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NONMEM, the only available supported program for population pharmacokinetic analysis, does 
not provide the analyst with individual subject parameter estimates. As a result, the relationship 
between pharmacokinetic parameters and demographic factors such as age, gender, and body 
weight cannot be sought by plotting demographic factors vs. kinetic parameters. To overcome this 
problem, we devised a three-step approach. In step 1, an initial NONMEM analysis provides the 
population pharmacokinetic parameters without taking into account the demographic factors. Step 
2 consists of individual bayesian regressions using the measured drug concentrations for each 
subject and the population pharmacokinetic parameters obtained in step 1. The bayesian parameter 
estimates of the individual subject can be plotted against the demographic factors of interest.From 
the scatter plots, it can be seen which are the demographic factors that appear to affect the 
pharmacokinetic parameters. In step 3, the NONMEM analysis is resumed, and the demographic 
factors found in step 2 are entered into the NONMEM regression model in a stepwise manner. 
This method was used to analyze the pharmacokinetics of midazolam in 64 subjects from 714 
plasma concentrations and t l  demographic factors. CL (elimination clearance) and V l were found 
to be a function of body weight. Age and liver disease were found to decrease CL. Of the 11 
demographic factors recorded for each patient, none was found to influence Vss or intercompart- 
mental clearance. 
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INTRODUCTION 

Presently, NONMEM is the only available supported program for 
population pharmacokinetic analysis using a mixed-effect model (5). It 
enables one to estimate average parameters for the patient population and 
to assess the influence of demographic factors (the covariates) on these 
parameters (1). A limitation of NONMEM is that it does not provide the 
analyst with the parameter estimates for each individual subject. As a result, 
the analyst cannot directly examine the relationship between demographic 
factors and pharmacokinetic parameters in a visual manner. The analyst 
must use an iterative approach to seek for correlations. This approach con- 
sists of a sequence of computer runs, in which the analyst builds up, step by 
step, a model relating demographic factors to pharmacokinetic parameters. 
In the case that the structural pharmacokinetic model is simple (1) (one- 
compartment model with two pharmacokinetic parameters, CL and V) and 
if the number of demographic factors influencing the kinetics is limited (e.g., 
a data set with only individual body weight and age), the number of possible 
models to test in the stepwise regression is small. In the simple situation 
above, one would have to model the influence of age on CL and V and the 
influence of body weight on CL and V. Since the structure of the relationship 
between demographic factors and kinetic parameters may have different 
shapes (linear, exponential, sigmoid, etc.), the total number of computer 
runs to test all possibilities may approach 20 to 30 in the simple case above. 

We have faced the problem of analyzing data from midazolam, a benzo- 
diazepine used in anesthesiology. This drug has an important distribution 
phase, and an accurate description of its pharmacokinetic behavior necessi- 
tates the use of a multicompartment model (2,3). Moreover, our goal was 
to investigate the possible effect of 11 demographic factors on midazolam 
kinetics. Under these conditions (4 kinetic parameters, 11 demographic fac- 
tors), the classical stepwise approach described above would have required 
hundreds of runs to explore all the possible relationships. 

To overcome this problem, we devised a three-step approach integrating 
bayesian regression with population pharmacokinetic analysis. 

METHODS 

Patients and Data Collection 

A total of 714 midazolam plasma concentrations was obtained from 50 
surgical patients at the Kantonsspital Basel (Switzerland) receiving midazo- 
lain intravenously for general anesthesia or conscious sedation during 
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regional anesthesia and from 14 volunteers at the Palo Alto Veterans Admin- 
istration Medical Center (California) receiving midazolam in a study of 
benzodiazepine pharmacodynamics (total of 64 subjects; average of 9 plasma 
concentrations available per subject, range of 2 to 26). The following demo- 
graphic factors were recorded: age (range, 17-89 years), body weight (44- 
110 kg), chronic alcohol intake (11 subjects drinking more than 20 g alcohol 
per day), smoking (21 subjects), liver disease (5 subjects: 4 cirrhosis, 1 
hepatitis), gender (21 females), concomitant administration of volatile anes- 
thetic agents (17 subjects received halothane, enflurane, or isoflurane), serum 
creatinine (11 subjects with a serum creatinine between 140 and 1000 pM/1), 
chronic tranquilizer intake (6 subjects taking benzodiazepines or barbitur- 
ates more than twice a week), physical status according to the scale of the 
American Society of Anesthesiologists (1 = good health; 2 = mild disease; 
3 = systemic disease impairing patient activity; 4 = severe disease, life threat- 
ening; 5 = dying) (4), and conscious sedation vs. general anesthesia. 

Data Analysis 

Data analysis was performed using the following three-step approach. 

Step 1. In the first step, the computer program NONMEM (version 2, 
level 1.4) was used to estimate the average pharmacokinetic parameters in 
the group of patients and volunteers. A two-compartment model, with input 
and elimination into and from the central compartment, was used in this 
step (subroutine ADVAN3 from the library of programs provided with 
the NONMEM-PREDPP package) and the pharmacokinetic parameters 
estimated by the program were metabolic clearance (CL), intercompartmen- 
tal clearance (Q), initial volume of distribution (V1), and volume of distribu- 
tion at steady state (Vss) (subroutine TRANS3). Interpatient variability was 
assessed for each pharmacokinetic parameter, according to a proportional 
error model. 

Step 2. This step consists of individual bayesian regression analysis 
using the measured drug concentrations of each subject and the population 
parameters obtained in step 1. The bayesian regression was performed with 
NONMEM (Ref. 5, Vol. II, p. 9). Step 2 provides individual (bayesian) 
estimates of the pharmacokinetic parameters. By plotting these individual 
parameter estimates against demographic factors, one can identify which 
factors correlate with the pharmacokinetic parameters. Moreover, the graphs 
show the shape of each relationship. These individual bayesian estimates 
were then plotted against demographic factors, and the resulting graphs 
examined for relationships. 
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Step 3. Only the demographic factors showing a correlation with a 
pharmacokinetic parameter were retained in the analysis. The NONMEM 
analysis was resumed in the classical way, i.e., the influence of the demo- 
graphic factors of interest was entered into the pharmacokinetic model 
sequentially, first for those demographic factors that seemed most correlated 
with the pharmacokinetic parameters on the graphs, then for those correla- 
tions that were less obvious. The shape of the scattergram of parameters vs. 
demographic factors allowed one to test realistic models. At each step, an 
additional parameter was estimated by the program, which accounted for 
the effect size of the demographic factor of interest on a particular pharmaco- 
kinetic parameter. The results of this step were compared with those obtained 
when the influence of the demographic factor in question was not modeled 
(i.e., no influence was assumed). The following criteria were considered when 
choosing between the two models: the difference in the - 2  log likelihood 
(LLD) which is supplied by NONMEM (asymptotically Z ~ distributed), the 
standard error and correlation matrix of the parameter estimates, the plots 
of the residuals, and the change in the remaining interindividual variability 
in the pharmacokinetic parameters. A P<0.005 (corresponding to a LLD 
of 7.8) was chosen to decide whether a covariate should be included in the 
model. This P value is conservative, because of the asymptotic nature of the 
Z z test. Once an important covariate was identified, it was left in the model, 
and other covariates were tested in turn against this new model. Finally, the 
random effects (the inter- and intraindividual variability components) were 
evaluated with the best model found for the fixed effects (pharmacokinetic 
parameters and covariates). A proportional error model was used for both 
inter- and intraindividual variability. Additionally, after the final model was 
found, each covariate was in turn deleted from the full model, and the 
reduced model was tested against the full model, as a final check. 

RESULTS 

The results of step 1 are shown in Table I. The table provides estimates 
of population kinetic parameters for midazolam without taking into account 
any demographic factors. 

From the 64 bayesian regressions performed in step 2, individual phar- 
macokinetic parameter sets were obtained and plotted against the demo- 
graphic factors (4 pharmacokinetic parameters • 11 demographic factors = 
44 scatter plots). The scatter plots with the most profound demographic 
effect are presented in Fig. 1 (correlation between body weight and CL), in 
Fig. 2 (correlation between body weight and V1), and in Fig. 3 (inverse 
correlation between age and CL). Liver disease was also shown to be associ- 
ated with a smaller clearance. No correlation was found between body weight 
and Vss. 
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Table I. Step I Results: Global NONMEM Estimates of Midazo- 
lain Pharmacokinetic Parameters ~ 

Parameter Interindividual 
estimate SE variability (CV) 

CL 300 ml �9 min-1 40 +7 I%/ -42% 
V1 30.3 L 1.7 +32%/-24% 
Q 590 ml.  min-  ~ 100 +59%/-37% 
vs, 14.4 L 9.2 +92%/-48% 

Residual intraindividual variability: • 18% 
- 2  �9 log likelihood value: 4462 

aSE, standard error of estimates; CV, coefficient of variation. 

0.9 

"-&'- 0.7 
. q  

E 

" ~ 0 . 5  
oA 

0.3 q )  

( .9  

0.1 

, ; ,  

a 

I 
40 

e 
e 

, % 
�9 �9 

�9 �9 o �9 �9 �9 
�9 �9 o �9 

�9 | ee r~ 
�9 �9 �9 �9 ~ e 

; . . % "  �9 
e e o c  �9 

eo  �9 e o Jo 
�9 �9 

o 

o 
e 

60 80 100 
body weight (kg) 

I 
120 

Fig. 1. Scatter plot of individual clearances (bayesian esti- 
mates) vs. body weight. 
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Fig. 2. Scatter plot of individual V~ (bayesian estimates) vs. 
body weight. 
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Fig. 3. Scatter plot of  individual clearances (bayesian esti- 

mates) vs. age. 

In step 3, the effect of age, body weight, and liver disease were sequen- 
tially entered into the NONMEM model. The final results are shown in 
Table II. 

DISCUSSION 

Graphic display helps visualizing the correlation between demographic 
factors and pharmacokinetic parameters. The proposed method uses 

Table II. Final Results ~ 

Final model for CL 

CL = BW" (| - Fage) ' Fllwr 

If age > 40 years then Fage = | ' (age -- 40) 
Otherwise F a g e  = 0 

If  liver disease, then F~ver = | 
Otherwise Fliver = 1 

N O N M E M  estimates 

Interindividual 
Parameter variability(CV) 

estimate SE (log normal) 

~ ) C L  

~ a g e  

~ ) l i v e r  

CL 
V] 
Q 
v. 

5.3 ml �9 k g - '  �9 min -~ 0,5 
0,036 0,018 
0,68 0,08 

+ 4 6 % / - 3 2 %  
0.42 L .  kg -~ 0.017 + 1 8 % / - 1 6 %  b 

660 ml .  m i n -  ~ 78 + 5 8 % / - 3 7 %  
134 L 9.1 + 8 9 % / - 4 8 %  
Residual intraindividual variability: •  

- 2  �9 log likelihood value: 4326 

"SE, standard error of  estimates; CV, coefficient of  variation; BW, body weight. 
~Variability of  V~ nested within variability of  V~. 
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bayesian regression to obtain individual estimates of pharmacokinetic 
parameters when an inadequate number of data point is available for each 
subject in order to perform an individual subject pharmacokinetic 
characterization. 

Bayesian estimates are biased toward the average population parameter 
value, and therefore the correlation (if there is any) observed on the scatter 
plots between the bayesian estimates and the demographic factors will be 
less than what one would observe if the true individual pharmacokinetic 
parameters were known. However, the final goal of the population data 
analysis is to find the major demographic factors that explain interindividuat 
variability in the data set. If the correlation is large enough to be seen in the 
scatter plots (Figs. 1, 2, and 3), it has a greater likelihood of being clinically 
relevant. Effects of small magnitude (e.g., a factor increasing clearance by 
10%) are probably not clinically relevant when one considers that the 
remaining variability between individuals in the pharmacokinetic parameters 
is much higher (i.e., interpatient variability for clearance is :t:38% in the 
present study). 

The proposed graphical approach does not take into account correla- 
tion between demographic factors. Indeed, we found a large effect of the 
ASA physical status rating on clearance, with a decrease in clearance in 
individuals of poorer physical status, but the plots of ASA score versus age 
showed a high correlation between these two factors. This finding confirms 
the observed fact that older people tend to be less healthy than young 
individuals. NONMEM could not discriminate between the age effect and 
the ASA physical status effect on clearance. No regression convergence could 
be obtained when both effects were entered into the model at the same time. 
As a result, we left ASA rating out of the final model and age was chosen 
as the factor of prime importance, as previously shown by Greenblatt et al. 

(2). 
The approach we present is a reasonable compromise between the time 

one is willing to invest in a population pharmacokinetic analysis and the 
size of the effects one is trying to detect. A demographic effect that is too 
small to be seen in a scatter graph is probably not relevant. An additional 
advantage of the proposed method is that the scatter graphs provide infor- 
mation on the shape of the relationship between pharmacokinetic parameter 
and demographic factor. The correct model for the effect of demographic 
factor (e.g., linear model vs. exponential model) can therefore be found more 
rapidly with NONMEM since we already have some information about its 
shape. The time saved by using the proposed method is considerable. The 
present midazolam analysis was completed in 3 weeks on a relatively slow 
machine (OPUS 100 PM 32-bit add-on "computer on a card" using AT&T 
UNIX as operating system and hosted in an IBM-AT clone), whereas the 
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tradit ional N O N M E M  approach  would  have taken months.  Only 39 N O N -  
M E M  runs were necessary to arrive at the final results shown in Table I I ;  
the tradit ional  N O N M E M  approach  would have required hundreds  o f  runs. 

Finally, we propose  that  programs for popula t ion pharmacokinet ic  
analysis, such as N O N M E M ,  should ideally provide a graphical me thod  
to examine the correlat ion o f  demographic  factors with pharmacokinet ic  
parameters  directly, without  one having to go through the bayesian regres- 
sion step as had to be performed in the present work. 

R E F E R E N C E S  

1. L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics 
of pharmacokinetic parameters from routine clinical data. J. Pharmacokinet. Biopharm. 
5:445-479 (1977). 

2. D. J. Greenblatt, D. R. Abernathy, A. Locniskar, J. S. Harmatz, R. A. Limjuco, and R, I. 
Shader. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27-35 
(1984). 

3. P. O. Maitre, B. Funk, C. Crevoisier, and H. R. Ha. Pharmacokinetics of midazolam in 
patients recovering from cardiac surgery. Eur. J. Clin. Pharmacol. 37:161-166 (1989). 

4. W. D. Owens, J. A. Felts, and E. L. Spitznagel. ASA physical status classification. Anesthesi- 
ology. 49:239-243 (1978). 

5. S. L. Beal and L. B. Sheiner. NONMEM User's Guide, University of California at San 
Francisco, San Francisco. 


