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A deconvolution method is presented for use in pharmacokinetic applications involving continuous 
models and small samples of  discrete observations. The method is based on the continuous-time 
counterpart of discrete-time least squares system identification, well established in control engineer- 
ing. The same technique, requiring only the solution of a linear regression problem, is used both 
in system identification and input identification steps. The deconvotution requires no a priori 
information, since the proposed procedure performs system identification (including optimal selec- 
tion of  model order), selects the form of the input function and calculates its parametric representa- 
tion and its values at specified time points. 
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1. I N T R O D U C T I O N  

Let u, y, and  g deno te ,  respect ively ,  the  input ,  ou tpu t ,  and  weight ing  
funct ion  o f  a s ing le- input ,  s ing le-output ,  l inear ,  t ime-var ian t  system. If  we 
assume tha t  y ( t ) =  0 for  t < 0 ,  the three  func t ions  are re la ted  by the convo-  
lu t ion in tegra l  

fo y ( t ) =  g ( t - T ) u ( ' r )  d~- (1) 

D e c o n v o l u t i o n  means  solving Eq. ( I )  e i ther  for  g in terms o f y  and  u (sys tem 
ident i f ica t ion)  or  for  u in terms o f  y and  g ( inpu t  ident i f ica t ion) .  
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In pharmacokinetics, system identification often involves parametric 
models, e.g., compartmental models, whereas deconvolution for input iden- 
tification is a basic tool for modeling drug release and absorption, in which 
case g is the plasma concentration following an intravenous bolus dose and 
y is the plasma concentration following a dose administered via an extravas- 
cular route (most commonly, an orally administered dose) (1-3). 

Because it generally involves noisy, discrete observations, deconvo- 
lution in pharmacokinetics is a numerical problem. Standard techniques of 
numerical deconvolution based on discrete Fourier transformation (4) or 
Kalman filtering (5) require large samples of equally spaced (in time) data. 
Such samples are not usually available in pharmacokinetics and so several 
methods of specific application to pharmacokinetics have been proposed 
in the literature. The simplest of these is the point-area deconvobation 
approach (1-3,6,7) but its success is heavily dependent on proper data 
smoothing and choice of computation parameters (3). The more advanced 
methods of Cutler (8,9) and Veng-Pedersen (10-12) involve assumptions 
about the form of output and/or input functions. 

In this paper, a new deconvolution technique is described, based on 
modern system identification and model selection methods of control 
engineering. Its numerical properties are demonstrated by solving a test 
example studied in previous papers on deconvolution (8-12). The technique 
is compared numerically with all the methods described in (9-12), but the 
general properties are compared in particular with one of the methods of 
Veng-Pedersen (12), which is based on fitting polyexponentials both to the 
impulse response and output data; the input, computed in terms of these 
parameter estimates, is also in the form of a polyexponential. As shown by 
Veng-Pedersen (12), the polyexponential procedure can be implemented 
as a simple computer program and it works well in the test problems con- 
sidered. 

The technique described here is similar to the method of polyexponen- 
tials (12) in terms of basic assumptions, but it has two advantages. First, 
the class of input functions that may be considered is extended without 
introducing additional parameters to be estimated. Second, instead of fitting 
polyexponentials through the use of nonlinear search algorithms, parameters 
in linear differential equations are estimated by the direct integral (DILS) 
method which involves only linear regression. This simple technique is used 
both in the system identification and input identification steps. 

It should be emphasized that solution of a deconvolution problem 
requires several computational steps. For example, to use the method of 
polyexponentials (12), one first has to select the number of exponential 
terms in the polyexponential and fit it to the impulse response data in order 
to identify the weighting function g of the system. Second, a similar model 
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order selection and fitting is required for the observed values of the output 
y. Knowledge of the parameters in g and y then enables the unknown input 
u to be determined and usually only this third step is strictly regarded as 
deconvolution (12). 

In the present paper, the whole problem is considered. The procedure 
described selects the model order, estimates its parameters, selects the form 
of  the input function as a parametric expression, and computes its values 
at specified time points. Such a unified procedure is superior to approaches 
separating model identification from deconvolution, since a weighting func- 
tion that describes the impulse response data very well is not necessarily 
the best model of the system if the goal of the study is to determine an 
unknown input function. A simpler weighting function, fitting the impulse 
response data less well, may result in a better estimate of the input. 

The paper is organized as follows: In Section 2, the inherent difficulties 
of  numerical deconvolution are shown in order to justify our assumptions. 
The DILS method of parameter estimation is described in Section 3 and 
the use of the method for system identification is discussed in Section 4. 
In Section 5, the input identification stage of  our deconvolution technique, 
again based on the simple DILS approach, is described. The method is 
illustrated in Section 6 by solving a Test Example studied in previous papers 
(8-12). 

2. PROBLEMS OF NUMERICAL DECONVOLUTION 

Assume that the system weighting function g is known exactly. The 
weighting function is the response of a linear system, initially at rest, to a 
unit impulse input. In addition to its weighting function, the linear system 
can also be approximated by the transfer function 

Y(s) blSm-l+b2s m-2+" " "+bin 
G(s)~- U(s)=sn+a~sn-l +a2sn-2 +. . .+a n (2) 

or by the linear differential equation 
d~y + dn-ly + dn-2y 

dt n a~d-- ~ a2dtn_~+'"+any 

dm-lu dm-2u 
= b , ~ + b 2 ~ + ' '  "+bmu (3) 

where Y(s) and U(s) are the Laplace transforms o f y ( t )  and u(t) ,  respec- 
tively, and a ~ , . . . ,  an, b ~ , . . . ,  bm are constants. 

The three representations are equivalent in the sense that any one 
of them enables the others to be determined uniquely [see, for example, 
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(13), chap. 2]. Since a physiological system does not act as a pure differen- 
tiator and does not transfer material directly, ( m - 1 ) <  n and so G is a 
proper  rational function. 

The conceptually simple solution U(s) = [G(s) ]  -1 Y(s) of  Eq. (2) gives 
rise to two problems in pharmacokinetics applications. 

Problem 1. The inverse problem is ill-conditioned so that any noise in 
y may result in a solution u that oscillates wildly and is unstable (4); 
examples are given in (14) and (15). Any meaningful solution requires 
constraints or penalties on u, which in turn requires some prior assumptions. 

Problem 2. Even in the noise-free case, input identification requires 
assumptions if only sampled data, 37~, i = 0 ,  1 , . . .  I are available. For 
example, if n = 1, we have from Eq. (3) 

= a ,  + l d y  t) u(t) ~y(t) bl~( (4) 

and any function y( t )  interpolating the values 37i gives an equivalent solution. 
In view of these problems, any continuous-time deconvolution 

algorithm dealing with noisy sampled observations is based on assumptions. 
There are two main approaches. In the first, the " t rue" continuous output 
y is approximated by some function, for example an adaptive least squares 
spline (10) or by a polyexponential  (12) and the model inversion method 
is then applied. In the second approach, a known form of input function 
u(p) depending on unknown parameters p is assumed and the parameters 
are then estimated by minimizing the least squares objective function 

1 

E [Yi-y(ti,u(P))] 2 
i = 0  

where y is the response of the model to the input u(p) (8,9,11). In these 
approaches, the basic assumptions are clearly formulated, so ensuring 
reproducibility of  results. 

There is a third type of approach, and this is based on the assumption 
of a piecewise-constant input u such that u(t) = ui on the interval [ti_~, ti]. 
Then Eq. (1) is reduced to the sum 

J 

Y ( / j )  = E / ~ i g j - i + l ( t i  - t i - - 1 )  ( 5 )  ' 
i = 1  

where 

I tj-- t i I 
gj- i+,( t i -  ti 1 ) = g('r) d'r (6) 

tj-- t i 
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Replacing y(tj) by the observed value fj for j = 0, 1 ,~. . ,  I the solution of 
the resulting set of linear equations for t~l, �9 �9  t~t is the point-area deconvo- 
lution algorithm (1-3,7). [The integral mean in Eq. (6) is often approximated 
by the midpoint value or by the trapezium rule (3)]. Discrete approximation 
overcomes Problem 2 but not Problem 1, although according to 
Langenbucher (3), a suitable selection of computation parameters, supple- 
mented by conventional smoothing methods, is sufficient in most situations 
for avoiding the tendency to instability. 

Equations of the form of Eq. (5) with constant At = t l -  ti_l have tradi- 
tionally been used for estimating the points of discrete-time weighting 
functions and, as shown by Hunt (4), this is equivalent to the (similarly 
traditional) method of discrete-time identification using Fourier transforms, 
in which windowing procedures are used to overcome Problem 1. Akaike 
(16) shows that variance of the results can be significantly reduced by 
applying parametric models, thus estimating the order and parameters of 
the autogressive-moving average (ARMA) model 

Yt + a ly t -1  + "  " " +  anYt-n = b~ ut +" �9 �9 +bm ut-m (7) 

In this paper, we adopt a similar parametric approach to system iden- 
tification, as illustrated in Sections 3 and 4. 

3. DIRECT INTEGRAL LEAST SQUARES (DILS) PARAMETER 
ESTIMATION 

To illustrate the approach, consider the estimation of parameters in 
the second-order linear system described by 

d2y dy , du 
~"~2 + a l  ~-~w a2y : bl ~-q-b2u (8) 

Assume 

dy(t) 
y ( t ) -  dt =0 for t < 0  (9) 

The traditional approach of fitting the model of Eq. (8) to observations 
Yo . . . .  , )7~ and ~o , . . - ,  ul is to estimate the parameters in its solution (often 
of polyexponential form) which is inherently a nonlinear parameter estima- 
tion problem requiring iterative search techniques. 

It is desirable to exploit the linearity of Eq. (8) in its parameters. In 
discrete-time process identification, mainly involving ARMA models of the 
form of Eq. (7), only such "direct" methods are used. In the continuous-time 
case, however, the derivatives in Eq. (8) are unmeasurable and their estima- 
tion from noisy discrete data is unreliable and heavily dependent on addi- 
tional assumptions. 
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To el iminate  the need  for  numer ica l  differentiat ion of  the data,  Eq. (8) 
is in tegrated twice to give 

fo I Io y ( t ) + a ,  y('r) d ' r+a2  Y(~'I) dr dz 
- 0 _  _ '  

=b, u(7) dr+b:  u(~,) d~-i dr (10) 
0 _ 0 

where  t = 0_ denotes  t ime jus t  before  t = 0. We consider  input  funct ions of  
the fo rm 

u(t) = DS(t) + uoH(t) + uo(t) (11) 

where  6(t) and H(t) are, respectively,  unit  impulse  and unit  step funct ions 
and  uo(t) is a con t inuous  funct ion such that  uc(O) = O. In  Eq. (11), D denotes  
the dose given as an in t ravenous  bolus  at t = O, so that  

y(0+)  = b i D  (12) 

since lim,~o+ S~ u(z)  dT = D and the o ther  terms in Eq. (10) vanish.  
(Here  t = 0+ denotes  t ime just  after  t = 0.) 

The bas ic  idea o f  the D I L S  me thod  is to app rox ima te  the in tegrands 
in Eq. (10) by  funct ions  in terpola t ing the observed  values jTo, 371, . . . ,  )~t and 
5o, 51, �9 �9 �9 51. Then  the integrals can be eva lua ted  and for  t = ti, i = 1 , . . . ,  1 
we obta in  the l inear  regress ion model  

Y=Xp+s (13) 

where  

- y d r  - y d r l d r  u d r  u d r l d r  
I- a o _  J o _  J o _  a_o . . . . . . .  o_  J o _  - . . . .  J 

X = - - - t ' 7  . . . . . . . . .  -']- - ~-  . . . . . . . . .  -[', - I T , - i  "~--- [ (14) 
I - f  y d z - f  f y ~ , ~ ,  ~ d , 7 " l d T  
[__ d O  d 0 _  J 0 _  J 0  0_  0 _  -I  

Y = [371, �9 �9 �9 3~1 ]7- and  p = [a l ,  a2, b l ,  bz]T; e = Is1, �9 �9 �9 el ] r  represents  the 
vector  o f  equa t ion  errors. The  least squares  es t imates  of  the pa ramete r s  are 
then given by  

f = [XTWX]-'XTWY (15) 

where  W is an I x  I weighting matr ix  [(17), Section 4.1.4]. 
We use natura l  cubic  splines [see, for  example ,  (18)] for  in terpola t ion 

and  hence evaluate  the integrals in Eq. (14) analytically.  The spline funct ion 
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is fitted only to the points of the continuous component uo(t) of Eq. (11) 
and further terms Jo_ D3(r)  dr = D and ~o_ uoH(~') dr = t~Uo are added when 
evaluating the integrals in Eq. (14). 

The DILS approach is not new. For example, Foss (19) considered 
derivatives of polyexponential expressions in order to estimate their para- 
meters by the DILS method. Himmelblau et al. (20) estimated parameters 
in first-order linear differential equations modeling chemical reaction 
kinetics. Sinha and Qijie (21) have demonstrated the superiority of using 
spline functions for interpolation and the statistical properties of DILS 
estimates have been studied by Vajda et aL (22). Whitfield and Messali (23) 
applied the method without assuming that the system is initially at rest for 
t < 0, but for most pharmacokinetic applications, it is reasonable to assume 
that the system is initially at rest, so that the integral Eq. (10) does not 
contain the initial conditions. 

Fitting a differential equation of the form Eq. (3) to input-output data 
by the DILS method is simpler than fitting a polyexponential function, i.e., 
the solution of the differential equation. No initial estimates for the para- 
meters are needed and the solution is obtained in the single computational 
step [Eq. (15)] instead of an iterative search, so eliminating the convergence 
problems sometimes encountered in applications of the nonlinear least 
squares method. A further advantage of the DILS method is that, in its 
original form, it applies to any input function. For example, it is not 
uncommon that the reference response y is from a discontinued constant 
rate infusion, with data from both the infusion and postinfusion phases. 
To use the polyexponential fitting method, it is necessary to obtain an 
algebraic expression for the response to this specific form of input, whereas 
the form of the differential Eq. (3) does not depend on the form of the 
input u and the integrals of the input in Eq. (14) can easily be evaluated 
for any u. 

Application of the DILS method is slightly more difficult for data with 
significant absorption lag time in the response. In such cases, it is necessary 
to introduce an additional parameter /lag to represent this time and to use 
tlag as  the lower integration limit of the integrals involving y in Eq. (14), 
since now y ( t )  = d y ( t ) / d t  = 0 for t < qag. Estimation of flag requires a one- 
dimensional search, (i.e., minimization of the least squares objective func- 
tion with respect to t~ag) where the other parameters are computed by Eq. 
(15) for each value of tlag. Although this is an iterative procedure, it is 
one-dimensional and it is considerably simpler than the multidimensional 
search required in the nonlinear least squares problems. 

The DILS method, in conjunction with spline interpolation, gives 
reasonable estimates even from data with widely spaced observations 
(22,24,25), so that large gaps or missing data do not lead to difficulties. 
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The method is more sensitive to large measurement errors. The predic- 
tion matrix X in Eq. (13) is based on spline functions interpolating the 
observed values )~i = Y(h)+ e~ instead of the "true" values y(t~). Therefore 
one of the basic assumptions of linear regression is violated and the pro- 
cedure results in biased estimates. On the other hand, at least for moderate 
measurement errors (up to about 10%), the DILS method usually gives 
smaller squared deviations from the true parameters than the polyexponen- 
tial fit [see (24) for discussion] and this may compensate for the biasedness. 
Methods for reducing bias are available (24,26). 

The type of data from pharmacokinetic experiments, where the input 
functions are often restricted to impulsive (bolus) and step (constant 
infusion) forms, can give rise to additional problems. The columns of X 
containing higher integrals may then tend to become collinear, resulting in 
near-singularity of XTWX.  The well-known consequences are parameter 
estimates that are inflated and sensitive to small perturbations in the data 
[see, for example, (24)]. This problem becomes really serious if one wishes 
to estimate also nonzero initial conditions (23). This is eliminated in the 
approach described here by the assumption that the system is in zero state 
for t < 0 .  

Summarizing these properties, the DILS method is a fast and approxi- 
mate technique of parameter estimation, similar to the method of residuals 
(peeling), which requires only linear regression rather than nonlinear least 
squares. The DILS method is superior to peeling, because (i) it does not 
require logarithmic transformation of the data; (ii) it applies to any input 
function and not just an impulse; and (iii) it is free of the intuitive steps 
(i.e., the selection of straight sections of the logarithmic curve) inherent in 
the method of residuals. 

\ 
Before pro.~eedmg further, it is necessary to emphasize two points. 

First, in this section, the properties of the DILS method have been discussed, 
regarding it as a parameter estimation technique for computing the para- 
meters of a function of a given functional form [Eq. (8)]. In the present 
application, DILS is used for system identification, i.e., the order of the 
differential Eq. (8) is not fixed a priori and it is selected simultaneously 
with parameter estimation. The simplest (i.e., the lowest order) model fitting 
the data within the range of experimental errors is fitted on the basis of the 
parsimony principle (16,27,28). As is shown by considering simulated data, 
this is not necessarily the true model, but keeping the model order as low 
as possible for an acceptable goodness of fit effectively eliminates the 
problem of near-singularity of x T w x .  " 

The second point is that, although the model is described by the 
parametric expression Eq. (8) instead of the points of the weighting function 
for the purposes of identification, the deconvolution stage of the procedure 
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uses only the values of the weighting function computed from the parametric 
representation and not the parameter values themselves. Therefore, as is 
shown in the numerical results, bias in the parameter estimates does not 
propagate into the estimates of  the input function. 

4. SYSTEM IDENTIFICATION 

The two main problems faced when identifying a linear system by the 
DILS method are that the order of the system is not known a priori and 
that, for input identification, an estimate of  the weighting function is needed 
instead of the parameters in the differential Eq. (3). These two problems 
are discussed in turn. 

Model order selection is analogous to the problem of determining the 
number of exponentials in a polyexponential response or the number of  
compartments in compartmental analysis. We also solve it analogously, by 
fitting differential equations of increasing order and terminating the pro- 
cedure when no significant improvement is obtained, the decision being 
based on the Akaike Information Criterion (AIC), given by 

A I C  = 2 tog RSS  + c~k (16) 

where RSS  is the residual sum of squares, k is the number of parameters 
in the model and a = 2 (16,28). The minimum value of A I C  is sought. This 
test is now widely used in discrete time process identification, and has 
tended to displace the more traditional F test. 

The A I C  is based on maximum likelihood considerations and is a 
mathematical formulation of the principle of  parsimony in model building 
(16,27). By increasing the model order, one can improve the goodness of 
fit, thereby reducing RSS in Eq. (16). However, the term ak is then increased 
and the minimum A I C  is a compromise between goodness of fit and model 
complexity. As discussed earlier in this paper, the system is being identified 
for use in deconvolution. Deconvolution itself can be regarded as a problem 
of optimal control, seeking an input function u to minimize the squared 
deviations between the observed and computed responses of the system. 
Similar control problems have been studied by Edmunds (29), who found 
that the value a = 2, originally used by Akaike (16,28), tends to overestimate 
the model order for the purposes of  control applications. Edmunds sug- 
gested using the more conservative value a = 16, which implies the selection 
of  a lower order model, whose parameters can then be estimated to within 
a 25% error margin (29). System identification is performed by repeated 
parameter estimation, terminating the procedure when an increase in model 
order leads to an increase in AIC. While the model is identified in the form 
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Table  I. Calcu la t ion  of  Weight ing Funct ion Parameters  From First and Second-Order  Differential  Equat ions  

Model  
order  Condi t ion  Weight ing function Parameters  Parameter  t ransformat ion  

1 - -  Ae  ~' A = b t ,  a = - a  1 ~, = Ae-~'o 
a unchanged  

a = - a l / 2 + . f F / 2  ~ = A e - ~ ' o  
E > 0 Ae  ~' + Be ~' B = - a 1 /2  - x / E / 2  B = Be-~'o 
different real A = ( b t a  + b 2 ) / ~  eq/3 unchanged 
roots B = - (bl/3 + b2 ) /x /E  

E = 0  ( A +  Bt) e ~' c ~ = - a l / 2  ~ = ( A -  Bto)e -~lo 
identical  real A = b I B = Be -~to 
roots B = b i  a + b  2 a , /3  unchanged  

E < 0 (A cos/3t  + B s i n /30  e ~ a = - a I / 2  ~, = ( A C  - BS)e-~'o 
complex roots /3 = x / ~ E / 2  B = ( B C  + AS)e -~ 'o  

A = b 1 where 

B = (b l a  + b 2)//3 S = sin (/3t o) 
C = cos (/3to) 
a , /3  unchanged  

2 
with 

E = - a ~ - 4 a  2 

of a differential Eq. (3), only its weighting function is used in the deconvo- 
lution stage. 

The lower integration limit in Eq. (14) is t = 0, but observations of y 
are very often missing at this point. If the input u does not contain an 
impulse function, i.e., D = 0 in Eq. (11), then y(0) --0 and we can integrate 
from t = 0  in Eq. (14). If  there is an intravenous bolus at t = 0 ,  but the 
response is first sampled at time to> 0, then the DILS is applied with a 
lower limit of  to in all integrals of Eq. (14), with y (to) as the first observation. 
Extrapolation to t = 0 is thus avoided, but the system identified is one whose 
behavior at time t is that of  the original system at time t+  to, so that a 
weighting function g ( t ) =  g(t  + to) is obtained. The true weighting function 
is g ( t )  = ~ , ( t -  to) and this translation of the time scale results in parameter 
transformations shown in the right hand column of Table I. For example, 
in the case of a first-order model and y ( to )  as the first point, we obtain 
~(t) --- A exp (at) ,  so that g ( t )  = ~ ( t  - to) = A exp ( - ato) exp (t~t), with the 
parameter A = A exp ( - O~to) as shown in Table I. 

The procedure can readily be programmed using generally available 
scientific subroutines, e.g., from the NAG (Numerical Algorithms Group) 
Library. Many subroutines for spline interpolation also compute the 
integrals required in Eq. (14). The most involved part of the program consists 
of the algebraic expression given in Table I. 

5. INPUT IDENTIFICATION 

We recall that the problem is: Given a linear system S with its weighting 
function g and output function y, determine the input u that satisfies Eq. 
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(1). Consider a second linear system S* with input u* = g and output y* = y. 
Then 

f0 f/ y*( t )  = g * ( t -  r ) u * ( r )  dr = u*( t  - r )g* ( r )  dr 

f/ = g ( t - r ) g * ( r )  dr (17) 

Since y * = y ,  comparison of Eqs. (17) and (1) shows that the weighting 
function g* of S* equals the input function u which is being sought. Now, 
g* can be estimated by identifying a linear system of the form of Eq. (3), 
as described in Sections 3 and 4 and this is the basic idea of the present 
paper. The approach preserves the symmetry of system identification and 
input identification, similarly to the point-area deconvolution method. 

It is clear from Eq. (17) that u (= g*) is in the class of weighting 
functions generated by single-input, single-output, linear, time-invariant 
systems and as shown in Table I, for the particular case of a second-order 
model, this class includes polyexponentials and other functions. Thus, the 
present approach involves weaker restrictions on the form of output than 
the approach of Veng-Pedersen (12). 

A further advantage of the present approach is the minimal parameteri- 
sation of the input function. To demonstrate this, consider the second-order 
system of Eq. (8), with weighting function 

g( t )  = Ae~'  + Be m (18) 

and let the input be a single exponential u( t )  = Ce  ~;. If a ~ 3' and/3 # y, 
the output y ( t )  is the sum of three exponentials including terms with 
exponents a and ft. The method of Veng-Pedersen is based on estimating 
the six parameters in y ( t )  and then computing the input from these para- 
meters and those in Eq. (18) for g( t ) ,  a total of eight parameters in all, 
because both y ( t )  and g(t) include o~ and ft. Using the method described 
in this paper, only the two parameters of the first-order system with g( t )  = 
Ce ~' are estimated in addition to the four parameters in Eq. (18), a total 
of six parameters in all. This difference of two between the two methods is 
maintained for higher-order systems and while not seeming dramatic, is 
nevertheless important in practical terms because of the sensitivity of para- 
meters of a three-exponential curve to noise. By reducing the number of 
parameters to be estimated, the stability of the resulting input function is 
increased. 

In addition to the sampled output Y o , y l , . . . ,  Yl, input identification 
requires the values g(to), g ( t l )  . . . .  , g( t f )  at the same time points. These 



96 Vajda, Godfrey, and Valko 

can be computed from the algebraic expressions for g provided by the 
system identification stage. If system identification is based on impulse 
response data and we use the same time points in input identification, then 
the only goal of system identification is to smooth the observed impulse 
response. 

Though the same operations are performed in system and input iden- 
tification, there is a definitive difference in the principle of model order 
determination. As discussed in Section 4, it is advisable to select a low-order 
model in the system identification stage. On the other hand, in input 
identification, the derived weighting function is our final result and some 
overestimation of the model order is feasible provided the residual sum of 
squares is still decreasing. 

Finally, it is of interest to note that the linear system S*, defined as a 
purely hypothetical one for solving the deconvolution problem, may in fact 
have a physical meaning in pharmacokinetic applications. For example, for 
the type of problem formulated in Section 1, S* is a linear system whose 
response is the bioavailability of the drug following an impulse administra- 
tion via an extravascular route. 

6. TEST EXAMPLE 

To compare the method with previously published approaches, we use 
the four sets of simulated data presented by Cutler (8), also considered in 
(9-12). Each set consists of 11 points of a simulated unit impulse response 
and 11 points of the response to a particular (known) input function, both 
with added normally distributed random noise. The input functions are 
shown in Table II, along with the standard error of the noise expressed as 
a percentage. Veng-Pedersen (11) has noted that the models used to generate 
the test data are commonly employed in drug release and drug absorption 
analyses. All data sets can be associated with a two-compartment model; 

Table II. Input Functions and Noise Levels in DataSets  1-4 (8) 

Data set 

1 

Input function 

1.2e -2l 

,)2 
1.8 ( 1 _ 5  iris1.15 

]7i-~ \ 

0 if t >  1.15 

% standard error 

1 

10 

4 10 
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Data Sets 1 and 2 then correspond to a first-order input rate and Data Sets 
3 and 4 to a cube-root input rate, often observed in drug-release studies. 

We first illustrate the properties of the DILS approach as a parameter 
estimation method and then discuss the system identification and input 
identification stages of  the deconvolution procedure. 

Parameter Estimation 

Since the weighting function is of the form of Eq. (18), we fit the 
second-order differential Eq. (10) to the unit impulse response data. Para- 
meter values computed from DILS estimates of the parameters in Eq. (10) 
through the algebraic expressions of Table I are shown in Table III. 
Following Cutler (8,9) and Veng-Pedersen (10-12), unweighted least squares 
is used so W =  ! in Eq. (15). Table III also presents the indirect least 
squares (ILS) estimates, obtained by fitting Eq. (18) to the data by the 
Gauss-Marquardt algorithm. Since the unit impulse response data are iden- 
tical in Data Sets 2 and 4, these results are listed only once. 

Both methods yield reasonable estimates from Data sets 1 and 3 (with 
1% standard error noise), and rather biased estimates from Data sets 2 and 
4 (with 10% standard error noise). Though the DILS estimates are within 
the 95% confidence intervals of the ILS estimates, the latter are closer to 
the true values particularly for Data Sets 2 and 4. In the system identification 
stage, however, as we will see, the best solution is to adopt a first-order 
model for these latter data, so avoiding large variances in the estimates. 

Table IlL Estimates of Weighting Function Parameters 

ILS 
Data DILS 
set Parameter ~ Estimate Estimate SD 

A 0.9575 0.9758 0.0523 
B 1.0593 1.0428 0.0407 

1 
a -0.9612 -0.9754 0.0431 

-4.9574 -5.0500 0.3844 

A 0.3355 0.5214 0.5862 
B 1.5012 1.3396 0.5022 

2,4 
a -0.3745 -0.6079 0.6841 

-2.7577 -3.1783 1.5841 

A 1.0554 1.0486 0.0342 
B 1.0233 1.0309 0.0271 

3 
a -1.0315 -1.0261 0.0285 
fl -5.9103 -5.9129 0.3557 

~ values used by Cutler (8): A =  B =  1; a = - l ;  f l = - 5 .  
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Table IV. System Identification 

Data Model 
2 AIC F set order RSS s r 

1 5.54E-2 6.16E-3 0.17 
78.20 1 2 5.51E-4 7.87E-5 -18.54 
<1.0 3 6.51E-4 1.30E-4 5.29 

1 9.12E-2 1.01E-2 5.66 
1.73 2, 4 2 4.08E-2 5.83E-3 28.81 

3 5.81E-3 1.16E-3 29.37 5.01 

1 5.75E-2 6.39E-3 0.58 
3 2 3.66E-4 5 . 2 3 E - 5  -23.04 122.19 

3 4.90E-3 9.80E-4 2.16 <1.0 

In the original data (8), the first time point considered is to : 0.1. This 
was used as the lower integration limit in Eq. (14), the time scale transforma- 
tion formulas in the right-hand column of Table I were used subsequently 
to compute the parameter values listed in Table III. 

System Identification 

The residual sum of squares RSS,  the residual variance s 2, the modified 
A I C ,  and the F values obtained by fitting models of order 1, 2, and 3 to 
the three sets of  unit impulse response data are listed in Table IV. There 
are 9 and 7 degrees of freedom in fitting the first-order and second-order 
models, respectively, and at p = 0.01, the corresponding point of the F 
distribution is 6.72. Thus for Data Sets 1 and 3, the second-order model is 
significantly better than the first-order model, but this is not so for Data 
Sets 2 and 4. This is also shown by A I C ,  which clearly indicates use of 
model order 2 for Data sets 1 and 3 and model order 1 for Data Sets 2 and 
4. For Data Sets 1 and 3, use of a third-order model increases the residual 
variance, as a result of the near-singularity of the matrix to be inverted. 

Input Identification 

The quantity, Q( t ) ,  of drug absorbed into the plasma up to time t is 

given by 

Io Q ( t )  = u(r) cir. 

For either of  the forms of u( t )  given in Table II, Q(0) =0.  Cutler (8) gives 
the response function only for t~>0.1 and in this application, we have 
considered y ( 0 ) =  0 as an additional point in the input identification. Pre- 
vious deconvolution methods also can only generate input functions not 
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Table V. Input Identification 

Data 
set Model RSS  s 2 A I C  F 

1 M21 1.63E-4 1.63E-5 -72.66 1.34 
M22 9.76E-5 1.22E-5 -46.81 

M2l 8,52E-3 8.52E-4 -25.18 
2 M22 3 , 3 9 E - 3  4.23E-4 -4.24 2,01 

Mtl 3 . 5 1 E - 3  3.51E-4 -35.82 < 1.0 MI2 3 . 4 3 E - 3  4.28E-4 -4.10 

M21 1.03E-2 1.03E-3 -22.90 
3 M22 6.37E-4 7.96E-5 -24.30 12,93 

M23 2 . 5 4 E - 3  4.25E-4 14.29 < 1.0 

M21 2.39E-2 2.39E-3 -12.81 3.79 M2E 5 . 0 4 E - 3  6,31E-4 0.52 
4 Mlt 7 . 4 9 E - 3  7.49E-4 -26.73 

M12 5 . 9 4 E - 3  7.43E-4 2.48 1.01 

containing impulses, so the same assumption has been used, although not 
explicitly stated. 

The values on which model order determination is based in the input 
identification stage are shown in Table V. The notation M 0 is used to denote 
a system identification-input identification sequence, with i denoting the 
model order in the system identification stage and j denoting the model 
order in the input identification stage. To study the consequences of overes- 
timating model order in system identification, weighting functions computed 
from both first-order and second-order models were used for Data Sets 2 
and 4. 

From Table V, we see that for input identification, a second-order 
model is preferable for Data Set 3, but that for the other Data Sets, a 
first-order model is suggested both by the F test and the A I C .  We show, 
however, that in the input identification stage, it is better to choose the 
model with the least residual sum of squares, in spite of a possible overesti- 
mation of  model order according to A I C .  

To compare the derived input function with the estimates of Cutler (9) 
and Veng-Pedersen (10-12), its accuracy is expressed in terms of  percentage 
differences, defined by 100 x (calculated r a t e - e x a c t  rate)/initial rate (10). 
Tables VI to IX show the mean and standard deviation of the absolute 
values of these percentage differences for the time points t~ i> 0.1. 

Data  Set 1 (Table VI) 

The errors are small and the input is an exponential, so we expect very 
good performance; as seen in Table III ,  even the DILS estimates of the 
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Fig. 1. Original and estimated weighting functions and input functions for Data Set 1 
(second-order system; first-order input rate): [] = Original impulse response data of Cutler 
(8); = fitted impulse response', O = calculated input rate; . . . . .  original input 
rate given by Cutler (8); V = calculated input quantity; . . . .  original input quantity from 
the input rate given by Cutler (8). 

weighting function parameters are close to the true values. The selected 
system identification-input identification sequence M21 gives the input 
u(t) = 1.1757 exp ( -1 .9488t) ,  close to the true input (Table II). Figure 1 
shows that the calculated and exact input rates and cumulative quantities 

are almost identical. 
Other deconvolution procedures are compared in Table VI, As expec- 

ted, the method of Veng-Pedersen (12), involving polyexponential functions, 
performs very well. Our method with M21 involves estimating fewer para- 
meters and it further improves the result. From the M22 column of Table 
VI, it may be seen that overestimation of model order slightly increases the 
percentage differences. 

D a t a  S e t  2 ( T a b l e  V I I )  

With the larger observation errors, the weighting function estimates 
are rather biased using the true second-order model and the system iden- 
tification procedure suggests a first-order model. Even so, the sequence M21 
results in u ( t ) - 1 . 1 4 4 4 e x p  (-1.6452t)  which is more accurate than pre- 
viously published input functions. M22 means overestimating the model 
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Table VI. Input Rate Estimates From Data Set 1 

Estimated input rate 

Veng-Pedersen This paper 
Exact Cutler 

Time rate (9) (10) (11) (12) M21 M22 

0.0 1.2000 1 .145  . . . .  1.1757 1.1178 
0.1 0.9825 0.967 0.9666 0.9712 0.9625 0.9675 0.9607 
0.2 0.8044 0.810 0.8366 0.8146 0.8107 0.7962 0.8066 
0.3 0.6586 0.674 0.6884 0.6780 0.6732 0.6552 0.6687 
0.4 0.5392 0.556 0.5500 0.5598 0.5535 0.5392 0.5505 
0.6 0.3614 0.370 0.3658 0.3732 0.3676 0.3651 0.3693 
0.8 0.2423 0.240 0.2339 0.2434 0.2420 0.2473 0.2463 
1.0 0.1624 0.156 0.1555 0.1590 0.1601 0.1675 0.1638 
1.2 0.1089 0.105 0.1160 0.1084 0.1077 0.1134 0.1091 
1.4 0.0730 0.076 0.0790 0.0803 0.0742 0.0768 0.0726 
1.6 0.0489 0.057 0.0404 0,0631 0.0527 0~0520 0.0483 
2.0 0.0220 0.003 0.0230 0.0160 0.0292 0~0238 0.0214 

Mean o f %  diff. 0.79 0.99 0.80 0.59 0.41 0.46 
S D o f %  diff. 0.50 0.84 0.56 0.54 0.33 0.56 

order in both stages and gives larger percentage differences, while Mn gives 
results comparable in accuracy to those obtained from M21. The best results 
of  all are given by M~2, which is based on correct model order in system 
identification but less conservative order determination in the input iden- 
tification stage. This in fact implies a first-order model and a second-order 
input, the reverse of the true situation. 

Table VII. Input Rate Estimates From Data Set 2 

Estimated input rate 

Veng-Pedersen This paper 
Exact Cutler 

Time rate (9) (10) (11) (12) M2l M22 M~I M12 

0.0 1.2000 0.996 - -  - -  - -  1.1444 1.0291 1.1825 1.1641 
0.1 0.9825 0.904 0.8784 0.8303 0,9159 0.9708 0.9180 0.9971 0.9826 
0.2 0.8044 0.813 0.8087 0.7426 0.8199 0.8235 0.8147 0.8407 0.8290 
0.3 0.6586 0.724 0.7242 0.6595 0.7242 0,6986 0.7196 0.7089 0.6989 
0.4 0.5392 0.639 0.6358 0.5810 0.6319 0.5926 0.6307 0,5977 0.5886 
0.6 0.3614 0,479 0.4771 0.4378 0.4651 0.4265 0,4747 0.4249 0.4154 
0.8 0.2423 0.338 0.3308 0.3129 0.3269 0.3069 0.3442 0.3021 0.2896 
1.0 0.1624 0.219 0.2199 0.2065 0.2180 0.2208 0.2365 0.2148 0.1970 
1.2 0.1089 0.125 0.1409 0.1184 0.1355 0,1589 0.1489 0.1527 0,1271 
1.4 0.0730 0.058 0.0708 0.0486 0.0750 0.1144 0,0790 0.1086 0,0720 
1.6 0.0489 0.020 0.0129 -0.0027 0.0324 0.0823 0,0243 0.0772 0,0254 
2.0 0.0220 0.027 0.0091 -0.0503 -0.0152 0.0426 -0.0484 0.0390 -0.0625 

Mean o f %  diff. 4.41 4.65 4.59 4.29 3,47 4.98 3.48 2.86 
SD o f %  diff. 3,45 3.46 3.41 2,86 1.56 2.99 1.41 2.05 
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Fig. 2. Original and estimated weighting functions and input functions for Data Set 2 
(second-order system; first-order input rate). Symbols and lines as for Fig. 1. 

Estimation of the impulse response and input functions using M2~ and 
M~2 are shown in Figs. 2 and 3, respectively. System identification is far 
from perfect in the second case (for example, in the last five samples, all 
impulse response observations are above the fitted curve) but the derived 
input rate u(t) = -0.0041 exp (1.6143t)+ 1.1682 exp (-1.6808t) gives better 
estimates of  the true rate and amount of input than the single exponential 
calculated from the sequence M21, shown in Fig. 2. 

Data Set 3 (Table VIII) 

Although the noise level is low, the true input is not a polyexponen- 
tial. With no assumption on the form of the input, the first method of 
Veng-Pedersen (10) works well. Correct model order selection in our 
procedure gives M22, which also works well. Results for M22 are shown in 
Fig. 4. The form of the calculated input function u ( t ) =  
[ 1.3446 cos (2.0571 t) + 2.6431 sin (2.0571 t) ] exp (-3.6095 t) differs substan- 
tially from the form of the true cube-root input at the initial stage of the 
process, but differences at the sample times are small and the calculated 
and exact cumulative quantities are almost indistinguishable. 
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Fig. 3. Original and estimated weighting functions and input functions for Data Set 2 
(first-order system; second-order input rate). Symbols and lines as for Fig. 1. 

As we have seen in Table V, M21 represents an underestimation of 
model order in the input identification stage and this shows up in the 
considerably larger percentage difference in Table VIII. 

Data Set 4 (Table IX) 

Although the true input function is not an exponential, the results for 
M21, M22, M,~, and M12 are similar to those for Data Set 2 (Table VII). 
The correctly selected sequence Mt~ performs very well, but the true input 
is even better recovered by M~2, results for which are shown in Fig. 5. 
Comparison of Tables VII and IX shows that the attained accuracy is almost 
independent of the form of the true input function. 

7. CONCLUSIONS 

The main advantage of the deconvolution algorithm presented in this 
paper is its computational simplicity. Starting from the raw data, the pro- 
cedure identifies both the model and the input, solving only linear regression 
equations at each stage. Therefore it is not necessary to fit polyexponential 
expressions to the impulse response and output observations, as required 
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Fig. 4. Original and estimated weighting functions and input functions for Data Set 3 
(second-order system; second-order  input rate). Symbols and lines as for Fig. 1. 

Table VIII. Input  Rate Estimates From Data Set 3. 

Estimated input rate 

Veng-Pedersen This paper 

Time 
Exact Cutler 
Rate (9) (10) (11) (12) M21 M22 

0.0 1.5652 
0.1 1.3048 
0.2 1.0681 
0.3 0.8551 
0.4 0.6657 
0.6 0.3580 
0.8 0.1450 
1.0 0.0266 
1.2 0. 
1.4 0. 
1.6 0. 
2.0 0. 

Mean of % diff. 
SD of  % diff. 

1.608 - -  - -  - -  1.7993 1.3446 
1.256 1.2780 1.3133 1.3002 1.3439 1.2938 
1,060 1.1080 1.0924 1.0639 1.0039 1.1123 
0.893 0.8959 0.8844 0.8418 0.7498 0.8893 
0.715 0.6839 0.6936 0.6473 0.5601 0.6732 
0.356 0.3609 0.3758 0.3529 0.3125 0,3370 
0.115 0.1312 0.1543 0.1690 0.1743 0.1412 
0.026 0.0202 0.0305 0.0639 0.0973 0.0462 
0.004 0.0011 -0.0082 0.0086 0.0543 0.0078 

-0.010 0.0010 0.0112 -0.0172 0.0303 -0.0039 
0.048 0.0008 0.0478 -0.0269 0.0169 -0.0053 

-0.526 0.0007 -0.0625 -0.0259 0.0053 -0.0021 

4.44 0.88 1.45 1.08 3.29 0.93 
9.76 1.00 1.18 0.69 2.10 0.88 
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Fig. 5. Original and estimated weighting functions and input functions for Data Set 4 
(first-order system; second-order input rate). Symbots and lines as for Fig. 1. 

Table IX. Input Rate Estimates From Data Set 4 

Estimated input rate 

Veng-Pedersen This paper 
Exact Cutler 

Time rate (9) (10) (11) (12) M21 M22 MH Ml2 

0.0 1.5652 1.423 - -  - -  - -  1.6959 1.3929 1.7979 1.6863 
0,1 1.3048 1 , 2 3 5  1 ,1761  1.1487 1.2589 1.3305 1.243t 1 .3878  1.3622 
0.2 1 .0681  1 . 0 5 8  1.0614 0.9863 1.0562 1.0438 1 .0813  1.0712 1.0906 
0.3 0.8551 0.895 0.9224 0.8353 0.8738 0.8189 0.9180 0.8268 0.8650 
0.4 0.6657 0.744 0.7740 0.6956 0.7123 0.6424 0.7604 0.6382 0.6794 
0.6 0.3580 0 . 4 8 1  0.4934 0.4504 0.4503 0.3954 0.4827 0.3802 0.4056 
0.8 0.1450 0.270 0.2480 0.2507 0.2605 0.2433 0.2677 0.2266 0.2298 
1.0 0.0266 0.109 0.0859 0.0964 0.1290 0.1498 0.1169 0.1350 0.1211 
1.2 0. 0.000 0.0057 -0.0125 0.0422 0.0922 0.0217 0.0804 0.0569 
1.4 0. -0.059 0.0008 -0.0759 -0.0121 0.0567 -0.0309 0.0479 0.0209 
1.6 0. -0.066 0.0000 -0.0938 -0.0434 0.0349 -0.0535 0.0285 0.0023 
2.0 0. 0.074 0.0000 0.0067 -0.0647 0.0132 -0.0509 0.0101 -0.0089 

Mean of % 
diff. 4.34 3.57 4.32 3.46 3.28 4.23 3.03 2.44 
SD of % diff. 2.51 3.55 2.95 2.29 2.33 2.43 2.25 2.05 
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i n  o n e  o f  t h e  m e t h o d s  o f  V e n g - P e d e r s e n  (12) ,  b a s e d  o n  s i m i l a r  a s s u m p t i o n s  

as  t h e  n e w  a l g o r i t h m .  

A w e l l - s t u d i e d  t e s t  e x a m p l e  s h o w s  t h a t  b y  c h o o s i n g  t h e  m o d e l  o r d e r  

as  l ow  as  p o s s i b l e  in  s y s t e m  i d e n t i f i c a t i o n  a n d  s e l e c t i n g  t h e  b e s t  f i t t ing  

m o d e l  in  i n p u t  i d e n t i f i c a t i o n ,  t h e  s i m p l e  p r o c e d u r e  r e s u l t s  in  v e r y  g o o d  

e s t i m a t e s  o f  t h e  i n p u t  f u n c t i o n .  
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