Moreover, ~ is an operator in ~ and even in ~ '  - -  an ana- 
log of, e.g., the operator /_~ introduced by Naimark in [69]. As follows from (3), it is Hermitian. Furthermore, it is 

nonnegative. Unlike the operator in [69], its domain of definition ~)'0 is not always dense in ~ .  It is dense in 

if and only if the points a 0 and b 0 have M-measures of zero (in particular, if they do not belong to 1), In any 

case, the operator ~ possesses the operator closure L 0 and the operator L 0 is either self-adjoint itself or has self- 

adjoint extensions in ~ .  The operator L 0 and its self-adjoint extensions are realized by the differential operation 

IMl [. ]. Its deficiency index is 2 (p, p ), where p < 2. 

1.6, Spectral Functions. Assume that each ~, e IR is associated with a set G z of, generally speaking, ex- 

tended functions. We say that a family ~ = { Gz I ~, e IR } of such sets is determining if, for any L e ]R, the 

problem 

lMi[Y ] - ~,y = O, y ~  G)~ ( G)~ ~ q)  (7) 

admits a unique solution u (- ,  ~,). Assume that the functions ~, ~ u (x, L) and ~, ~-~ u-(x, L) are B-measurable 

and bounded on every compact interval from IR at least for one fixed x e I (and, hence, for all x). In this case, 

the determining family G is called an /B-family. 

Definition 5. A function "c nondecreasing on IR and normalized by the conditions 

1 We write f ( . )  ~ f if f( . )  ~ f.  
2 The proofs of all results presented in this subsection can be found in [23]. 
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2"c(E) = "~()~-0) + z (~ ,+0)  V~,~ IR, z(0) = 0, (8) 

is called the spectral function of problem (7) with a determining family ~ if the mapping U " f ~-+ ~ , where 

f ~ ~ '  and 

~()Q = f f (x )u(x ,  )QdM(x) V ) ~  IR (9) 
I 

(if f ~ ~ ' ,  the last integral converges for any fixed )~ ~ 1R ), maps ~"  into ~2)(IR)  isometrically, i.e., for 

each f ~ ~ ' ,  

f I~ '(~)  [2d'c()~) = f If(x)[2dM(x), = uf .  ( l o )  

A spectral function "c of problem (7) is called orthogonal if UO' = ~(z2)(lR). The set of all points of in- 

crease of the spectral function "c is called its spectrum and is denoted by s ['~]. 

Note that if, for a determining family G, problem (7) possesses a spectral function, then the mapping U can 

be extended by continuity to the mapping U z : f ~ ~ that maps ~ into 2g(~2)(IR) isometrically. This mapping 

is defined by (9) if the integral on the right-hand side is understood in the sense of convergence in the metric of 

33(z2)(1R). If, in addition, G is an /B-family, then, for any function f e  $~, 

f ( x )  = f 3:0Qu(x, )~)dz(~) (11) 
IR 

in the sense of convergence in 33(M2)(I), where ~ ( .  ) is defined by equality (9). 

Equality (11) realizes the mapping b% -1 on the elements ~ ~ Uz~ .  Also note that U~ maps the operator L 0 

into the closed part of the operator A z of multiplication by an independent variable in 23~2)(1R) and, hence, 

possesses self-adjoint extensions with simple spectra. Therefore, if the operator L 0 is self-adjoint and its spectrum 

is not simple, then problem (7) does not have a spectral function for any determining family G. A situation of this 

sort is observed, e.g., for a string S(I, M) with I = ( -~ ,  +~)  and M(x) = x for any x ~ I. 
Finally, note that the problem of finding spectral functions is a problem similar to the problems of moment the- 

ory. Indeed, there exists a family of functions )~--~ I Sr()~)12 where ~" runs through U ~ '  and, for each function 

from this family, equality (10) with f = U -1 ~ determines the value of the integral on the left-hand side. It is ne- 

cessary to find z which will guarantee the validity of this equality for all these functions I ~ ( "  )12. 

2. Krein's Spectral Theory of a String S 1. 

2.1. Strings S 1 and S O with Completely Regular Left Ends. For convenience, we assume that the left 

ends of the strings under consideration are located at the point x = 0. Thus, I = [0, b). The mass distribution 

function M is normalized by the condition M(0) = 0. If the left end of a string S ([0, b), M) is fixed so that it can 

slide without friction along a line perpendicular to the axis x, the string under consideration is denoted by $1([0, 

b), M). A string whose left end remains immobile is denoted by S0([0, b), M). The spectral (orthogonal spectral) 
functions of the boundary-value problems 

IMi[y] - )~y --- 0, y(0) = 1, y-(0) = 0, (12) 
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lM~[y ] - ~ y  = 0, y(0) = 0, y-(0) = 1, (13) 

are called the spectral (orthogonal spectral) functions of the strings S 1 ([ 0, b), M) and S O ([ 0, b), M), respectively. 
A (unique) solution of the boundary-value problem (12) is denoted by q~ [-, L); for a solution of the boundary-value 

problem (13), we use the notation g [. ,  L). For fixed x s L the nonextended parts q~(x, L) and ~(x,  )~) of these 

solutions and the unilateral derivatives q)+ (x,)~) and ~+(x, 9~) with respect to x are entire functions of the type 

x 

tM(X ) "= f ~ ds (14) 
0 

of order 1/2 (here, M" is the derivative of the function M, which exists almost everywhere). This statement is 

also true for the adjoined values q0+(b, 2.) and ~+(b, )~) if b e I. 

In this survey, we restrict ourselves to the principles of Krein's spectral theory of strings S 1. First, we shall de- 

scribe the set ~ ( [0 ,  b], M) of the spectral functions of the regular string $1([0, b], M) and the set ~+  ([0, b], 

M) of the spectral functions of this string with nonnegative spectra. But before this, we present the following sub- 
section. 

2.2. R-functions. This is a brief review of the results obtained in [35]. 

Definition 6. We say that a function f of a complex variable belongs to the class (R ) 

function if it is defined and holomorphic in each half plane r := {z ~ r [ I m z > 0 }  and 

Im z < 0}, and, in addition, 

(i) f ( g ) = f ( z )  V z e  r 

(ii) I m z I m f ( z )  > 0 V z e  ( r  

Any R-function f ( .  ) is representable in the form 

and call it an R- 

r162 

f (z) = ~ + ~z + ~, z 1 Imz ~ 0, (15) 

where c~ ~ ]R and [3 > 0 are constants and z ( .)  is a nondecreasing function defined on IR. The constants ~ and 

[3 in (15) are uniquely determined by the R-function f. Under normalization (8), "c is also uniquely determined by 
this R-function. Normalized by (8), it is called the spectral function of the R-function f and satisfies the following 

Stieltjes inversion formula: 

1 lim I Imf({ + ie)d{. (16) 
0 

By the way, if f is a function (not necessarily an R-function) such that the limit on the right-hand side of (16) exists 

for any 3, ~ JR, then, for the function z defined by equality (16), we can write t: = ~ [ f ] .  

Below, we consider several subclasses of the class (R). A class (R1) consists of the functions f E  (R) whose 
representation (15) can be transformed as follows: 
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f ( z )  = v + 

,4-e~ 

dz(~) 

I Z - z '  
Im z ~: 0, 

165 

where ~{ ~ 1R, and the spectral function "c is such that 

I(1 + I )~ I) -1 d'c (~,) < ~ .  

A class (R0) consists of the functions f ~  (R) for which representation (15) takes the form 

f d'c()Q Imz ~ O, 
f(z)  = Z - z '  (17) 

where the spectral function "c is a function of bounded variation on ( -~ ,  +~) .  

A class (S) consists of the functions f s  (R)  for which representation (15) can be written as follows: 

f d'c()~) Im z * 0, f(z)  = "~ + )~- z '  
- 0  

(18) 

where y_> 0 and, for the spectral function "c, we can write "c (9~) = "c (-0) V s ~ ( - ~ ,  0) and 

(1 + 9~)-~ & g )  < ~ .  
- 0  

The classes (/~) and (S) are obtained from the classes (R) and (S), respectively, by adjoining the function 

identically equal to ~ .  The necessary and sufficient conditions for the functions f ~  (R) to belong to the classes 

(R1), (R0), or (S) can be found in [35]. 

2.3. Description of the Set of Spectral Functions of the String S 1 ([ 0, b ], M). Assume that this string has a 

heavy right end, i.e., that M(x)  <M(b) for any x s (0, b). 

For every function h E (/)  ), we define a function f2 h by an equality 

Ili+(b, z)h(z) + ~ll(b, z) 
Dh(Z) = g~+(b, z)h(z) + ~(b, z) V z ~ (r \ IR). (19) 

It was established (see [16], Lemma 3.1) that f2 h belongs to (R1) and, hence, admits an absolutely convergent re- 
presentation 

d'th(X) V z ~ ( r  \ IR), (20) Oh(Z)=~'h + ~ )~-Z 

where Yh ~ IR and "c h (.) is a nondecreasing function normalized by conditions similar to (8) and, consequently, 
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1 lira ~ Im O h ({ + ie) d~ V s e 1R. (21) 
% ()v) = 7 ~,Lo 

o 

It turns out that 7h = a0 for any h E (/~) in (20). 

Theorem 1. Any function "c E �9 ([0, b], M) coincides with a function % obtained by using relations (19) 

and (21) with some h ~ ( R). Conversely, in the case where the right end of  the string S 1 ([0, b ], M )  bears no 

concentrated mass ( M(b) = M(b - 0)), any function % constructed according to these relations for  h E ( R) 

belongs to ~. ([0, b ], m). In the case where this end bears a concentrated mass 3 ( M(b - O) < m(b)), "c h E ~ ( [ 0 ,  

b], M) if and only / f  h ~ ( ( R ) \ ( R 0 )  ). a spectral function % of the string S 1 ([0, b], M)  is orthogonaI if and 

only if h is a real constant that may be infinite. 

Note that, in the case where M (b - 0) < M (b), the function % with h E (R0) is a spectral function of a 

string obtained from the given one by extracting a concentrated mass at the point x = b and of a string obtained 

from the given string S 1 ([0, b], M)  by adding a mass ( sup (rl I m h  (iq)))-1 to the mass concentrated at this point 
Tl>0 

but is not a spectral function of the original string. 
Theorem 1 is complemented by the following theorem: 

Theorem 2. A spectral function % of the string S 1 ([0, b], M) belongs to ~, + ([0, b ], M)  i f  and only if  

h ~ (S). For these and only these h, the function f2 h belongs to the class (~S). 

Note that for z < 0, the inequalities 

+~ d"c(~.) ~g+(b, z) ~(b , z )  < a0 + ~ < (22) 
q)(b, z) ~. - z q0+(b, z) -0 

hold for an arbitrary function z ~ ~ +  ([0, b], M). The first inequality in (22) turns into the equality at least for one 

z < 0 (and, hence, for all z) only if z = "c 0. The second inequality turns into the equality only for "c = "c=. 

In the case of a regular string SI([0, b), M )  with b = b 0 < ~ ,  the set of its spectral functions coincides with 

the set of spectral functions of the string obtained from S 1([0, b), M)  by adjoining the point x = b without a con- 

centrated mass. In describing the set of the s)ectral functions of this string, we can replace q)+(b, z) and xr +(b, z) 

by q)-(b, z) and ~ - ( b ,  z), respectively. 

2.4. Here, it is seems necessary to mentaon a generalization of the Chebyshev-Markov inequalities obtained by 
Krein (see [53, 62]). It establishes certain extreme properties of the orthogonal spectral functions of  the string 

$1([0, b], M).  The orthogonal spectral function % (h = const, h ~ 1R) is a pure jump function and its spectrum co- 

incides with the set of  zeros of the entire function z ~ q)+(b, z) h + q)(b, z). For simplicity, we assume that the 

right end of the string $1([0, b], M)  is heavy and the point x = b does not bear a concentrated mass. In this case, 

any point ~ of the real axis is a spectral point of some orthogonal spectral function which is denoted by "c({). Krein 
proved [62] the following theorem: 

Theorem 3. For any function "c ~ ~ ( [ 0 ,  b], M) and any ~ ~ JR, the inequalities 

3 This part of the theorem was established by the author (see [36], Bibliographical and Historical Notes, Part 1; [29]). 
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z ( { - 0 )  - z(_oo) > ~ ( ~ ) ( { - 0 )  - ,d~)(-o~); 

z ( ~ + o )  - . c ( - ~ )  _< z(r  o) - z g ) ( - ~ , )  

hold. I f  at least one of  these inequalities turns into a strict equality, then "c 0~) = "cQ (~) fo r  any ~. ~ 1R. 

This theorem contains the following two assertions: 

A. In the set of all spectral functions z of the string S 1 ([0, b], M),  the orthogonal spectral function "c (~) 

has the largest spectral mass "c (4 + 0) - z (~ - 0) at a fixed point { s IR and if z(~ + 0) - "r - 0) = 

"cQ(~ + 0 ) - ' t ( ~ ) ( ~ - 0 ) ,  then z ( ~ ) =  "cQ0 ~) forany  ~ e  ]R. 

B. Let ~1 < ~2 be two adjacent points of the spectrum of the orthogonal spectral function ~ of the string 

$I([0,  hi, M )  (i.e., z({1 - 0 )  < ~(~1 + 0) = z ( ~ 2 - 0 )  < z({2 + 0)). If a spectral function z of this 

string has no points of increase on (~1, ~2), then z0v) = ~()~) for any )v ~ ]R. 

In connection with proposition A, note that 

b /-1 
"C({)(~ + O) - "C({)(~ - O) = I (qO(x, ~))2dM(x)  

o 
(23) 

and, in particular, 

m a x  (x(+O) - g ( - O ) )  = ( M ( b ) )  -1. 
ze~.([O,b],M) 

(24) 

For spectral functions with nonnegative spectra, one can formulate a similar theorem (see [62], Theorem 6) with 
the role of orthogonal spectral functions played by so-called canonical spectral functions. These functions are ob- 

tained from (19) and (21) if we choose h(z) either in the form of a constant from [0, +o~] (these functions are 

called canonical spectral functions of the first type or orthogonal spectral functions) or in the form - m / z ,  where 
m > 0 (these are canonical spectral functions of the second type). 

Note that for a boundary-value problem 

- y "  + q ( x ) y  - ~,p(x)y = 0 ( 0 < x < b ) ,  y(0) = 1, y'(0) = h, (25) 

with a loaded Sturm-Liouvil le  equation, we have a theorem similar to Theorem 3 (see [53]). This enabled Krein to 

improve (in the case of P (x) = 1) the remainder of the asymptotic relation 

z()Q = 2 ~ + o(.v/-~-), s  ~,  (26) 
g 

for a spectral function due to Marchenko [67]. This was the second improvement; the first one was obtained by 
Levitan in [66]. 

2.5. Spectral Functions of Singular Strings S 1 ([ 0, b), M).  Recall that the left end of the string S 1 ([ 0, b), M) 

is regular. Hence, the singularity of this string implies that its fight end is singular, i.e., M(b) + b 0 = 0% and, in this 
case, we necessarily have b 0 = b. 
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Any singular string $1([0, b), M) has exactly one spectral function "r with nonnegative spectrum and this 

function is orthogonal. The function f2+ defined for z E Ext [0, ~)  by an equality 

f d'c+ (L) fl+(z) = a 0 + (27) 
-0 ~ , - z  

satisfies the following inequalities (see [36], Sec. 10, Subsec. 4): 

V(x, z) V+(x, z) 
< f2+ (z) < V (x ~ [0, b), z < 0). (28) 

~0(x, z) q0+(x, z) 

V(x, z) 
Note that for fixed z < 0, the function x ~-~ 

q~(x, z) 

exhibits no increase on [0, b). In addition, ~+(x,  z) 
q~+(x, z) 

monotonically increases while the function x 

V(x, z) 
~(x, z) 

0 for x "P b. Thus, 

V+(x, z) 
q~+(x, z) 

+f~ dz+(L) lim V(x, z) .=  F(z). 
a~ + ~ - - ~  = x?b 9(x ,z )  - 0  

(29) 

According to the Vitali theorem, this equality holds not only for z < 0 but also for all z ~ Ext [0, + ~o). 

A spectral function "~+ of a singular string S 1 ([0, b), M) is unique if and only if 

b 
x2dM(x)  = ~. 

- 0  

(30) 

Therefore, if a singular string S 1 ([0, b), M) has finite length, it has only one spectral function "c+. A descrip- 
tion of the set of all spectral functions for the case where (30) does not hold can be found in the work [36, Sec. 10, 

Subsec. 7]. 

2.6. Principal Dynamic Compliance Coefficient of an Arbitrary String S 1 ([0, b), M) and Its Principal 
Spectral Funct ion.  In Subsecs. 2.3 -2 .5 ,  we have considered strings $1 ([0, b), M) with b 0 = b. These strings 

have no mass-free intervals on their right ends. Let us omit this requirement (for singular strings S 1 ([0, b), M),  it 

was satisfied automatically). For any string S 1 ([0, b), M)  (regular or singular), there exists a limit 

lira ~l(x,z) .=  f-'(z) V z ~  E x t [ 0 , + ~ )  (31) 
xq'b q~(x, Z) 

(if b e L it is equal to ~(b ,  z) / q0(b, z)). Here, 1" is an S-function. Its spectral function "~ has a nonnegative 

spectrum. Except for the case where b ~ t : = [0, b) and M(b - O) < M(b), the function "~ is a spectral function 

of the string $1([0, b), M). It is called the principal spectral function of  this string, while the function f" is called 
its principal dynamic compliance coefficient. This notion is explained by the fact that if z = o 2 with co > 0 and 

z ~ s [ "~ ], then f"(z) is equal to the amplitude of forced oscillations of the left end of the string under a periodic 

force 9 ~ = sin cot applied to this end in the direction normal to the equilibrium position provided that its right end 
x = b is fixed in the case where it is regular. The situation where the end x = b is fixed and b 0 < b < ~ is equi- 
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valent to the deletion of the section (b 0, b) of the string allowing the end b0 of the remaining part of the string to 

move without friction along a circle centered at the point b; in particular, for b 0 < b = ,,% the end moves along a 

straight line normal to the axis Ox. 

In the case where the string S 1 ([0, b), M) is weightless (M(x)  = 0 for any x e [0, b)), f ' ( z ) -  b and, in 

particular, f'(z) = ~ for b = ~. For weightless strings, "}(Z) = 0 for any Z ~ IR. 

If b ~ 1 and m b : = M(b) - M(b - 0) > 0, then, as already noted, ~ is not a spectral function of the string 

S 1 ([0, b), M).  In this case, the notion of principal dynamic compliance coefficient of a string is not introduced. 

"Mechanically," this is explained by the fact that the concentrated mass m b does not participate in the oscillation 

process described above. 

The principal dynamic compliance coefficient 1 a of a string S 1 ([0, b), M) is connected with its principal 

spectral function "~ as follows: 

o +'~ d'~ ()~) 
r(z )  -- v + I 

- 0  

V z s Ext [0, ~), (32) 

where y = a 0. The principal spectral function of a singular string S 1 ([0, b), M) is its unique spectral function 
with nonnegative spectrum. 

2,7. Krein's Principal Result in the Spectral Theory of Strings S 1 ([0, b), M ) .  This result is formulated as 
the following theorem: 

Theorem 4. Any function f~ ~ (7S) is the principal dynamic compliance coefficient of  a (single) string 

S 1 ([0, b), M) (singular or regular). 

Remark. If the string S 1 ([0, b), M) appearing in Theorem 4 is regular and b < ~,  then the function f" is 

the principal dynamic compliance coefficient of just one extra string S 1 ([0, b], M) obtained from the first one by 

adding the point x = b which does not bear a concentrated mass. 

Theorems 2 and 4 easily yield the following assertion: 

Theorem 5. Let S 1 ([0, b), M) be a regular string with heavy right end. Any of  its spectral functions z 

with nonnegative spectrum is the principal spectral function either of  this string or of  a string S 1 ([0, B), ~'/) 

obtained from S 1 ([0, b), M) by a certain extension to the right. 

The problem of reconstruction of a string from its principal spectral function is connected with a certain ambi- 

guity because the spectral function of a function from the class (S) determines this function only to within a certain 

additive nonnegative constant T. In view of the mechanical meaning of this constant ( ' /=  a0), Theorems 4 and 5 
yield the following result: 

Theorem 6. In order that a function ~ nondecreasing on (- ~, + ~), normalized by conditions (8), and 
having no points o f  increase on the semiaxis ( - ~ ,  O) be a spectral function of  some string S1, it is necessary 
and sufficient that the condition 

+ o o  

I (1 + ~ ) - l d z ( ~ )  < r 

- 0  

(33) 
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be satisfied. Under this condition, "c is the principal spectral function of a (single) string S 1 ([0, b), M) with 

heavy left end. Furthermore, any string S 1 ([0,/~], 37/) with heavy ends, for which z is a (nonprincipal) spec- 

tral function, can be obtained from S 1 ([0, b ), M) by deleting the interval ( [~, b) with a possible additional 

removal of the concentrated mass at the point x = [~ (without removing the point itself). 

The set of functions z satisfying the conditions of Theorem 6 is denoted by ~+ .  
We now present some properties of the bijective correspondence established by Theorem 4 between the set of  

strings S 1 ([0, b), M )  and the set of  functions f-" s (S )  of the form (32) that are the principal dynamic compliance 
coefficients of these strings: 

I O. , ~ ( + ~ ) _  ,~(_oo) = (M(ao+O)_M(ao_O))  -1. 

+ o o  

II O. b = 7 +  f ~-ld,~(;L). 
-0 

III~ Under the assumption that the immobile fixing of the right end x = b < ~ of a string S 1 ([0, b), M)  is 

equivalent to adjoining an infinite mass at the point x = b, we have 

( '~(+0)- -  '~(--0)) -1 = M, (34) 

where M is the overall mass of the string. 
and (34) is satisfied. 

Consequently, if "~(+0) - "~(-0) > O, then b = ,,~, M < ,,% 

IV ~ If S 1 = S 1 ([0, b), M )  is a singular string, then, for the function f" to be meromorphic, i.e., for the spec- 

trum s [ "~ ] of its spectral functions "~ to be discrete, it is necessary and sufficient that one of  the follow- 
ing two conditions be satisfied: 

lira x (M(b) -M(x))  = 0 and lim M(x) (b -  x) = O. 
x'~b x$b 

V 0 . 

It is assumed that M(b) < ,,~ and b = ~ in the first condition and b < ,,o and M(b) = oo in the second 
one (see [34]). 

If S 1 = $1([0, b) ,m)  is a singular string, then, in order that the spectrum s[ "~] = {~,j [ j = 0 ,  1, 2 . . . .  } 

satisfy the condition 

Z ~,j1 < ~ ,  (35) 

it is necessary and sufficient that one of the following two conditions hold: 

b b 
( M ( b ) - M ( x ) ) d x  < ~, and I ( b - x ) d M ( x )  < ~,. (36) 

It is assumed that M(b) < ,,~ in the first of these conditions and b < ~ in the second one. 
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, �9 Or Note that in Feller s terrmnol%y accepted in the theory of diffusion processes, the right end of a string is called 
an entry end if the first condition in (36) is satisfied; under the second condition, it is called an exit end (clearly, an 
end which is both entry and exit is a regular end). 

2.8. Classes ~A" 

Definition 7. A continuous function �9 defined on [0, A)  is attributed to the class ~A if 

(# o ( o )  = 0; 

(ii) a kernel 33(s, t) := O(s) + O(t)  - O ( I  t -  sl) is positive definite on the square 0 < s, t < A. 

It is clear that the function �9 defined on [0, +oo) by the equality 

O(t)  = f 1 -cosaf-~t d~(~) (37) 

-0 

with a function z e ~+ belongs to JB= and, hence, to the class 13 A with an arbitrary A e (0, +oo). IQ'ein proved 

in [57] that any function t w-> O(t )  from ~A, where A is fixed, 0 <A < + ~ is representable on [0, A) in the 

form (37) with "c ~ ~+. Hence, for A < ~, any function �9 e ~A can be extended to [0, + o~) with an extension 

that remains in the class ~ .  The problem of finding the indicated extension of a function ~ ~ ~a  with A < oo is 

equivalent to the problem of finding a function "c e ~+ for which equality (37) holds for any t s [0, A ). 

If �9 ~ Boo, then a number Tq, > 0 is called a separating point of the function �9 if the latter admits more than 

one extension from any interval [ 0, A) with A < T ,  and is uniquely extendable from any interval [ 0, A) with 

A > T~. If �9 is uniquely extendable from any interval [0, A) with A > 0, we set r ,  = 0. If it admits more 

than one extension from any interval [0, A) with A > 0, we set T a, = oo. 

In the case of A < T ,  (A > 0), M. Krein gave a description of the set Vdp,A C ~r. of all "c that deliver its re- 

presentation (37) on the interval 0 < t <A. Moreover, he established an algorithm for computing the value of the so- 
called central function 

0 , ( A )  : = max ('c (+ 0) - ~ ( -  0)) 
"cEVo, A 

for any A s (0, Tq,). In many cases, this technique allows one to give an efficient solution of the inverse problem of 

finding a string if its principal spectral function "c ~ ~+ is given (for details, see the next section). 

2.9. Transi t ion Funct ions  of  Strings S 1 ([0,  b), M )  with Heavy Left Ends.  For every function "c e ~ + ([0, 

b), M), we define a function �9 r on [0, +co) by the equality 

+= 1 - c o s 4 " 2 t  d'c(~,) V t ~ [0 ,  +o~).  (38) Or(t)  = f ;~ 
-0 

It is called a transition function of a string S 1 ([0, b), M) and the function ~ : = ~b~ is called the principal transi- 

tion function of this string. It follows from Theorem 6 that any function �9 ~ ~ is the principal transition function 
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of a single string S 1 with heavy left end; moreover, any transition function of a string S 1 ([0, b), M) is the principal 

transition function either of this string or of the string $1([0, B), M) obtained from $1([0, b), M) for b 0 = b by an 
v 

extension to the right ( M  (x) = M(x) V x ~ [0, b)) and, for b 0 < b, by removing its part that lies on (b 0, b) (and 
is weightless) followed by an extension to the right. 

It is worth noting (see [57]) that for any "c s ~+([0,  b), M), 

o 

09z(t) = 09(t) V t ~  [0 ,2T) ,  (39) 

where T = tM(b ) [see (14)]. It follows from (38) and (39) that ~+  ([0, b), M) C V+,2T. Moreover, for the case 

where the right end of a string S 1 ([0, b), M) is not discharged, i.e., one cannot indicate any interval (b - ~, b) on 

which M'(x) = 0 a.e., Krein proved that ~+([0,  b), M) = V+,2T. In this case, 0 ,(2T) gives the overall mass of 
o 

the string S 1 ([0, b), M) [see (24)]. It is now clear that, for a given 09, one can find the mass of the part of the 
string that lies on [0, xt) for any t ~ (0, T), where x r is the least root of the equation XM(X ) = t. In the case 

where the string S 1 contains no intervals on which M'(x)= 0 a.e., the idea indicated together with equality (14) 
o 

enables one to find, for a given 09, the length b of the string and M(x) for every x s (0, b). Therefore, these 
values can be reconstructed from the principal spectral function. In this connection, Krein proved two theorems pre- 
sented below [57]. 

Theorem 7. In order that a function ~ ~ ~.+ be the principal spectral function of  a string S 1 ( [0 ,  b), M) 
such that tM(b) = T, where T is a given number from [0, +~,], it is necessary and sufficient that the equality 

Te~ = 2T, where 09 = 09~, hold. 

Theorem 8. Assume that 09 ~ ~ ,  Te~ > O, and 09" ( t ) exists for any t ~ [0, T~ / 2 ). Furthermore, let 09' 

be locally absolutely continuous in [0, T~ / 2) and let S 1 ([0, b ), M)  be a string whose principal transition func- 

tion is 09. I f  for  some A ~ [ O, T~ / 2), an integral equation 

A 

2c) '(0)q(t)  + ~ 09"(It-s[)q(s)ds = 1 (40) 
-A 

possesses a solution q = q(t; A) summabIe on [-A, A], then this solution is unique and, for  any complex ~, 

A x A - 0  

q(t,A )cos~.tdt = ~ (p(x,)~2)dM(x) 
- A  - 0  

1 
= -  o-(XA, Z2) ,  

in particular, 

A 

f q( t ,A)dt  = M(XA-O ). 
- A  

Moreover, i f  09"(0) > O, then, for  any A ~ (0, T~/2) ,  Eq. (40) possesses a continuous solution on [ - A , A ]  

and the functions t ~ M(x t )  and  t ~ (p-(x t, ~.) have absolutely continuous derivatives with respect to the 

variable r Finally, the equality 



SPECTRAL THEORY OF A STRING 173 

1 d t 

- t  

q( s, t) cos ~.s ds 

is true for  an arbitrary complex )~; here, p (t) = dM (xt) /  dt. 

This theorem, together with numerous assertions (see [54]) that describe transformations of a string caused by 
simple transformations of its principal spectral function, gave the possibility to indicate a broad class of functions 

z ~ ~+ for which one can effectively construct a string S 1 with the principal spectral function z. Furthermore, it 

opened the possibility to extend the class of strings S for which a solution of the string equation (5) can be expres- 

sed, for any )~, in terms of elementary and special (Bessel and Legendre) functions. 
The development of the ideas of Theorem 8 lead M. Krein to many interesting results having no direct relation 

to the spectral theory of strings [58-61]. 
At the end of this subsection, we present a mechanical interpretation of the transition function of a string and 

make an attempt to give a mechanical explanation of equality (39). Let c~ be the principal transition function of 
o 

the string $1 ([0, b), M). Then, as was shown by Krein, �9 (t) is equal to the shift of the left end of the string for 

time t under the action of the unit transverse force instantaneously applied to this end of the initially immobile 

string. If "c s ~+  ([0, b), M), then, as mentioned above, ~ :  is the principal transition function of a string $1 = 

S 1 ([0, B), ~I) whose mass distribution on the interval [0, b0) coincides with that of the string S 1 ([0, b), M).  

Note that, for any x ~ [0, B), t~t(x) is the time for which a wave induced by a transverse shift of the left end of the 

string reaches the point x or an (inverse) wave induced by a transverse shift of the point x reaches the left end. 

The motion of the point x = 0 of the string $1 is affected by the applied unit force, by the part of $1 that moves, 
and by its immobile part. The effect of the immobile part manifests itself only in longitudinal tension which does 

not depend on the masses located in this segment of the string. For the points x ~ (b 0, B), we have t~4(x ) > T 

(notethat T= tM(b ) = tM(bo) = t~ (b0)). Therefore, fortime t <2T, the part of the string S1 that lies to the 

right of the point b 0, i.e., the part of the string $1 adjoined to the original string does not affect the motion of the 

left end (the wave cannot reach the points of this segment and return to the point x = 0). As a result, we observe the 

same effect as if the point b 0 is fixed. This explains the fact that the transition function ~z of the original string 

(it is also the principal transition function of the string $I ) coincides with the principal transition function q~§ on 

the interval 0 _< t < 2/'. 
I could never decide what had appeared earlier - -  the analytical approach to the proof of equality (39) and The- 

orem 7 or mechanical arguments. It seems to me that mechanics was the first. Krein had an extremely strong mech- 
anical intuition which, being combined with his powerful analytical technique and ability to understand phenomena 
in all their complexity, worked wonders. 

that 
2.10. Extrapolation Stationary Random Processes. Let 6 be an odd function nondecreasing on JR and such 

-l-co 

(41) 

Denote by A= a space Z~(~2)( - ~, + ~) with the standard norm. Let J a  = ( -  0~, + 00, 0 -< Ct < + ~ ,  be an interval 
of the real axis and let Ac~ be the linear span of a family of functions 
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t2 

)~ ~-~ S exp(iks)ds ,  tl, t2 E Jo~, 
tl 

closed in A~. 

In [56], Krein solved the following two problems: 

I. Establish a criterion for As = A~. 

II. For Ac~ ;~ A=, find an analytic expression of the orthogonal projection P=F of an arbitrary element F 

Am onto Aco 

These problems can be treated as the problems of the prediction (extrapolation) and filtration of stationary pro- 

cesses according to their observation on the interval - c~ < t < c~. Without loss of generality, we can assume that (y 

is normalized by conditions of the form (8). We set "t ()~) = 2(y (,f-~) - ~(+ 0) for all )~ > 0, "c (0) = 0, and 

"c (L) = -(y (+ 0) for all X < 0. The function thus defined is normalized by conditions (8) and, as follows from (41), 

condition (33) is satisfied. According to Theorem 6, there exists a string S 1 ([0, b), M) with a heavy left end whose 

principal spectral function is z. A solution of  Problem I is given in terms of the string S 1 ([0, b), M )  by the fol- 

lowing theorem: 

Theorem 9. In order that Am = Aoo, it is necessary and sufficient that the following conditions be satisfied: 

(a) tM(X) <- c~ forany xE  [0, b); 

(b) M(xeO = M(b), where x a is the least root of  the equation t m (x) = o~. 

Now let A m ~ A~o and F ~ Am. We construct the following functions: 

N 

f ( x )  = 1.i.m. f F(s163163 and g(x) = l.i.m. 
N---~ oo - N  N --3. oo 

U d~()~) 
F0~) (p-(x, )2 ) )~ 

- N  

where the first limit is understood in the sense of convergence in a3(M 22) [0, b), and the second in the sense of conver- 

gence in a; (2) [0, b). Here, q)(-, 5~) is the nonextended part of a solution of problem (12). 

A solution of  Problem II is given by the relation 

XC~ -- 0 X~  
1 

(P~F)()~) = f f(x)(p(x,)~2)dM(x) + -~ ~ g(x)(p-(x, )~2)dx. (42) 
- 0  0 

The squared distance between F and As is given by the equality 

+ ~  b b 

If()~)-(ea F)(~')t2d~()v) = ~ If(x)12dM(x) + S Ig(x)12dx" 
--o~ XeA --0  XO~ 

In parallel with the solution of these problems, Krein proved that entire functions of the form 
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~r(;~) 
xa - 0  

f f(x)cp(x, )~2)dM(x), 
- 0  

where f ~  Z ; ~ [ 0 ,  xa), exhaust the set of all even entire functions in Aa; the set of all odd entire functions from 

Aa is exhausted by entire functions of the form 

where g ~ ~ ( 2 ) [ 0 ,  xcc). This yields (42). 

1 Xcc 
G(~,) = -~ f g(x)tp-(x, )~2)dx, 

3. Further Development of the Spectral Theory of Strings with Nonnegative Masses 

3.1. Multiplici ty of a Spect rum.  Consider a string S((a, b), M) with two singular ends. As in Subsection 1.5, 
L 0 is the differential operator of  the string. It was established that if this operator is not self-adjoint [i.e., if at least 
one of the following conditions is violated: 

k-0  b 

f ( x -   )2dM(x  : 0% f k)2dM(x) = 
a k -0  

(43) 

where k is a fixed point from (a, b)], then it admits self-adjoint extensions with simple spectrum. In the case where 
its deficiency index is (1, 1), i.e., only one condition in (43) is not satisfied, all self-adjoint extensions of this oper- 
ator have simple spectra. 

The theorem formulated below proves to be the most interesting; it deals with the case where L 0 is a self-ad- 
joint operator [both conditions in (43) are satisfied]. 

Let us introduce an additional notation. For simplicity, let c be a continuity point of the function M. Consider 

two Sl-type strings S 1 ((a, c], M) and S 1 ([c, b), M). By definition, their spectral functions "c l and z,. are unique 
spectral functions of the boundary-value problems 

1M,(a,c][y] -~,y = O, y(c) = i, y+(c) = O, 

lM,[c,b)[y] -~,y = O, y(c) = 1, y-(c) : O, 

respectively. Let F l and 1-" r be their dynamic compliance coefficients, i.e., 

+~ dZrOQ, d'cl(;~), Fr(z) = 7, + f ~ - z  r,(z) = + f g -  2 
-0 -0 

where Yl(Yr) is the length of the largest interval without masses with the right (left) end at the point c. Denote by 

Pa[~;l] a set of  points )~ ~ IFI at which the symmetric derivative 'cl')(;~ ) exists and is finite and nonzero. Le t  

Pa+['ct] be a set of  points ~ ~ 1R where the finite nonreal limit lim F I (2~ + i~) exists. (We have Pa+ ['ct] C 
~$0 

Pa ['cl], and Pa ['cl] \ Pa+ ['ct] is a set of Lebesgue measure zero.) For "c r, we introduce a similar notation. 
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Theorem 10 (Kats [20, 21]). If  the operator L o is self-adjoint, then it possesses a multiple spectrum if and 

only if  a set K+ :=  P a+ ['eli O P a+ ['Or] ( a set K := Pa ['c/] n Pa [Zr]) has a positive Lebesgue measure. In this 

case, the set K+ is the maximal homogeneous part of  the spectrum of  the operator L o with multiplicity two (to 

within sets of spectral measure zero). On the set K§ the spectrum of  the operator L 0 is absolutely continuous. 

Furthermore, it is a Lebesgue-type spectrum, i.e., any set A C K+ has spectral measure zero if  and only if  its 
Lebesgue measure is zero. 

Thus, the multiple part of the spectrum of the operator L o cannot have a singular component (if this operator 
is self-adjoint). 

Note that in cases where the operator L 0 is not self-adjoint or where it is self-adjoint and has a simple spec- 

trum, there exists an /B-family G such that problem (7) possesses a spectral function. 

All these results remain valid for the Sturm-Liouville operator and the operators generated in ff;(~) (I) by the 
differential operation 

d I x0 ) 
dM(x) y - ( x ) -  f y(s)dQ(s) 

c-O 

introduced by the author in [14]. 

3.2. Denseness of a Spectrum. The spectrum of a soft nonnegative self-adjoint extension of the operator L 0 

(or the spectrum of the operator L 0 itself if the latter is self-adjoint) is called the spectrum of a string S ((a, b), M).  

Note that the spectrum of a string S([0, b), M)  with the regular left end coincides with the spectrum of the 

principal spectral function of the string S 1 ([0, b), M) provided that the right end of the former is singular; in the 
case where the right end is regular, the required spectrum coincides with the spectrum of the principal spectral func- 

tion of the string S 1 ([0, + ~),  M) obtained from S 1 ([0, b), M) by adjoining an infinite (if b < + oo) mass-free 
interval to its right end. It follows from Krein's Theorem 6 that an arbitrary closed subset of the interval [0, + o~) 
may be a spectrum of a string. It is thus interesting to clarify the existing relations between the location of the 

spectrum and the behavior of the function M. For strings S([0, b), M) ,  this problem is partially solved by 

properties IV ~ and V ~ presented in Subsec. 2.7. 

A string S((a, b), M) is attributed to the class ~ if its spectrum consists of numbers (0 <) ~0 < ~1 < ~'2 < "'~ 

and the series 

j = l  

converges. The indicated property V o implies that S ((a, b ), M)  ~ ~1 if and only if each of its ends is either an 
entry or an exit. 

The spectra of regular strings S([a, b], M) are always discrete and, as was showed by Krein (see [46, 50, 6]), 

b 

lim ~ n  _ 1 ~ ~ d x  (<oo). (44) 
n----~,~ ,~A,n  7~ a 

Thus, for a regular string, the question of whether it belongs to the class C a  is meaningful only for o~ < 1 / 2 and 

only in the case where M'(x)  = 0 a.e. in [a, b]. If the string S((a, b), M) is singular and M ' ( x )  > 0 on a set of 

positive measure, then one should consider only the case where o~ > 1 / 2. 
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In [17], Kats presented sufficient conditions for a string S to belong to the class C a  with )~ e (0, 1). This 

was probably the first time when the problem of growth of  )~n was discussed in the case where M'(x)  = 0 a.e. 

These results were later improved (first, in [28] and then in [30, 32]) and, finally, formulated as the following the- 
orem: 

Theo rem 11. Let S((a, b), M)  ~ ~1 and let r ~ Z (r) be a convex function nondecreasing on [0, + ~ )  

and such that )~ (+ O) = Z (0) = O. Then 

dM( ) f Z +(x(M(s + M ( , -  
o o 

where 

Xs(1 ) = s u p { x ~  I R + l x ( M ( s  + x ) - M ( s - x ) ) < l ,  s - x  > a, s + x  < b}. 

Relation (44) was generalized to the case of singular strings S([0, +oo), M )  by Birman and Borzov in [1]. 

They proved that (44) is true if there exists a function p decreasing on [0, +oo) and such that p (x) > 0 for any 

x ~  [0, +,,o) and 

+oo +0o 

f p(x)dx < ~o, f (p(x))-ldM(x) 
o o 

OO. 

This result was first formulated by McKean and Ray [68] but their proof contained an error. In [7], Dym and 
McKean gave a correct proof different from that presented in [1]. 

In the work [71] that appeared several months later than [17], Uno and Hong proved that, for the eigenvalues 

%n of a string S([0 ,  1], M) ,  where M is a Cantor singular function (the "Cantor ladder"), the inequalities C 1 _< 

n )~n "/-< C 2 hold (here, C 1 and C 2 a r e  positive constants and 7 = log6 2). 

In the work [2], for the case where b - a < ~o and the function M is bounded and constant on intervals At, 

A 2 . . . .  enumerated in the order of  decreasing of their lengths, i.e., [ A I I -> [ A21 -> . . . .  and such that the sum of their 

lengths is equal to b - a, Borzov proved that the asymptotic equality I An [ = O(n -5) as n --~ ~ implies that )~n > 

Cn 1+~ for all n a N,  where C is a positive constant (this result admits generalizations). This fact and Theorem 11 
yield a series of assertions concerning the local properties of singular functions of bounded variation with the inter- 
vals of constancy similar to those described above. 

In [28], Kats formulated a theorem that gave bilateral estimates for lim sup n ~ , j  with y s (0, 1 / 2) de- 

pending on the behavior of the relations 

M(s + h) - M(s + O) M(s + O) - M ( s -  h) 
hi3 , hi3 

as h $ 0; here, [3 = y / (  1 - ,/) at all points s of the support of the M-measure. 

3.3. G r o w t h  of  S p e c t r a l  Functions.  Here, we present two author's results concerning the growth of  spectral 

functions of  strings $1 ([0, b), M )  as L --~ + oo. Recall that Krein established the fact that for any spectral function 

"c of a string S t ([0, b), M) ,  the integral 
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J ~-a d,cO~) 
1 

(45) 

converges for c~ = 1; in the case of c~ = 0, it converges if and only if M(+ 0) > M(0). 

Theorem 12 [31]. Let  ~ be a spectral funct ion of  a string S 1 ([0, b), M )  with heavy left end and let 

M(O) = O. Assume that a function ~ is nondecreasing on [k, +~),  where  k > 0 and  ~ ( k )  > O. Then, for  

anyfixed l ~ (0, b) such that l M ( l )  < k -l, 

This theorem yields, in particular, the necessary and sufficient conditions for the convergence of integral (45) 
with c~ ~ (0, 1). 

Theorem 13 [26, 27]. Under the conditions of  Theorem 12, i f  

lim x - a M ( x )  = A, 
x$O 

where A and c~ are constants, 0 < A < + ~,  c~ e (0, + ~),  then 

i ( o )  
"c()~) = A~-;5 B ( a ) ) ~  + o )~=r ,  L --+ + ~ ,  

where 

( 13 ")IV(I3+')F-2 (2~ + 1"] 
B(~) = (~ + 1) 2)  \ - ~ - ~ . ) .  

It follows from Theorem 13 that the asymptotic equality (26) established by Marchenko [67] for the spectral 
functions of the boundary-value problem 

- y "  + q ( x ) y -  )~y = O, 0 < x < b, y(O) = 1, y'(O) = h, h ~  JR, 

holds provided that M possesses the right derivative equal to one at the point x = 0 but this is possible even in the 
case where M is a pure jump function. 

Theorem 13 was generalized and completely inverted by Kasahara in [1]. 4 Later, he used this result in the the- 
ory of one-dimensional quasidiffusion processes (see also [ 12, 13]). 

3.4. Strings from the Class ~ s with Boundary Conditions Given at the Entry End that May Be Singular. 
A nondecreasing function M defined on the interval I = ( -  ~, b) with b _< + ~ (or I = ( -  ~, b ] with b < + oo) is 

attributed to the class ~J~ if M ~ ~ (I) (_ ~, c), where c < b. A string S (I, M)  whose mass distribution function 

M belongs to YJ'[ is attributed to the class ~Y[s- A spectral function of a boundary-value problem 

IMt[Y] - s  = O, lim y(x) = 1 (46) 

4 In [27], the author obtained a partial inversion of this theorem. 
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is called a spectral function of  a string S(I, M)  ~ ~ , .  The existence of a spectral function of  this string was an- 

nounced in [14] and proved in [23]. Note that any string S 1 is, in fact, a string from fits. Thus, the spectral theory 

of strings from the class ~ s developed in [22, 24] is a generalization of the spectral theory of strings S v The next 

theorem belongs to Kats and describes the set of all spectral functions of the string S ( ( - ~ ,  b], M )  ~ fit s with 

heavy right end. In this theorem, qb (., z] is a (unique) solution of the boundary-value problem (46) and �9 ( . ,  z) is 
its nonextended part. 

Theo rem 14.  Under the indicated conditions, a function z nondecreasing on (_0% +oo) is a spectral func- 

tion of a string S ( ( _o% b ], M) ~ fits if and only if it coincides with a function zh given by the relations 

f2h(z) = 1 d#(b ,z )h(z ) -  rb+(b,z) I m z > 0 ,  
(qb(b, Z)) 2 + (ag+(b, z)) 2 aP+(b, z) h(z) + ~(b, z)" 

L 

1 lim f I m ~ h (  { + ie)d~ V~ e (--~,+o~) 

0 

with h ~ ([?) in the case where M (b) - M(b - O) = 0 and with h ~ ( ( / ) )  \ (R0))  in the case where M (b) - 

M ( b -  O) > O. The spectral function Xn is orthogonal if and only if h is a real constant (maybe ir~nite). The 

spectral function Zh possesses a nonnegative spectrum if and only if h ~ ( S ). 

In achieving this description, it was necessary to overcome the difficulty connected with ~ e  fact that here, 

unlike the description of the set of  spectral functions of a regular string $1 (Theorem 1), only one solution qb of the 
string equation was available. 

It was shown that cb(b, z) = D(z) and ~+(b, z) = E(z), where 

D(z) = 1 -  z , E(z) = - M z  1 -  z , (47) 

and M > 0, 0 < Z t < gl < )v2 < g2 < ~'3 < . . . .  Moreover, any pair of  functions D (z) and E (z) representable in the 

form (47) under the indicated conditions can be treated as ~(b, z) and aP+(b, z) for some string S ( ( - ~  b], M)  

fit s- This enabled the author to prove Theorem 2 in [22] that gave a description of  the set T N of  all functions "c 

which may serve as spectral functions of the strings from fits. 
This theorem yields unexpected corollaries: 

For any ct < 1, the set TN contains a continuously differentiable function "c such that "c'(L) e -9~ --~ + ~, 

as )~ ~ +~o.  

II. For any function 9 nondecreasing on [ 1, +oo), there exists a function "c ~ Tfj / such that "c()~) > 9 ()~) 

fo rany  Z s  [1,+,,o). 

There are many theorems clarifying relations between the growth of spectral functions "c of  strings S s fits 
and the behavior of mass distribution functions M of these strings in a right neighborhood of  the point - oo. For 

example (see the corollary of  Theorem 1 in [22]), a function "c can be majorized by a polynomial if and only if 

M (x) = o ([ x I - l -e )  as x $ - ~ for some ~ > 0. Sufficient conditions were established for the validity of  the fol- 
lowing relation: log "c 0 ~) = o (Z) as )~ ~ + o% e.g., this is tree if Ix [ log Ix IM (x) = o (1) as x $ - oo. 
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Numerous  works  are devo ted  to the inverse  problem.  Thus,  it was  es tabl ished ([24], T h e o r e m  1) that  an arbit- 

rary  nondecreas ing funct ion "c normal ized  by condi t ions (8), having no points  o f  increase  on ( -  0% 0), and admit-  

t ing a major izat ion by a po lynomia l  on [0, +oo) be longs  to T N .  Fur thermore ,  there exists  a string f r o m  the class 

~J1 s for which  "c serves as a spectral  function and this string is unique to within a natural  ambigui ty .  The  theory of 

strings f rom the class f i t  s was  used by Kotani  in [38]. He  gave  another  descr ipt ion of  the set TN based  on the 

K r e i n - d e  Branges  spaces.  Howeve r ,  all s ignificant  results o f  this work  repeated  the cor responding  results  obta ined 

in [22] and [24] as was, in fact ,  noted by  Kotani  in the introduction to [38]. 

Finally, note  that D y m  and M c K e a n  [7] solved the p rob lem of  interpolation o f  stat ionary Gauss ian  r a n d o m  pro-  

cesses  by using strings whose  spectral  funct ions increase sufficiently rapidly. This  was jus t  the reason for  consider-  

ing the strings f rom the class f i ts  which were  cal led a new class of  strings (see [7], Secs. 6.12 and 6 . i3) .  
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