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Application of stat&tical moment theory to four methods which do not involve detailed compart- 
mental analysis for the determination of Vs~ shows them to be equal. Assuming drug to be 
eliminated exclusively from the central compartment results in the minimum value of Vss being 
determined. A method for determining the maximum possible value of V~ is shown which uses 
AUC, dose (iv), and the exponents which describe the plasma-concentration time curve. The 
relationships between the volume terms V~t~p, Var~ and V~ are discussed in terms of moment 
theory. 
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M E T H O D S  FOR D E T E R M I N A T I O N  OF Vss 

The  apparen t  vo lume of distr ibution at s teady state (V~s) can be defined 
as the a m o u n t  of drug in the b o d y  divided by the p lasma concent ra t ion  at 
s teady state 

V ~  =As~/C~s  (1) 

Several  me thods  for  de termining V~s which do not  require  detai led compar t -  
menta l  analysis have been  published. B enet  and Galeazzi  (1) have descr ibed 
a me thod  which requires the m e a s u r e m e n t  of the area under  the p lasma 
concent ra t ion  curve f rom zero  to infinity ( A  U C )  and also the m e a s u r e m e n t  
of the area under  the first m o m e n t  of the p lasma curve f rom zero t ime to 
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infinity (AUMC) following an intravenous bolus dose of drug. (This 
approach can also be used for other methods of drug administration 
provided the input function is known; see ref. 2). Thus 

[Io  /[Io Vss = dose tCdt Cd = dose [AUMC]/[AUC] 2 

= dose [MRTi~]/AUC (2) 

Earlier Wagner (3) described a method for determination of V~s, where 
it is necessary first to describe the plasma concentration curve in terms of 
a polyexponential  equation of a type similar to that shown in Eq. (3): 

C = C1 e-A't + C2 e-X2t �9 �9 . + C, e -X '  (3) 

Then V~ may be defined as follows: 

['=n Cil /r'=nC,] 2 
V~, = dose ,~1 ~212 J / [ i ~ l  h/. I (4) 

Both methods require the drug to obey linear kinetics and are invalid 
if there is an absorption phase (e.g., enterohepatic recycling). Yamaoka 
et al (4) demonstrated the following relationship: 

tCd Cdt = Y~ (5) 
i = 1  i 

Thus the equivalence of the Vss terms described by Benet  and Galeazzi 
(Eq. 2) and by Wagner (Eq. 4) can be seen. The obvious advantage of the 
method described by Benet  and Galeazzi is that it is not necessary to define 
the plasma concentration curve in terms of an equation. However,  both 
methods are based on the assumption that elimination of drug occurs 
exclusively from the central compartment,  and in that sense both methods 
are model dependent.  

A third method independent  of compartmental  analysis has been 
described by Riegelman et al. (5). This method requires the drug to be 
administered by intravenous infusion from zero time to time T when steady 
state has been achieved: 

total infused dose [ 1 - r oo 
ws,= Cs~ L Io C dt/ fo C dt] 

(6) 
= total infused dose [1 - A U C o - T / A  UC] 

c,s 

Again the assumption is made that elimination occurs exclusively from the 
central compartment.  On the basis of a two-compartment  body model 
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Model 1 Model 2 M o d e l  3 

Fig. 1. The three possible linear two-compartment open 
models, In each case the concentration in compartment 1 (the 
central compartment) represents the measurable concentration 
of drug. 

where this assumption is true (Fig. 1, model 1) Gibaldi (6) has shown that 
the amount of drug in the body at steady state (As~) is given as follows: 

T co 

Ass=t~176 Cdt/Io Cdt] =k~ (7) 

where ko represents the infusion rate of the drug. At steady state the 
clearance of the drug (CL) will be given as follows: 

ko 
CL = - -  ( 8 )  Css 

Therefore Eq. (7) can be written as follows: 

Ass = CL(k12 + k2i) 
= V~s (9) 

C~ h l h 2 

Using the following relationships, 

h lh 2 = k lok21 (10) 

1 -1- }[2 = k l 0  -[- kal + k12 (11) 

Eq. (9) may be rewritten as follows: 

For a drug following two-compartment body model kinetics with 
elimination occurring exclusively from the central compartment, Riegelman 
and Collier (7) demonstrated that the mean residence time ( M R T )  of the,' 
drug administered as an i.v. bolus is described as follows: 

1 1 1 
MRTi~ = ---~ (13) 

h i  A2 k21 
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Therefore Eq. (12) is equivalent to that of Benet and Galeazzi (Eq. 2), 
who also expressed V~ as follows: 

Vs, = C L .  MRTi,~ - dose [ A U M C ]  
A U C  I _ ~ J  (14) 

There are, however, numerical problems associated with the use of Eq. (6) 
to estimate V~s. If the infusion is many (>10) half-lives, A U C o - T  will 
approach the value of A UC. Small errors in estimating A UC will therefore 
result in large errors in determining Vs~. A more robust approach (M. 
Rowland, personal communication) is to infuse the drug until steady state 
is achieved and to measure the area under the fall-off curve: 

A~ Ir  "~ V~ Css CL C dt/  C~ ko �9 A U f  r-oo = C2 (15) 
ss 

It can be shown by the method of Benet (8) that 

A ~  = k21ko + k12ko (16) 
AIA2 A1A2 

Therefore 

V s = k o [ 2 + I _ . I  ] / c , ,  koMRri, ,  
IX1 A2 k 2 1 J /  - G - ~  = CL �9 MRT,.v (17) 

Thus it is possible on the basis of moment theory to demonstrate the 
equivalence of the four methods'for V~ determination, mentioned above. 

M O D E L S  W H E R E  E L I M I N A T I O N  D O E S  N O T  O C C U R  
E X C L U S I V E L Y  F R O M  T H E  C E N T R A L  C O M P A R T M E N T  

If the M R T  is calculated from plasma level data using the following 
relationships, 

A U M C  
M R T  = (18) 

A U C  

one is measuring the mean residence time of the drug in the central 
compartment. Consider a plasma concentration-time curve that may be 
described by Eq. (19): 

C = C1 e-~l~ + C2 e-~2' (19) 

Each of the three possible two-compartment open models shown in Fig. 
1 will describe the data equally well, i.e., there is no unique solution. This 
point has been discussed by Wagner (3), who suggested that because of 
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the dilemma of not knowing from which compartment there are exit rate 
constants to outside the body, the assumption that elimination occurs solely 
from the central compartment will at least make all authors homogeneous 
in their approach. This, however, results in problems in determining the 
correct loading dose of drug for a patient if the "true" value of V,s is 
unknown. 

The definition of V,~ given by Riggs (9) for model 1 (Fig. 1) is 

V,~ [1 k121 = + jv, (20) 

It is also possible to define V,~ for models 2 and 3 at the time when the 
rate of drug entry equals the rate of drug exit from the second compartment, 
so that 

k12 1 
V,, = [ l +k2~-k2 -j V, (21) 

Equation (21) holds true for both models 2 and 3, but the value of the 
rate constants and hence the value of Vs~ will be different for each model. 

V,,s can also be defined for models 2 and 3 in terms of moment theory. 
First it is necessary to calculate the M R T  for drug in the peripheral 
compartment. Yamaoka et al. (4) defined M R T  as follows: 

A UMC 
M R T  = ~ = lima [ dC ] / l i ra  [C] (22) 

A U C  s ok ds J / ,  o 

where (~ is the Laplace transform of the drug concentration and s is the 
Laplace operator. 

If C is considered to relate to the peripheral compartment, then (ref. 7) 

AUC(2) = l i ra ~ [C ' ]  

(23) 
k,2 dose 

V2A ,A2 
Similarly, 

AUMC(2)  = lim [ d-~s 

(24) 
k12 dose [ 1 1 ] 
v2, ,.2 [*, *2J 

Therefore the M R T  of drug in the peripheral compartment is given by 

1 1 
MRT(2)  = - - + - -  (25) 

AI ha 
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In the experimental situation, V2 will of course be an apparent volume, 
not an absolute volume, as it is determined by reference only to the central 
compartment. The corresponding equations relating to drug in the central 
compartment were shown by Riegelman and Collier (7) to be 

dose E2 
AUC(1) = - -  (26) 

V1A1A2 

dose E21" 1 1 - 1 "1 
AUMC(1) = - -  - - + - - - - -  

VlX 1~2 [,~. 1 ,~2 E2J (27) 

1 1 1 
MRT(1) = - -q  . . . .  (28) 

11 A2 E2 

where E2 represents the sum of the exit rate constants from the peripheral 
compartment. 

Table I lists three sets of parameters each of which describes the 
following equation: 

C = 64.131 e -2.2346t + 35.869 e-~ (29) 

If these parameters are used to calculate AUC for each model using either 
Eq. (23) (peripheral compartment) or Eq. (26) (central compartment), the 
estimates of A UC are identical regardless of the model or the compartment. 
Also if AUMC is calculated for each model using Eq. (24) (peripheral 
compartment) or Eq. (27) (central compartment), the estimates are iden- 
tical for each model (Table I), but in this case differ between compartments. 

As expected. V~s for model 1 is given by 

dose [AUMC(1)] dose[MRT(1)] dose [ 1 + 1 _ 1 ]  
V~ A-U--cL ~ J -  ~ AUCLhl  h2 E2.1 

(30) 
A similar equation defines Vs~ for model 3, but in this case, it is necessary 
to use A UMC for drug in the peripheral compartment: 

dose rAUMC(2)] dose [MRT(2)] dose I 1 1 1 
Vss AUCL A U C  _1 A U C  (31) 

The method of using A UMC to obtain Vss for model 2 is not immediately 
obvious. It is necessary to know the fraction of the administered dose that 
is eliminated from each compartment. Then 

dose 
Vss - [flMRT(1) +f2MRT(2)] (32) 

AUC 
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Table I. Parameter Values for Each of Models 1, 2, and 
Eq. (29). 

3 (Fig. 1) Which Describe 
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Parameter Model 1 Model 2 Model 3 

Dose 1000.00 1000.00 1000.00 
k12 0.6545 1.20 1.6 
k21 1.10 0.60 0.45 
kl0 0.9455 0.40 
k2o 0.50 0.65 
V 1 10.00 10.00 I0.00 
V~s 15.95 20.91 24.55 
CL 9.4545 9.4545 9.4545 
AUC(1) 105.76 105.76 105.76 
AUC(2) 105.76 105.76 105.76 
AUMC(1) 178.41 178.41 178.41 
AUMC(2) 274.56 274.56 274.56 

where f l  and f2 represent the fractions of the administered dose eliminated 
from the central and peripheral compartments, respectively. 2'3 

Comparing Eqs. (30) and (31) it can be seen that to calculate V~s it is 
necessary to use, the .$IRT value for drug molecules in the compartment 
from which they are directly eliminated from the body. With model 2, 
where Vss is represented by Eq. (32), drug is eliminated directly from each 
of the two compartments. In this case the appropriate M R T  value to use 
is the sum of the weighted M R T  values of the two compartments, the 
weighting factor in each case being the fraction of the administered dose 
that is eliminated directly from that compartment. 

With each model discussed, the MRT(1) and MRT(2) values represent 
the M R T  of the drug in the relevant compartment, which is not necessarily 
the M R T  of drug in the body. When the plasma level of drug administered 
as an i.v. bolus undergoes monoexponential decline, the MRT(1) corre- 
sponds to the time for 63.2% of the drug to be eliminated from the body, 
the value 63.2% being equivalent to the mean of a log normally distributed 
cumulative curve. However, Riegelman and Collier (7) were wrong in 
saying that this was also the case for more complex pharmacokinetic models. 
When it is necessary to use a bi- or polyexponential function to describe 
drug disposition, the residence times of the individual drug molecules are 
no longer log normally distributed; instead the distribution is a skewed log 
distribution. In the case of model 1 MRT(1) will normally correspond to 
greater than 63.2% elimination and for model 3, to less than 63.2% 
elimination. 

2For model 2 using the parameters listed in Table I, f l  = 0.4231 and fz = 0.5769. 
3The derivations of Eqs. (31) and (32) are shown in the appendix. 
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However, a less abstract interpretation of MRT(1) and MRT(2) in 
Eqs. (30), (31), and (32) is possible. For systems at strady state the mean 
residence time of drug in the body (MRT) has been shown (10) to be equal 
to the time to infuse a dose equal to the amount of drug in the body under 
steady state'conditions: 

For model 1 the MRT is equal to MRT(1) obtained with an i.v. bolus, 
while for model 3, MRT is equal to MRT(2). In the case of model 2, MRT 
is equal to the term (flMRT(1) +f2MRT(2)). 

As stated previously the correct model describing Eq. (29) cannot be 
known. However, assuming model 1 applies, Vs~ can be estimated using 
the method of Benet and Galeazzi (1). This will represent the minimum 
possible value of Vss. The maximum possible value of Vs~ can be estimated 
by assuming model 3 applies, and evaluating Eq. (31), where hi and hz 
can be obtained by graphical means or by nonlinear regression, without 
the need for compartmental analysis. Thus the possible limits of V~s can 
be obtained. 

When the plasma concentration curve following an i.v. bolus dose can 
be described by an equation containing three exponential terms a similar 
situation applies. The minimum value for V~ is given by the method of 
Benet and Galeazzi (1) and relates to a three compartment mammillary 
model where elimination occurs exclusively from the central compartment. 
It can also be shown that the maximum possible value for V~ is given by 
Eq. (34) and relates to a three compartment catenary model where elimina- 
tion occurs exclusively from the third compartment. Thus 

dose I 1 1 1 q 
Vss = ~U-~ [ ~--~1 + ~-~2 + ]-~j (34) 

RELATIONSHIP BETWEEN Vss, Varea AN D  Vex~.~ 

In terms of a two-compartment open model (model 1, Fig. 1), the 
apparent volume of distribution obtained by back extrapolation of the 
terminal log-linear phase of elimination has been shown to be equal to the 
following (ref. 5): 

(h 1 - h 2) V1 
Vex,rap : (35) 

(k21 - h 2) 

while 

V,,rr =(hl-klo)V1 A1V1 (36) 
(k21 -h2) k21 
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Because 2.2 will always be less than kl0, 

Similarly, it has been shown (11) that 

v~ = [~1 + (2.2- klo)] -j Vl (37) 

and because (3.2-klo) will always be negative, 

V~,~  > V . ~  > V~ 

Such a relationship can also be demonstrated in terms of moment 
theory. Given that the "true" apparent volume of distribution (V~) is 
defined by 

dose -MR 1 VS~-A---~[ T( )] (38) 

Vr will overestimate V~ first by underestimating AUC by use of the 
term (C2/2.2) [this is in place of the correct term (C1/2.~ +C2/h2), which 
is equivalent to AUC], and second by overestimating MRT(1) through 
the use of the term (1/2.2) in place of the correct term (1/2.i + 1/2.2- 1/E2). 
That is, 

dose (1/2.2) dose 
V e x t r a p  - -  - -  (39) 

(C2/2.2) C2 

Likewise Vare~ will overestimate Vs, by use of the same incorrect term for 
MRT(1): 

dose (1/hz) 
V.re,, - (40)  

AUC 

However, if models 2 and 3 are considered, then V~s rosy be larger than 
V~r~a, and in some instances, larger than Vex~rap. The latter two volume 
terms will remain unchanged regardless of the model, but MRT for the 
peripheral compartment will be larger than MRT for the central compart- 
ment, i.e., 

(1/A1 + 1/h2) > (1/2.1 + 1/2.2-1/E2) 

Comparing Eqs. (40) and (31), it can be seen that V~s for model 3 will 
exceed the value of Va .... 

The MRT value required to calculate V~s for model 2(fIMRT(1)+ 
f2MRT(2)) will vary from the minimum value obtained with model 1 to 
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the maximum value obtained with model 3 according to the fraction of 
drug eliminated from each compartment.  Therefore,  with model 2 there 
will be occasions when V~ will exceed Va .... and other instances when the 
reverse will be true. Also, with models 2 and 3 one cannot be definitive 
regarding the relationship between V~s and Vextrap. Whether  or not V~, will 
be the larger of the two volume terms will depend upon the relative 
contributions of l/A1 to the numerator  (MRT) and C1/A1 to the 
denomenator  (AUC) of Eqs. (31) and (32). 

M O D E L  D E P E N D E N C Y  OF V~s 

Benet  and Ronfeld (12) pointed out that V~ is only "model  indepen- 
dent"  (that is independent  of the rate of elimination and hence clearance 
of the drug) when elimination occurs exclusively from the central compart-  
ment. However,  V~ is dependent  upon which model (e.g., Fig. 1) correctly 
describes the disposition of the drug in the body. Clearance (CL) is depen- 
dent on the rate of elimination, but may be considered a model independent 
parameter  in that regardless of which two-compartment  open model one 
chooses to represent the plasma-concentration profile, the estimate of CL 
is the same. 4 With model 2 a decrease in CL caused by a decrease in kl0 
will not affect V~s. However,  a decrease in k2o in either model 2 or 3 will 
cause an increase in V~, while an increase in k20 will have the reverse 
effect. This is analogous to the situation where Varea decreases with an 
increase in CL (5). 

CONCLUSIONS 

Using the approach of moment  theory to the calculation of Vss, the 
equivalence of the methods described by Riegelman et al. (5) and Wagner 
(3) to that described by Benet  and Galeazzi (1) has been demonstrated. 
When calculation of V~s is required for model 3 (where elimination occurs 
exclusively from the peripheral compartment),  this may be done by measur- 
ing A U C  and the exponents defining the plasma-concentration profile 
following an intravenous bolus dose of drug. The value of V~ for model 
2 will be intermediate between that of models 1 and 3, but cannot be 
determined without rigorous compartmental  modelling. The use of Vs~ 
determined by the method of Benet  and Galeazzi (1) will result in an 

4Using the parameters listed in table I, CL may be calculated as the product of the elimination 
rate constant and the volume of distribution of the compartment from which elimination 
occurs. For model 2, CLcotat is equal to the sum of the individual CL values for each 
compartment. 
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underestimate of the amount of drug in the body at steady state and hence 
also an underestimate of the necessary loading dose, if elimination occurs 
partly or exclusively from the peripheral compartment. Whereas CL is a 
model independent parameter, V~ is model dependent and will increase 
with a decrease in CL of drug from a peripheral compartment. 

APPENDIX 

Derivation of Eq. (31) 

Assuming model 3 (Fig. 1) applies, 

h 1A2 = kx2k20 (A1) 

hi +h2 = k12 + k21 +k2o (A2) 

Equation (21) can be written as 

(k12 + k21 + k2o) Vx 
Vss - (A3) 

(k21 + k20) 

Multiplying top and bottom by k12k20 and simplifying, 

(A1 q- h2)k20 V2 
Vs~ = (A4) 

hlh2 

But k2o V2 = CL, so Eq. (A4) can be simplified further to give 

Vss = CL + (A5) 

Derivation of Eq. (32) 

Assuming model 2 (Fig. 1) applies, 

h lh 2 = k lok2o + klok21 + k12k2o (A6) 

h 1 + h2 = klo + k12 + k21 + k2o (A7) 

Equation (21) can be written as follows: 

(hl +A2-klo)  V1 
V~, = - -  (A8) 

(k2o + k21) 

Multiplying top and bottom by h 1A2 and expanding gives: 

V~= Vii (hi+ h2)(kl~176176176 (A9) 
(k2o q- k21)A lh2 
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This can be rearranged to give: 

v fk,o(k2o[ + k21)[A 1 + 12 - A 1A21(k2o + k21)] + k2ok,2(A., + h2)] 
V,, J (k2o + k21)A 1A2 

Multiplying top and bottom by A 1A2 gives: 

(A10) 

Vlhl/~2 [klo(k20 + k21) [A 1 + A2-- XlA2/(k20 + k21)] 
Wss = 

(k2o+k21) l / ~ A1A2 

k2ok12 (A1 +A2) 1 
A1A~- A1-A-"22 J (Al l )  

However, using the method described by Benet (11), it can be shown 
that following an i.v. bolus dose, the total amounts eliminated from each 
of compartments 1 and 2 are k10(k20+k21)D/h1A2 and k20k12D/hlh2, 
respectively. Therefore, Eq. (A11) can be simplified further to give: 

V~A~A2 r / 1  1 1 \  / 1  l \ q  

where f,  and f2 are the fractions of dose eliminated by compartments 1 
and 2, respectively, and E2 = (k2o + k21). But 

VIA IA2 r k12k2o ] 
(k2o + k21) ViLkloq- (k2o+ k21)J = k l o V l + k E o V 2 = C L  (A13) 

r 

Therefore, Eq. (A13) can be simplified to give: 

Vs~ = CL[f ~MRT(1) + f2MRT(2) ] (A14) 
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