
B E R N S T E I N - T Y P E  I N E Q U A L I T I E S  F O R  f_,-SPLINES 

V. F. Babenko and A. A. Ligun UDC 517. 5 

New Bernstein-type inequalities axe obtain for 2re-periodic .L-splines associated with a differential 
operator ~ (D) of degree r with fixed real coefficients. 

1. Assume that C and Lp, 1 < p < ~,  are spaces of real 2n-periodic functions with the corresponding norms; 

II?IIL. = I I ' l lp -Let  C r, r e  I~I, be a set of functions f e  C suchthat f (0  e C; C~  let L~ be a set of func- 

tions f E  C such that f ( r -  !) i s  locally absolutely continuous and IIf (0 lip < ~,  L ~ = Lp ; and let ~ be a set of 
2n 

functions f E  C such that f(r-1) is locally absolutely continuous and V 0  c(r)) < ~.  We denote by ~,,+], n e ~ ,  
0 

the set of trigonometric polynomials whose degree is at most n. Finally, let $2,,, ~, r e ~.§ denote the set of 2n-pe- 

riodic polynomial splines of degree r with deficiency 1 and knots l~ / n, l a ~.. 
In approximation theory, an important role is played by the Bemstein inequality [1] for trigonomeUic polyno- 

mialS m E ~n+1 

IIm<k>ll** -< n ~ II'clt~, (1) 

which rams into the equality for the polynomials of the form "c(x) = a cosn (x - x0), a, x o E JR. This inequality 

was generalized in various manners. Thus, for m E ~n+l, the unimprovable inequality 

< n  k 
Ilcos(./Ip Ilcos(')llq' k E 1~I, (2) 

was established by Zigmund [2] in the case where p = q E [1, ~); Tikov [3] and Ligun [4] proved this inequality 

in cases where p ~ [1, ~) ,  q = .o, and p = 1, q e (1, ~),  respectively. There also exist other generalizations and 
specifications of inequalities (1) and (2). Omitting the details, we only note that most of these results can be found 

in [5-9]. 

There also exist analogs of inequalities (1) and (2) for splines. Denote by q)n, r an rth periodic integral of the 

function (pn,0(x) = sgn sin nx with a mean Value zero on a period. Tikhomirov [10] (for p = q -- ~), Subbotin [11] 

(for p = q = 1), Ligun [4, 12] (for p E [1, ~), q = ~ and p = 1, q E (1, ~)),  and Babenko and Pichugov [13] 

(for p -- q = 2) have proved the validity of the unimprovable inequality 

I nr_kt  -< 
k = 1 ..... r, (3) 

for s ~ S2n,r, n ,  r e I~I. For information concerning the other well-known Bemstein-type inequalities for splines 

from S2n, r ,  we refer the reader to [9, 14]. 
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In this paper, we generalize the inequalities (3) for the case where the operator of k-times differentiation is re- 
placed by a more general linear differential operator with constant coefficients (some of well-known results of this 
sort can be found in [9, 15, 16]). We also show the possibilities of the general approach based or, the use of theo- 

rems on comparison of derivatives, permutations, and Z-permutations. Note that Stechkin [5] was apparently the 
first who used the ideas connected with comparison of derivatives for solving problems of this sort. Information 
conCerning the use of the theorems on comparison of derivatives and permutations for proving the Bernstein-type 
inequalities can be found, for example, in [8, 14, 17]. In this paper, we also obtain a new Kolmogorov-type inequa- 
lity which, as we hope, is of interest itself. 

2. Principal Results. First, we give some necessary definitions and notations. Let 

Lr (y) = ao yr + al yr-1 +. . .  + a~, (4) 

where r e N, be an arbitrary algebraic polynomial of degree r with real coefficients, and let s  (D) = ao Dr 

+ aiD r-1 + ... + a r be a differential operator associated with this polynomial (D = d/dx) .  

If L r (D) s ~ S2n ' 0' a function s ~ C r-1 is called a periodic .L-spline with equidistant knots I x / n, I E N, 

corresponding to the operator L r (D). By $2,,,.c r, we denote the set of all such L-splines. It is clear that 

S2n,(.)r = S2n,r. 

Denote by %,zr(x) a 2x-periodic function having mean value zero on the period and such that Lr(D)~Pn~r =~Pn,e 

If f ~  L 1 and f_> 0 almost everywhere, then by P( f ,  t) we denote a decreasing permutation of the restriction 

of f to the period ( see, e.g., [18, w 5.4]). In addition, if g E L 1 and g > 0 almost everywhere and 

X X 

S P ( f , t ) d t  < SP(g,t)dt, 
0 0 

for any x E [0, 2x], then 

f -< g. (5) 

I t  is well-known (see, e.g., [18, p. 96]) that if f , g  G Lp, 

Ilfllp -< II g II p. 
We now formulate the principal results. 

1 < p _< ~,, then it follows from inequality (5) that 

Theorem 1. Let n, r E hi, and let L r be a polynomial o f  the form (4) with roots Yl . . . . .  Yr such that 

Lr(y) = Z~(y) Lr_k(y), (6) 

where f_~(y) and Lr .k  (y ) are polynomials with real coefficients of  degrees k and r - k, respectively. I f  n > 

2max{ I lmy k ]" k=  1 . . . . .  r}, then, for  any f_.~spline s E S2n, Lr , the following inequality holds 

(7) 

In particular, 
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(2/~) "I/p II Lr(D)s lip - 
llsll v 

[ q~n,L, p 

(8) 

Furthermore, if f_~(y) in (6) is such that f_~(0) = 0, then for any s ~ S2n ' Lr,  we have 

IL,(D)~ - ~1 "< II s II" [ 
I 

(9) 

and hence, 

IlLk(O)sllp < IIslI- (10) 

for any p ~ [1, ~,]. 
I f  a polynomial f_~ of  the form ( 6) has only real roots, then,for any s E $2~, zr and q G [1,oo], we have 

2 ~  

V(Lk(D)s) Ilsllq 0 < 
21t - �9 
~/(f~n,L,_k ) IPn'L" q 
0 

(11) 

Consequently, i f  f_~(O) = O, then 

l[ ck(O)sl[1 < Ilsllq 
[~..L, lq 

(12) 

Inequalities (9) and (10) have been announced in [9]. 
The analogs of the inequalities (6)-(12) also hold for trigonometric polynomials. They can easily be derived 

from the results obtained in [3, 4, 9]; one can also prove these inequalities in a manner similar to the proof of The- 
orem 1 given below (the proof is even simpler). To give the complete picture, we present these inequalities. 

Theorem 2. Let  n, r ~ I~I, let L r be a polynomial of  the form (4) with roots Yl ..... Yr, and let "c G 

~n+1" I f  n > 2max { [ Imy k [: k = 1 . . . . .  r}, then [ Lr(O)'c[ -< I Lr(in)[ [ "el, and hence, for any p ~ [1, ~],  

wehave II Lr (D~l lp  -< ILr(in)lllxllp. 
Furthermore, if Lr(O) = O, then 

ILr(D)X-~,  I -< IIl~ll. lLr(in) lcos(.)-~ I, 

for any )~ G JR, and 

II Lr(O)x II1 I cos (')1 "< 4-I Lr(in) ll z(')l, 

and hence,for any p, q ~ [1, oo], 

II cos(.)II ,, 
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and 

IIL,(o) II  < ,ll ll,, 
4[L,-(in)l -II os(')llq" 

3. Let us present results which play a principal role in the proof of Theorem 1. The following theorem is a ge- 
neralization of Kolmogorov's theorem on comparison of derivatives (see [19, w 5.4]). It can be found, fl)r example, 
in [8] (statement 3.2.2). 

Theorem 3. Let functions f and ep be continuously differentiabte everywhere on the real axis'. S,uppose that 

a function (p is 2l -periodic and that on the interval (a, a + 2l ), where a is the point of  absolute extremum for 

the function cp, there exists a point c such that the function q) is strictly monotone on both intervals (a, c) 

and (c, a + 2l). Assume also that for any y, on each interval of  monotonicity o f  the function ~, the sign of  the 

difference q~(.) - (p(. - y) either remains unchanged or changes only once (the sign changes from "+" to " - " ,  

if the function cp decreases, and from " - "  to "+", i f  the function cp increases) ,  and let mine~[t) ~ f(x) <_ 
t 

max ~t) .  If, in addition, the points x and y are such that q~(x) = f(y) and r > O, then 
t 

If'(Y) l < I r 

The following theorem (see, e.g, [8, statement 3.2.7]) is a generalization of Komeichuk's theorem [19, Theorem 
6.8.1]. 

Theorem 4. Assume that functions f and cp satisfy the conditions o f  Theorem 3 for  I = 2re / n, n e N, 

and the function f is periodic with period 2~. Suppose that the functions f "  and (p" also satisfy the condi- 

t ionsof  Theorem3 for  l=2rc/n.  Then I f ' - ~ l  "~ leP'-~I, forany  ~,e IR. 

Denote by v (q) the number of sign changes of a 2r~-periodic function q on a period. If a function f is diffe- 
rentiable at the point x and a e R ,  then 

(p'(x) + af  (x) = e'aX(f (x) eax'f . 

Together with the Rolle theorem, this implies that for any piecewise-continuous differentiable 2~-periodic function 

f and any a e ]R, we have 

v (f" + af) >_ v ( f ) .  

Further, for any function f ~  C 2, the following identity is valid (see, e.g., [15]) 

(13) 

er(X-a) D(sin e~ (x -a )D(e  -~'(x-a)sin - l a ( x - a ) f ( x ) ) ) .  (D 2 - 2 y D  + y2 + ~2)f(x ) = sincx(x-a) 

Tiffs identity implies that if f e  C l, the function f "  is piecewise-continuous, f (b)  = f (a )  = 0, b - a < r~ / cq and 

f ( x )  ~ 0 on the interval (a, b), then there exists a point ~ e (a, b), such that L(D)f (x)  sgnf(~)  < 0, where 

f_.(D) = D 2 - 27D + y~ + a2. Consequently, if the length of the largest interval of constant Sign for the function f 
does not exceed n / ~ then 

v (f .(D)f) _> v (f). (14) 

Let (p~., 0(x) = sgn sin Lx, ~ > 0, let the function q~Z,zr0c ) be a 2n /~ .  periodic solution of the equation 
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Lr(D)f(x)  = (PZ, 0 (x)' and let gz,~(x)  = (4~,)-ltp~&(x). It is clear that tp~,,z,(x + ~/~,)  = -q0Lc.,(x ) for any x. 

Taking into account inequalities (13) and (14), it is easy to check that if ~, > 2max  { I ImYkl: k = 1 . . . . .  r } (here, 

Yk are the roots of  the polynomial .L~ ), and x o is the point of  absolute minimum of the function cp;~,L, then a point 

Yo can be indicated on the interval (x 0, x 0 + 2~ / L) such that the function tpx ' 4(x) monotonically increases when x 

(x0, Yo) and monotonically decreases when x e (Y0, x0 + 2rr / ~,). 

By H @ X)[o ' 2n / ~.], we denote Komeichuk's  Z-permutation of the reslxiction of a 2re / L-periodic function f to 

a period (see [19, w 6.4] for the definition of Z-permutations and their properties). For ~, = 1, we write H (~ x) 

instead of  H (~, X)[o ' 2hi. For ~, > 0, we set 

I ~'I'l(g~,,L ; X)[o, 2r~/Jq' 
<PZ'Lr(X) = Lo, 

O< x < r c / L ;  

x >>_ rc / ~,. 

For Lr(y) = yr, the following statement turns into the well-known Komeichuk theorem (see [19, w 6.7]) on 

comparison of Z-permutat iom. 

2 ~  

Theorem 5. Assume that f e I~ V, r e l~I, k / ( L r f  ) < 1, 
0 

> 2 m a x {  I l m y k l -  k = l  . . . . .  r } ,  (15) 

and 

2~ 

o~/(f) _< 2~Z,,.c.,.(O ). (16) 

If, for  given x ~ (0, 2g), we have 

H(f,  x) = ~ ,  z,(x), (17) 

and there exists I-l'(f, x), then 

In ' ( f ,x ) l  < I,X,' - x, z,( x) l. (18) 

For ~, = n, this statement was proved in [20]. 

Proof. First, we assume that ~ = m / n ,  m, n G I~I. Condition (16) means that 

2xn 2gn 

y ( f ) <  y(gm/n ,zr  ). (19) 

Let f =  a + ~ k f k  be an expansion in simple functions of the restriction of a function f to [b, b + 2~ n], where b 

is the point of  absolute minimum of the function If l  which is equal to l a I (see, for example, [19, w 6.3]), let [ak, 
! 

[~k] be the support of  the function fk, and let [~k, 13~] = {t e [ak, 13k]: I fk(t) I = muaxlfk(u) I}. Denote by A(x) a 

set of  indices k such that 13 k a k_ x < ~k - ak" If k e A (x), then, by t k and x k, we denote points belonging to 

[ak, ~k] such that zk - tk = x and fk(tk) = fk('Ck) (and hence, f ( t  k) = f('ck)). 
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Let us enumerate the intervals (tk, "c k ), k = 1 . . . . .  1, from the left to the right, and let t~+ 1 = tl + 2re n, "Ct+ t = "CI + 

2~n. If sgnf(tk) = sgnf(tk+~) for some k,  and the function f does not change its sign on the interval ['~k, tk+l], 

then we denote, by ~k and ~k, the point of  absolute minimum of I f ( t ) l  on the interval ['c k, tk+l]. I f  s g n f ( t  k) = 

sgnf(tk+~), and the function f changes its sign in the interval ['c k, tk+l], then ~' denotes a point belonging to the 

interval ['c k, tk+1] such that f ( ~ )  = 0 and s g n f ( t  ) = - sgnf(t~ ) for all points t > ~k sufficiently close to the point 

~k; and ~k denotes a point belonging to the interval [xk, tk+l] such that f(~"~) = 0 and s g n f ( t  ) = - s g n f ( t k )  for 

all points t > ~ sufficiently close to ~ .  

Denote, by x 1 < x 2 < ... < x2j, the points t k and ~" - k enumerated in nondecreasing order, and let y ~ < Y2 -< ... 

< Y2j denote the points "c~ and ~ enumerated in the same manner. We set f,(t) = 2 + x~- x~). 

Then 

f . ( t )  = 2E~!l(--l)k (f(t + x l c - X l ) - f ( t  + X/c+1-Xl)), 

where x2j+ l = x 1 + 2rr n. Taking (19) into account, we get 

moreover, 

2r fn  2 r tn  

llf, l l .  -< or(f) -< y(gmln, L,) = nll%/,.L, l l . ;  (20) 

2 ~ n  

II Lr(D)f ,  - y ( L r ( D ) f )  < n = n II Lr(D) (21) 

Taking (20), (21), and (13)-(15) into account, we obtain for an 3, c e IR, 

v (f ,( .  + c) - n r L~(')) < 2m 

(here, v ( f )  is the number  of  sign changes of the function f on the interval [0, 2r~n]), Together with Theorem 3, 
this implies that if 

and 

then 

Assume that t ,  = z 1 and I:, 
holds, and, in addition, 

L (  t,) = n r z.(%) 

f,'(t,) m~,z,.L('c,) _> 0, 

(22) 

(23) 

I f*' (t,) ] <- n I (P~n/,. ~('I:,)[. (24) 

is chosen so that conditions (22) and (23) are satisfied. Then inequality (24) 

t I:(xl  l-< 222/=,  s'(x )tf 

Taking into account the definition of the function f ,  and condition (17), we obtain 

(25) 
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f,(t,) = f,(xl) = 21-I(f, x) = 2dPm/n, ~(x) = n ~Pm/n, z,('C*)" 

Consequently, by virtue of (24) and (25), 

Xzi=x II f'(xk)ll <- �89 [ mP'm/n,Z,('C*) l" 

Consider the interval of constancy of the sign of (Pmln, c, 

only one point '~** such that 

~m/ n, Lr(T'**) = {Pro~n, Lr('~*)' 

f~tmln, .Lr(T,.)(Pm[n,Lr("C**) < 0, I *** -**  I = x, 

n l cPm/,, Lr('C,) I = n l %,/ ,,, Zr(L,) I = 2~m/ n, zr(X). 

By analogy with inequality (26), but using the function 

2j k f**(t) = 2Zk=l( -1)  ( f( t  + Yk-Yl) ,  

instead of the function f ,  (t), we get 

I IV(f, x) l = 

Since 

[ 18, Theorem 7.2.1], and 

Z]Jl llf'(x,)ll <- �89 lnlP'm/n,Lr(~',,)l. 

I ]-1 
~A( 1 + ~  _< Z f(-xk) + If'(Y~) k x) f (Zk ~=1 

for any a k, b k > 0, we have 

IV )-1 2~ 1 + 1  

k b, fI ,la+I 'lal 
I I'I'0e' X)I i(Z2kJl[f,(Xk)[)_l )-1. 

The last inequality, together with inequalities (26) and (27), yields 

IH ' ( f ,x) l  <- ~.  (l~,./.,Lr(z.)1-1 + Iw~./.,Lr('c**)1-1)-a = 

Now let ~, be an arbilrary number which satisfies condition (15). 

V. F. BABENKO AND A. A. LIGUN 

(26) 

containing the point "c,. On this interval, there exists 

(27) 

Assume that conditions (16), (17) are 
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satisfied, and instead of (18) the inverse inequality holds. Then there exist ~o = m In < )~ (and hence, ~zo ' q(0) > 

q>x, 1:(0)) sufficiently close to ~, and a point x o such that 

rI(r = OXo, L(Xo), Irl'(f, x0)l > I~i0,L (Xo)[, 

but this contradicts the foregoing assumption. The theorem is proved. 

4. Proof  of  Inequali t ies (7) - (10). Without loss of generality, we can assume that the polynomials f.~ (y) and 

f_~ (y) have the form 

m r-2m 
Lr(Y ) = I ' I (y  2 - 2yty + y 2 +(xt 2) H(x- ~,) 

1=1 l=1 

and 

m 1 k-2m 1 

s = r i ( y 2  - 2 y l y +  yt 2 +o~l 2) i - i ( y  - [3t), 
1--1 /--1 

respectively, where [3 t are the real zeros of the polynomial s (Y) and 71 + i a t are its complex zeros. 

Define the polynomials 4 ,  r, J = I, 2 ..... r - k, as follows 

2 2 .Lj, r(y) = y 2 - 2 " ~ y +  Tj +ot  j ,  j = l , 2  ..... m i, 

s = y - ~ J - m l ,  j = m l + l , 2 ,  .... k - m  1, 

~ ,~ (y )  y2 _ 2 ,~_,+ 2rely + 2 2 = '~j_k+2ml+ O~j_k+2rnl, j = k - m  1 + 1 . . . . .  k + m - 2 m l ,  

f-'i,r(Y) = Y - ~ J - ' ~ ,  J = k + m - 2 m l  + 1 ..... r - r e .  

Weset I o = ' ,  = by in uc,o., = a.d for j =  

2 . . . . .  r -,,, .  If ~j -- U & II. flq'ylL 1, then, in order to prove inequality (7) for p = ~,, it suffices to show that 

)7 = 1, j = 0 , 1  . . . . .  r - r e .  (28) 

It follows from the definitions of  functions f0 and ~Po that ~,o = 1. Assume that, for some j >_ 1, inequality (28) is 
not valid. 

Let Jo - min{j:j_> 1,~,j > 1}. W e n o w  prove that in this case there exist numbers .L*jo ' ~'jo+l* . . . .  ' Xr-m-l* 

and  'l;j0,"~y0+ 1 . . . . .  %r-m-1 such that the inequalities v ( r 1 6 3  2 and ilx~Oll~< tl%lk 
hold for Jo < ] < r -  m - 1. 

We proceed by induction on j. First, we prove that the required numbers Zj and '~) exist for j = Jo- Due to 

our choice of the index Jo, we have Xjo_ 1 < 1. Since 

r = ( - 1 ) l % , ~ , ( x ) ,  l e  N, (29) 
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we get 

v %o-1(')-Vjo_I(" - ~j )) - 2n, 

for any ~,( [ 9~ I < 1) and "~. Thus, the length of the largest interval on which the func t ion  q)j0_l(, ) - ~,fjo_.l (. - "c) 

does not change its sign is not greater than 2x /n .  Together with inequalities (13) and (14), this yields 

v(%(.) - V:o(.--O) _> 2n. 

Let q)jo(yo)= II ~J011.o and If~o(xo)l = IIfJ01L. Then there exist 8 v 82 >_ 0 such that 

V((Pjo(') - ( ~  - 81)fJo(" - YO + Xo - 82)) > 2n + 2 

v((Djo(. ) + (~Io - 81) fJo (" - Y ~  XO - 82)) -> 2n + 2 

ie ~jo(Yo)~o(XO) > o, 

tf )jo(yo)~o(Xo) > o, 
(30) 

and 

(31) 

Therefore, the statement is proved for j = Jo" 

We now assume that the required numbers ~,) and "cj exist for j = Jo . . . . .  l, l _> Jo and prove their existence 

for j = l + 1. According to the assumption, we have 

II ~ft L < II ~, L (32) 

and 

V(r ~,]f/(. ,-'l:/ )) > 2 n + 2 .  

By virtue of (29) and (32), the maximal length of the interval on which the sign of the difference (Pt(') - )~*tft(" - "ct) 

remains unchanged is not greater than 2 x / n .  Therefore, taking into account inequalities (13) and (14), we get 

v ((p/+l ( - ) - -  ~,*t f t+I( . - 'Q)> 2n + 2, and i f  II~.~f~+l(.-~t)ll= <ll~t+lL, then the statement is proved. If the last 

inequality does not hold, then, by analogy with the proof of the inequalities (30) and (31), we find that there exist 

~'~+1(1 ~'~+: I < 1) and %t+1 such that 

V ((D/+I ( ' ) -  ~I+I  f /  + : (" -- "[l + I )) >- 2n + 2 

and 

II ~+xf,+: IIo~ < II ~,+: L.  

Hence, our statement is proved for all j = J0 . . . . .  r - m - 1, and, in particular, we have established the 

following inequalities 

v ((Pr-m- 1 (') - X~-m-lf(" -'Or-n,- 1)) > 2n + 2, (33) 
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II L < U L" (34) 

It follows from inequalities (29) and (34) that the length of the largest interval on which the difference 

%-,n-1(') - X 'r-m-]f("-  X~-m-1) is a function of constant sign is not greater than 27~/n. Together with 
inequalities (33) and (13) or (14), this yields the inequality 

V((Pr-m (')-~'*r-m-lfr-m("-1;r-m-I)) > 2 n + 2  

which is impossible because %-m (x) = r (x) and fr-,~ E S~_n, 0. 

This means that inequality (30) and, hence, inequality (7) are proved for p = ~. 

Employing inequality (7) with p = ~ and the reasoning given in [13], it is now easy to derive inequality (7) 
for p = 2. 

By using Stein's method (see, e.g, [18, pp. t17, 118]), the scheme developed in [i1], and inequality (7) with 

p = 0% we obtain the following inequality 

2;z 2~ 

v(.c,,(o)s) 
2 ~  ' - -  <- - T f f  0 

V(~,,,L,_~ ) V((P,,,L~ ) 
0 0 

(35) 

for L splines s G Szn, Z ~ (with n, satisfying the inequality (15)). Assumenow that s E S2n" z,, n satisfy condition 
(15), and 

-lq> 
f--~(Y) = Yf-~-I(Y), fo = Lk-I(D)s, r = Ilslqlmn,L II. n,~/L~_, 

Then, by virtue of inequality (7) with p = ~o, we get 

lifo IL, -< II % ILo, II fo ILo -< II % II~. 

Moreover, inequalities (13) and (14) and the fact that ( L r [ f_.,k_l)(O)f 0 ~ S2n ' 0 imply that inequality 

v(~p<0J)(.) _ f U ) ( . _  y)) = 2n holds for j=O, 1 and an arbilrary y. Consequently, the functions f0 and (Po satis- 
t 

fy the conditions in Theorem 4. Hence, I fo - X I "< I tPo - ~-[ for any ~, E IR which is equivalent to (9). 

and 

5. A Kolmogorov-Type Inequality. Let L~ = .Lk~_k, ~ >0, p E [1,~], 

%.~ (~.) -- �88 Ii'#~ ~(t/~.) lip 

Theorem 6. I f  a polynomial Lr(y) has only real roots, then the inequality 

2~ (v(f') q-up ] 
Y (Lk(D)f)  O_ 1 I (  ) [If liP 
2r~ < p, Lr, Lr-k ~ "2"E " 

4 V ( s  ) V ( L r ( D ) f  ) 
0 0 

(36) 
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holds for  any function f E I~ v . 

For f.r(y) = yr, this statement coincides with Theorem 1 in [4]. 

2n 
Proof. Let f e  I~r and h ( x ) = f ( x ) / V  0 (Lr(D) f ) .  Without loss of generality, we can assume that the fun- 

ction f has zeroes. By choosing a number ~, > 0 for which the condition II(h; 0) = @~, L(0) is satisfied, we get 

2re 

oV(h) = 21-l(h;O) = 2@~.,.c(0 ) = I I q~ : . , l l .  = 4"e.,,d~,). (37) 

It was proved in [4] that any function g E C 1 satisfies the inequality 

tx i v(g ') ,--,, 
~oP(I I, t) dt >__ t) dt. g J0 Ill,  g; 

Taking into account this inequality, Theorem 5, condition (37), and the fact that v (h') = v ( f ' ) ,  we obtain 

_ t x  I v(f') . . . .  rx I v(f') 
So P ( I h l ' t ) d t  ->J0 l l (n ; t )d t> 'Jo  ePz, L , ( t )d t  

1 x 1 x 
= v-~10 @;<Lr(t/v(f'))dt=2-~'~10 P(kP~.,L, II[o,z/z];t/v(f'))dt' 

for any x G [0, 2~] .  This implies that 

for any p G [1, ~].  Taking into account (37), we get 

> | t, } (38) 

For any function f e L~, the following inequality holds 

(U&(o)fll. ] O - , L , , L , _ k [ ~ * *  - �88 I I I L r ( O ) f l l .  �9 

This inequality is a generalization of Kolmogorov's inequality (see, for example, [20, 21]). By using this in- 
equality and Stein's method mentioned above, it is easy to obtain the inequality 

f Vo " (L, (~ ] < O**;:"'L'-k[,4 V~n(Lr(D)f) - 

V2rC.  r, 
o W)  

27~ 4 vt~ (zr(o):) 
(39) 

which is valid for all functions f e /_~. Taking into account inequalities (38) and (39) and the fact that the function 

| (X) monotonically increases on [0, ~),  we obtain the inequality 
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I" ) [ v(f') ~ l/ P-l ta 
Ilhllp > k-t-) ~'~:Lr,~r-k �88 V ( L k ( D ) h )  , 

which is equivalent to inequality (36). 

6. Proof of Inequalities (11) and (12). Let s ~ S2n ' z ;  By virtue of Theorem 6, 

eP.Z~.z,-, t4 V ~ ( 4 ( O ) s ) )  - Vg,~(4(D)s). 

In view of v(s') < 2~, we obtain 

[iSlIp >- tll/p-1 V21~(Lr(D)$)~)p-Lr L, kl- Yi2f ( , L k ( D ) $ ) ]  
' " - ~ . 4 V  0 ( s  

I nl/p_ 2re -1 = - V 0 (Lk(D)s)r lr ,  k ~)p;L~,L~_~(lqr,k), (40) 

where rlr, k = VZr~(Lk ( D ) s ) ( 4  V ~ ( L r ( S ) )  -1 . It follows from inequality (35)that 

rlr~: > 0 [ tpn'c'-k ) 1 - 2,~ =~llq~.,~ ~IL = ' r ' ~  (n). 
4 V ;  ((Pn, o) - - 

Taking into account this inequality, (40), and the fact that the function x-lOp. L: L,_k(x) monotonically increases on 

[0, +,~), we get 

I[Sllp >-- l t t l /p- I  V2~(Lk(D)s) 
W... L,_k (n) OP;L,'z,-k(W", Lr-k (n))" 

By definition of the function | z,, 4.-k, we obtain the relations 

I[ s lip >- 1 nile-1 

Thus, inequality (11) is proved, 
proved, 

~/2o~r (J2k(D)s)qZp, z,  (n) _ 

Wo.,L,_k (n) 

Inequality (12) follows immediately from inequality (1 I). 

Vo2~ (Lk (D)s) 
Ii ~.,L. %. Vo (~n, ~,_~) 

Theorem 1 is 
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