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Boundary Conditions for Incompressible Flows 
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A general framework is presented for the formulation and analysis of rigid 
no-slip boundary conditions for numerical schemes for the solution of the 
incompressible Navier-Stokes equations. It is shown that fractional-step (split- 
ting) methods are prone to introduce a spurious numerical boundary layer that 
induces substantial time differencing errors. High-order extrapolation methods 
are analyzed to reduce these errors. Both improved pressure boundary condition 
and velocity boundary condition methods are developed that allow accurate 
implementation of rigid no-slip boundary conditions. 
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1. I N T R O D U C T I O N  

In this paper, we address the numerical implementat ion of  no-slip boun-  
dary conditions for incompressible flows. In particular, simple techniques 
to achieve high-order  accurate time integrations of the incompressible flow 
equations are developed. 

The Navier -Stokes  equat ions for incompressible flow are 

~v 
- ~ + V p =  - v . V v  + vV2v + f ( x ~ D )  (1.1) 

V . v = 0  ( x ~ D )  (1.2) 

where v(x, t) is the velocity field at x, t; p(x, t) is the pressure; v is the 
kinematic viscosity; and f(x, t) is an external force. The (constant)  density 
is assumed to be unity. If the boundaries  of the region D in which the flow 
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satisfying (1.1) (1.2) occurs are stationary and if v>0,  then the 
appropriate boundary conditions are the no-slip conditions 

v(x, t ) = 0  (x ~ 8D) (1.3) 

One of the central questions to be addressed here is the calculation of 
the pressure p in numerical solutions of (1.1)-(1.3). The pressure in (1.1) 
may be considered a Lagrange multiplier that ensures satisfaction of the 
(kinematical) incompressibility constraint (1.2) everywhere in D. The most 
obvious way to obtain an equation for p is to take the divergence of (1.1) 
and apply (1.2), which gives the Poisson equation 

V2p= -V" (v 'V) v + V ' f  ( xeD)  (1.4) 

A warning of possible trouble in the numerical solution (1.1)-(1.3) is given 
when boundary conditions for (1.4) are sought (Orszag and Israeli, 1974). 
Applying the boundary conditions (1.3) to (1.1) gives 

Vp= vVZv+f (x ~ ~?D) (1.5) 

so both Dirichlet and Neumann conditions for p are available if v is 
known. In numerical integrations of (1.1)-(1.3), it is not obvious which of 
these boundary conditions to use, and the equations for p may appear to 
be overdetermined. 

For inviscid flow, the problem discussed in the last paragraph does 
not occur, since inviscid flow permits slip at the boundary; the no-slip 
conditions (1.3) are replaced by 

v . n = 0  (x ~0D) (1.6) 

where n is normal to OD at x. Thus, only the normal component of (1.5) 
holds and Neumann boundary conditions are appropriate for (1.4). In 
numerical practice, it is often argued that Neumann conditions on p are 
also most appropriate for high-Reynolds-number flows, presumably 
because of the inviscid analogy. We shall see below that there are both 
theoretical and practical considerations that favor this choice of boundary 
condition. 

The ambiguity regarding boundary conditions on p can be avoided if 
the pressure is eliminated from (l.1)-(l.3). Applying the operator 
V x V x t o  (1.1) gives, using (1.2), 

8 V2 v = V •  v ] + v V % _ V •  
~t 

(x~D) (1.7) 
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For flow in a plane channel, implicit time stepping of the linear terms in 
(1.7) gives a fourth-order equation for the component v,, of v in the direc- 
tion n of the normal to the channel walls. Solving this fourth-order 
equation requires imposition of four boundary conditions on v,,. Two of 
these conditions are immediately available, namely v,, = 0 at the two boun- 
daries of the channel. The other two conditions follow from the incom- 
pressibility constraint (1.2); since v = 0  at the walls, ( n x V ) v = 0  so 
V . v  = 0 implies that ~vn/On = 0 there. Once v,, is known, the other com- 
ponents of v are obtained using incompressibility and the equation for the 
component of vorticity in direction n. Indeed, if VH=V-n(0 /c~n)  is the 
two-dimensional gradient operator parallel to the channel walls, then 
VH" v = --~v~/On, while n.  VH X V = c~ is the normal vorticity. Then Weyl's 
lemma implies that n x v is determined fully. 

In general three-dimensional geometries, the equations ( l . 7 ) a r e  
coupled and are not so easily solved. Then, implicit time stepping of the 
linear terms in (1.1)-(1.3) leads to a coupled sixth-order system for v, p. 

We shall see that time, rather than space, discretization is the key step 
in the numerical treatment of the pressure term in the Navier Stokes 
equations. This is due to the incomplete parabolic nature of the system [in 
the sense that the Poisson equation (1.4) for the pressm~ is a diagnostic, 
rather than a prognostic, equation].  A general high-order formulation is a 
good framework for all the time stepping schemes under consideration. Let 
us write the Navier-Stokes equations as 

Ov/c~t = - V p  + L(v) + N(v) (1.8) 

Q = V . v = 0  (1.9) 

where the linear term L(v) is given by 

L(v) = v[V(V �9 v) - V • (V • v)] 

and the nonlinear term N(v) is given by 

N(v) = - v .  Vv 

Integrating (1.8) over a time step gives 

v n + l - v ~ = -  "+ 'Vpd t+  L(v) d t +  N(v)d t  (1.10) 
tn  I n tn  

where the superscript index n indicates time level n At. We can write 

ft f/n§ t"~'Vpdt= V pd t=AtV f f ,+~  
n tn  
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so that /5 n+~ is the scalar field that maintains incompressibility at time 
(n + 1)At. The remaining two integrals on the right side of (1.10) may be 
approximated using Adams-Bashforth time differencing schemes of 
appropriate order. For example, at jth order, the nonlinear term is 
computed explicitly as 

j l 
f~"+~N(v)dt= ~ N(vn-k)ykAt-N'TAt 

tn k = 0 

for suitable weights Yk- The linear term may be evaluated by an implicit 
scheme for improved stability: 

i -  2 
f"+~L(v)dt=/iL(v"+l)At+ ~ L(v" k)/ikAt 

tn k = 0 

= /IL(v'+ ~) At + L" At 

for suitable weights//, /~k. It follows that 

vn+t-f lAtL(vn+l)=v"-AtVfi"+~+AtFn; F n = N n + [ ,  " (1.11 

Equations (1.11 ) together with V. v" + 1 = 0 are a coupled system. This 
system leads to difficult computational problems, equivalent to that of solv- 
ing for steady Stokes flow at each time step. Therefore, it is important to 
develop simplified and efficiently solvable numerical approximations. This 
can be done by attempting to decouple the pressure computation from that 
of the velocity, thereby reducing the problem to a system of separately 
solvable second-order equations. Three steps are required in order to 
complete the decoupling. 

The first step was already taken by explicit evaluation of the nonlinear 
terms N,,  which involves only previously known time levels. The second 
step is the derivation of the appropriate equations for the pressure. It 
involves the well-known step of taking the divergence of (1.1) to get (1.4). 
The third step involves the implicit computation of viscous effects. While 
these steps have been well known to practitioners of computational fluid 
dynamics, it is still mysterious how and why they work. We will reinterpret 
this approach and shed new light on its consequences. 

Taking the divergence of (1.11) gives 
Q-+f Q- 

/Iv V2Q ''-~ = - - + V .  F"-V2/5 n+~ (1.12) 
At At 

If the goal is to obtain Q"+I=  0 and we assume that all velocities are 
known at level n, then (1.12) shows that/5 "+1 must satisfy 

1 
V2/5 ~+ ' .  = V . F  ~ + ~  Q" (1.13) 
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In turn, (1.12) and (1.13) show that Q"+~ satisfies 

Q, ,+l_f lv  A t V 2 Q  "+~ = 0  (1.14) 

However, (1.14) implies that Q"+ t---0 throughout D only if the boundary 
conditions are such that Qn +~ or OQ ''+ ~/~n vanishes on the boundary. 

Even if Q " + ~ r  on the boundary, (1.14) shows that, as v A t - - O ,  
Q,,+ 1 decays exponentially to zero in the interior of the domain D beyond 
a (numerical) boundary layer of thickness ( v A t )  j/2. Furthermore, since 
(1.14) is elliptic, standard maximum theorems ensure that the boundary 
values of Qn + ~ dominate all interior values. Thus, the crux of the problem 
of controlling Qn+~ lies with control of its boundary values. 

An alternative approach to obtain equations for/~" + t is to assume that 
Q"=  Q"+~ = 0  in (1.12). Then (1.13) is replaced by 

VZp ''+a = V .  V" (1.15) 

However, if~ ''+ ~ is determined by (1.15), then (1.t2) shows that Q actually 
satisfies 

Q"+ ~ - Q " -  [~v V2Q ''+ ~ (t.16) 
At 

This time-discretized parabolic equation is a prognostic equation for the 
divergence. The behavior of its solutions controls the evolution of the 
divergence field in the numerical computation. Clearly there is the solution 
Q,, = Q,, + l _ 0 in D, but this solution is only achieved if suitable initial and 
boundary conditions hold. With the parabolic equation (1.16), the 
numerical boundary layer of thickness (v At)  ~/2 around 0D typically dis- 
appears and is replaced by smooth diffusion of the divergence from the 
boundary into the interior of the domain. There is a maximum theorem for 
(1.16) which shows that the divergence at step n + 1 is dominated by the 
boundary divergence or by the divergence at step n. If the diameter of the 
domain D is L, then it requires a time of order L2/v for the effect of initially 
nonzero Q0 to diffuse out and for the magnitude of Q" in D to reflect the 
boundary conditions on ~?D alone. 

It is now clear that a crucial step in the determination of the pressure 
involves the imposition of the boundary conditions. This is the main sub- 
ject of this paper. It is also clear now why "elliptic" schemes of the form 
(1.13) (1.14) are superior to "parabolic" schemes of the form (1.15)-(1.16). 
The former schemes forget the effect of initial conditions immediately and 
Q in D reflects only the effect of boundary conditions on @D However, the 
absence of the numerical boundary layer of width (v At) ~/2 in the parabolic 
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schemes means that extrapolation methods (see Section 6) can be easily 
used to increase the order of accuracy of the methods. 

In Section 2, we present a one-dimensional problem that models mul- 
tidimensional fluid dynamics. It gives a convenient framework for the 
analysis of methods to solve incompressible flow problems. In Sections 3 
and 4, we survey the properties of several semidiscrete numerical 
approximations to incompressible flows. Here semidiscrete means that the 
time coordinate is discretized but the spatial coordinates remain con- 
tinuous. In Section 5, we illustrate the analysis of the schemes outlined in 
Sections 3 and 4 using the model problem of Section 2. In Section 6, we 
introduce extrapolation methods that can yield higher order results with 
the splitting methods of Section 4. Then, in Section 7, we present the main 
results of this paper, namely, new methods with improved boundary con- 
ditions that are both accurate and efficient. In Section 8, we conclude with 
some recommendations for efficient and accurate solution of incom- 
pressible flow problems. In the Appendices, some additional schemes are 
analyzed. The reader who is mainly interested in computational efficiency 
may wish to refer directly to Section 7. 

2. A O N E - D I M E N S I O N A L  M O D E L  OF I N C O M P R E S S I B L E  FLOW 

A one-dimensional linear model that embodies the essential features of 
the incompressibility and viscous terms of the Navier-Stokes equations is 
obtained by considering a solution to the two-dimensional Stokes 
equations of the form 

v = (u(x ,  t) e i~.', v(x,  t) ei~"), p = p (x ,  t) e ik.' 

for some real wavenumber k. The equations satisfied by (u, v, p) are 

~u @ 
+ v(u~. , . -k2u)  (2.1) 

cqt - c~x 

Ot = - i k p  + v(v.~.,. - k2v) (2.2) 

- -  + ikv = 0 (2.3) 
Ox 

for - 1 ~< x ~< l. The boundary conditions are 

u ( + l ,  t ) =  v(+ 1, t ) = 0  

which simulate rigid no-slip boundary conditions. 

(2.4) 
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The solution to an initial-value p rob lem for (2.1)-(2.4) can be 
expressed in terms of normal  modes  of the form 

(u, v, p ) ( x ,  t) = e~'(fi, t3,/3)(x) (2.5) 

Subst i tut ion of (2.5) into (2 .1~(2.3)  and el iminat ion of 13 and/~ gives 

f f ( O  2 - -  k s) h = v(D 2 - k2) 2 t~ ( -- 1 < X < 1 ) (2.6) 

with fi( _+ 1 ) = Dt~( _+ 1 ) = 0, where D = d/dx. 

The exact solutions to (2.6) are either symmetr ic  in x: 

h(x) = cos # cosh k x  - cosh k cos #x (2.7) 

or ant isymmetr ic :  

Here 

h(x) = sin # sinh k x  - sinh k sin #x  

= ( - G / v -  k2) ~/2 

satisfies the eigenvalue relat ions 

for (2.7) and 

(2.8) 

(2.9) 

k tanh k = -k t  tan/~ (2.10) 

k coth k =/~ cot/~ (2.11 ) 

e igenmodes are complete  on the interval Ixl ~< 1. Some 
a for low-lying modes  with k =  1 and 10 are listed in 

for (2.8). These 
values of  # and 
Table  I. All the eigenvalues ~; are real and negative, indicating stability for 
v > 0. In Fig. 1, we plot  h(x), i75(x),/~(x), and D ~ ( x )  as functions of x for 
the lowest symmetr ic  mode  with v = k = 1. 

Table I. Decay Rates of Slowest Decaying Normal Modes of (2A) (2.4) with k =  1 and 
k = 1 0  

k = l  k = 1 0  

Symmetry ~ ~ a /v  # a / v  

S 2.883356 -9.3137 1.743402 -103.0394 
A 4.423864 -20.5706 3.476140 -112.0836 
S 6.160178 -38.9478 5.191217 -126.9487 
A 7.684753 -60.0554 6.886235 -147.4202 
S 9.343447 -88.3000 8.562068 -173.3090 

"S indicates a symmetric (in x) mode; A indicates an antisymmetric mode. 

854,q/1-6 
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Fig. 1. Plots of the normal mode of the system (2.1)-(2.4) with v = k = 1. (a) fi(x); (b) i~(x); 
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3. SEMIDISCRETE IMPLICIT  C O U P L E D  M E T H O D S  

In this section we give two semidiscrete schemes for the solution 
of incompressible fluid dynamics. The schemes are discrete in time but 
continuous in space. 

3.1. Full Implicit Time Differencing 

Here the system (2.1)-(2.4) is approximated by backward Euler time 
differencing: 

~/n + 1 __ b/n 
D p  "+1 + v ( D  2 - k 2) u ''+1 (3.1) 

A t  

1)n + 1 _ _  U n  

_ _ - -  i kp , , + l  + v ( D 2 _ k 2 ) v  , ,+l 
A t  

Du, ,  + l + ikv  n + l = 0 

(3.2) 

(3.3) 

It follows that 

! 
~ (D 2 _ k 2) u,,+ l _ v ( D  2 _ k2)2 u,,+ 1 _ 
A t  

ik  k 2 
- - - - D v " - - - u "  (3.4) 

A t  A t  

with u '~+1 = D u  " + l  = 0  at x =  +1. Comparison of (3.4) with (2.6) shows 
that there are eigenmode solutions to (3.1)-(3.3) of the form 

(u", v", p") = ~c"(~, ~, p) (3.5) 

with 

K = 1/(1 - cr A t )  (3.6) 

where a is the exact eigenvalue obtained from (2.9)-(2.11) and (~, g,/5) are 
identical to (h, 3,/~) obtained in Section 2. The time dependence of 
(u ", v ~, p") is proportional to 

1 ! 
t r " = e x p ( f n A t ) ,  6 = - ~ l n ~ c ~ a + - ~ a 2  A t + O ( A t  2) (3.7) 

so the growth rate ff for this scheme is in error by O ( A t ) .  Also, since 
a < O, ~ < 1, the scheme is unconditionally stable. Thus, the normal mode 
analysis demonstrates the stability and convergence of this implicit 
semidiscrete scheme as At - -*  O. 
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Higher order implicit time differencing leads to similar results with 
higher order approximations ~c to exp(aAt). For example, the 
Crank-Nicolson scheme is considered next. 

3.2. Crank-Nicolson Time Differencing 

u"+a- -u  " _Dp,,+l/2 1 2 u") At = +-~v(D -k2)(u"+ 1 + 

V n + l  __ U n 

At 
1 2 k 2 ) ( t ) ,  + 1 - ikp" +1/2+-2 v(D - + pn) 

Du n+l + ikv  "+l = 0  

(3.8) 

(3.9) 

(3.10) 

with u" + 1 = v" + 1 = 0 at x = + 1 is both unconditionally stable and accurate 
to O(At2). Indeed, normal mode solutions exist in the form (3.5) with 
to=(1 +�89 A t ) / ( 1 - � 8 9  At), so I< < 1 since a < 0 .  

Algorithms to implement these two schemes efficiently for finite-dif- 
ference and spectral methods have been discussed by Gottlieb and Orszag 
(1977), Moin and Kim (1980), Kleiser and Schumann (1980), and Gottlieb 
et al. (1984). One way is to use a Green's function (influence matrix) 
method. This method is particularly easy to understand for the present 
one-dimensional model. The generalization of this Green's function method 
to nonseparable multidimensional problems is straightforward, but 
computationally expensive, especially in three space dimensions. Therefore, 
we shall seek more effective computational schemes for such problems in 
Sections 4 and 6. 

Equation (3.4) is solved using Green's functions by first introducing 
the auxiliary variable ~ by 

~ n + l = ( D 2 _ _ k 2 ) u , , + l  

Then 

~ n + l  __ n + l  + n+ ~ n + l  u -Up ~+ ~u++ _ _ (3.11) 

where the particular solution u~,+l satisfies 

1 k 2 
j t  ~p+l v(D2 k2) ~ +  l ik . . . . . .  D v " - - - u "  (Ix] < 1) 

At At  

( O 2 - - k 2 1  Up+ 1 = Cp+ 1 (Ixl  < 1) 

u p + l = r  at x =  _+1 

(3.12) 
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and the Green's functions u+ are determined in a preprocessing step as 
solutions to 

1 
-~•  (Ixl < t) 

(D2-k2) u+ = ( !  (Ixl < 1) 

u+ =0,  ~_ =0,  

u •  ~ =1,  

n +  1 Here e_+ are determined by the constraints 

Dup+l +cr Du+ +c~"+l Du_ = 0  

(3.13) 

~+ = 1 at x =  +1 

~+ = 0  at x =  -1  

at x =  +1 (3.14) 

If u+ are stored, the solution of (3.4) by this algorithm requires only the 
computational work of solving the two Helmholtz (or Poisson) equations 
(3.12) and (3.13). If storage is not available for the complete u_+ fields, only 
the boundary values Du+ (x = _+1) need be stored. In this case, one first 

,,+ 1, and finally (3.12) once more for "+ ~, then (3.14) for c~+ solves (3.12) for up 
u "+l with the modified boundary conditions 

u"+l=O,  C '+1--c~_+''+1 a t x =  _+1 (3.15) 

This involves about the same work as solving four Poisson equations. 

4. FRACTIONAL TIME STEP (SPLITTING) METHODS 

The implicit schemes described in Section 3 are easy enough to 
implement in one-dimensional (or separable) problems. However, in more 
complex geometries, they lead to difficult coupled computational problems, 
equivalent to that of solving for steady Stokes flow at each time step. 
Therefore, it is important to seek other, more efficiently solvable methods. 
This can be done by decoupling the pressure computation from that of the 
velocity, thereby reducing the problem from the solution of a (vector) 
fourth (or sixth) order equation to a system of separately solvable second- 
order equations. One way to do this is by use of fractional-step methods. 

4.1. Velocity-Pressure Splitting with Normal Velocity Boundary Conditions 

Here the time-differencing scheme involves two split (or fractional) 
time steps (Gottlieb and Orszag, 1977; Orszag and Kells, 1980). The first 
step involves solution of the inviscid equations 
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U *  - -  b/n 
- - - -  D r  "+1 (4.1) 

A t  

I ) *  - -  U n 

_ _ -  ikp~+l (4.2) 
At  

D u *  + ikv* = 0 (4.3) 

for Ixl < 1 with boundary condition 

u * = 0  ( x =  _-L- 1 ) (4.4) 

(Note that the asterisk here does not  signify complex conjugation.) The 
second step involves the solution of the viscous equations 

bln + 1 __  b l *  

A t  
- v ( D 2 - k  2) u n+l (4.5) 

v n  + l __  v *  

A t  
- v ( D 2 - k  2) v n+t (4.6) 

for ]xl < 1 with boundary conditions 

u " + l = v " + l - - 0  ( x =  + l )  (4.7) 

In this scheme, u n and v n do not satisfy the incompressibility constraint 
(2.3), although the intermediate variables u* and v* do. In comparison 
with the implicit coupled schemes of Section 3, the present splitting method 
has the advantage that it involves only the solution of second-order 
Helmholtz (or Poisson) equations in arbitrary geometries. In general 
geometries, splitting offers significant simplifications compared to unsplit 
schemes. However, as will be shown below, the splitting schemes suffer 
from large time-stepping errors if v A t  is large that can only be removed by 
the more sophisticated methods to be introduced later. 

It is by no means obvious that the splitting scheme (4.1) (4.7) has 
solutions consistent with (and convergent to) the solutions of the Stokes 
equations. To highlight the difficulty, consider the following argument. It 
follows from (4.1) and the boundary conditions that 

D p  "+1 =O ( x =  _+1) (4.8) 
but (2.1) gives 

D p = v D 2 u  ( x =  _+1) (4.9) 

which is, in general, not vanishing. It may seem that there is an O(1) error 
in the split pressure pn as A t ~  0 at the boundaries x =  _+1. 
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In fact, the following error estimates hold for the scheme (4.1)-(4.7). 
The global error estimates 

u"(x) - u(x, n At) ~ ul (x)  At  + O(zft 3/2) 

vn(x) -- v(x, n At)  ,~ v l (x)  At  + O( At 3/2) 

pn(x)  -- p(x ,  n At)  ~ p l ( x )  At  + O(At  3/2) 

(4.10) 

(4.11) 

(4.12) 

hold for fixed x with [xl < 1 as At ~ 0 ,  where u~, v~, and p~ are finite 
functions of x. Near the boundaries x = _+1, the error estimates (4.10) and 
(4.11) hold together with 

Dun(x) - Du(x,  n At)  = O(At  1/2) 

O 2 u n ( x ) -  OZu(x, n At) = O(1) 

DZv"(x) - D2v(x, n At)  = O(At  1/2) 

p"(x)  - p(x,  n At)  = O(At  1/2) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

for I x [ -  1 = O[(v At)~/2], while the error in Dp" is, as noted above, O(1) in 
this region. We also remark that the intermediate (split) velocities u* and 
v* do not exhibit the boundary layer structure (4.13)-(4.15). The velocities 
u* and v* give uniform O(At)  approximations to u(x, n At)  and v(x, n At), 
respectively. Also, p ' - v A t V 2 p  n does not exhibit the boundary layer 
structure and is a uniform O(At)  approximation to the pressure. These 
results are established in Section 5. 

The error estimates (4.13)-(4.16) can be understood heuristically as 
follows. On the inviscid fractional step (4.1)(4.4), incompressibility is 
imposed, but a slip velocity of order At is generated at the wall. In the 
following viscous step, the slip velocity is reduced to zero, but a boundary 
layer of thickness O[(v 3 t )  ~/2] remains, inducing the errors (4.13)-(4.16). 

Higher order methods, such as Crank-Nicolson time differencing, do 
not lead to higher order results with this splitting, because errors are 
dominated by the splitting error due to the noncommutativity of the 
inviscid pressure and viscous fractional steps. 

4.2. Velocity-Pressure Splitting with Tangential Velocity 
Boundary Conditions 

The previous scheme may be modified by replacing the normal 
velocity boundary condition (4.4) in the inviscid pressure step by 

v*--0 ( x =  +__1) (4.17) 
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In this case, the errors in the modes and their growth rates are O ( A t  ~/2) 

even in the interior of the domain, so the method gives quite poor results, 
although the method is stable. 

4.3. Velocity-Pressure Splitting with Viscous Boundary Conditions 

It may be thought that the boundary errors in the splitting methods in 
Sections 4.1 and 4.2 originate from the boundary condition (4.4), which 
leads to (4.8) instead of (4.9) a t x  = _+1. Suppose that the splitting method 
in Section 4.1 is used with (4.4) replaced by the seemingly more accurate 
boundary condition 

D p , +  t = vD2u ,, (4.18) 

which follows by evaluating the normal component of the Navier-Stokes 
equation (2.1) at x =  +1. Unfortunately, this is not an improvement. The 
spatial structure of the error for this method is identical to that of the 
splitting method with u* =0.  This follows because (4.1) and (4.5) with 
u " = u  ~+I = 0  give 

H* 
O p n  + 1 _ = v O 2 u  n +  1 

A t  

at the boundaries, so D 2 u n = D 2 u n + l .  For any normal mode (3.5) with 
~c ~ 1, this implies that D2u ~ = O, so Dp "+ 1 = 0 at the boundaries. (Using 
the arguments of Section 5, it may be shown that the mode with ~: = 1 has 
un= p " = 0 . )  

It may seem that the boundary condition 

Dp,,+ 1 = vD2u~+ 1 (4.19) 

would lead to more accurate results. However, this boundary condition 
leads to coupled equations for p"+~ and u "+~. Also, at least for 
semidiscrete schemes, the resulting scheme is not numerically stable. 

4.4. Explicit Pressure Computation 

The pressure is frequently obta ined by solving a Poisson equation 
derived from the incompressibility constraint. Thus, we consider the 
scheme 

D 2 p n  + l __ k 2 p n  + l - 
D u  ~ + i k v  n 

At  
(Ixt<l) 

D p n + 1 = v ( D 2 u n - k 2 u  n) ( x =  +1) 

(4.20) 

(4.21) 
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l,i n + 1 _ _  1An 

At  
Opn + 1 + v(D2u n + 1 _ _  k2un + 1 ) (Ix[ < 1) (4.22) 

v n  + 1 __  [ n  

= - i k p  "+1 + v ( D 2 v  ~+1 - k e y  "+1) (ix I < 1) (4.23) 
At  

u~+a=v"+~=0 (x=  _+1) (4.24) 

This scheme is analogous to one proposed by Harlow and Welch (1965). 
Again, the properties of normal modes of (4.20)-(4.24) are identical to 
those of the splitting method in Section 4.1, because O p n + l = v D Z u  n by 
(4.21), but D p " + l =  vD2u n+l by (4.22) at the boundaries. 

5. N O R M A L  M O D E  A N A L Y S I S  

The methods introduced in Section 4 may be analyzed for both 
stability and accuracy using a normal mode analysis. That is, we shall seek 
normal mode solutions to the semidiscrete equations that are analogous to 
the normal modes (2.5) with (2.7)-(2.11) of the continuous model problem 
of Section 2. The corresponding normal modes are of the form (3.5), 

(u"(x), ~n(x), p"(x)) = ~:n(a(x), e(x), ~(x)) (5.1) 

where x is the amplification factor. The semidiscrete approximation is 
stable if 

I,r ~< 1 + 0 ( 3 0  (5.2) 

for all normal modes and is unstable otherwise. The accuracy of the par- 
ticular semidiscrete method may be studied by computing the exponential 
growth rate 6, defined by 

~ c " = e x p ( 6 n A t ) ,  6 = l l n ~  (5.3) 
A t  

The error # - a ,  where cr is given by (2.9)-(2.11), measures the time 
discretization error. 

To analyze the fractional step methods of Section 4, the results 
(4.10)-(4.16) are established first for the normal modes of the system. The 
general results (4.10)-(4.16) then follow from completeness of the normal 
modes. A solution to (4.1)-(4.7) is sought in the form 

(u", v ", p") = ~cn(a, ~, P) 

(u*, v*) = K"(a*, ~*) 

(5.4) 

(5.5) 
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Substituting (5.4) and (5.5) into (4.1) (4.4) gives 

( 0  2 - -  k 2) fi* = -ikD~ - k 2 F t  (5.6) 

while (4.5) and (4.6) give 

E 1 ],o, r~ --v(D 2 - k  2) ~= (5.7) 

x [ 1 -  v( D2-k2)  J ~=k ~ tD~ *  (5.8) 

The general form of the solution fi, ~* to (5.6)-(5.8) that is symmetric 
about x = 0 is 

fi*(x) = A cosh kx + B cos f x  (5.9) 

1 
~(x) = - A cosh kx + B cos fix + C cosh 2x (5.10) 

g 

It also follows that 

i i ik 
f(x) = -~c A sinh kx - -s fB  sin f x  + ~ C sinh 2x (5.11 ) 

x - 1  1 
~q~(x) - k~c A~ A sinh kx + - ~  C sinh Zx (5.12) 

Here 

~ - l  ~/2 

and 

2 =  ( k 2 + ~ A t )  1/2 (5.14) 

The boundary conditions (4.4) and (4.7) are satisfied if the following 
determinant vanishes: 

cosh k cos fi 0 ) 

(l/K) cosh k cos fi cosh 2 = 0 

(i/K) sinhk - ( f i / k ) s i n f  (k/2)s inh2 
(5.15) 



92 O r s z a g ,  I srae l i ,  and D e v i l l e  

0.04 

0.036 

0.032 

0,028 

0.024 

0.02 

0.016 

0,012 

0.008 

0.004 

0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.0 1.0 

(8) 

0.5 

I 1 

. 0 0 . 5  

- 05 /b) 

Fig. 2. Plots of the errors in the normal mode of the splitting scheme (4.1)-(4.7) with 
v = k = l  with A t = 1 0  -2, 5•  -3 , and 2.5• -3 . ( a ) ~ ( x ) - ~ ( x ) ;  ( b ) p ( x ) - / ~ ( x ) ;  

(C) D ~ ( x )  -- Dp(x) .  
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Fig. 2. Continued. 

The limiting behavior of these normal modes as At-~ 0 +  is found as 
follows. First, the limiting form of (5.15) is, to within exponentially small 
correstions in At, 

/~ . 1 k ~ c - 1  
~ s m / ~ c o s h k + - c o s / ~ s i n h k + ~ t c  ~c c o s f i c o s h k = 0  (5.16) 

Writing 

t c = l + a A t + O ( d t  2) ( A t ~ O + )  (5.17) 

and noting from (5.13) that/~ ~ ( - k  2 -  a/V) 1/2, we obtain the leading-order 
dispersion relation 

(-k2-~)l/2tan(-k2-~)l/2+ktanhk=O (5.18) 

which is identical to (2.10). Thus, the leading behavior a of the growth rate 
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6 agrees with that of the exact solution. To higher order in 3t  the solution 
to (5.15) is 

(4vat~ sin 2# ) l+  t+At 2 

- 5/2/4k2a# v3/2 c~ # )  
_+~ t5.19) 

where o- is a solution to (2.10) and/~ is defined by (2.9). 
From (5.9)-(5.12) and the result (5.19) for ~, it follows that, if we 

normalize the mode by assuming A = cos/~, then, as At-* 0, 

B = - c o s h  k = O(1 ) (5.20) 

C ~ 2a At cos/~ cosh k e x p [ -  1/(v At) I/z] (5.21) 

The estimates (4.10)-(4.16) follow immediately from (2.7), (5.20), 
(5.21), and the facts that 

cosh 2x exp[ - l/(v At) 1/2] = O(1 ) 

when I x l -  1 = O[(v At) 1/2] and is exponentially small otherwise and that 
fL--i~= O(At)+ 0(3t3/2). The boundary layer behavior is represented by 
the terms proportional to C in (5.11)-(5.13) for the normal modes. Since 
C=O(At):~O,  these normal modes exhibit a (weak) boundary layer 
behavior. Notice also that if* and f* have no boundary layer terms, 
showing that these intermediate results are uniform approximations to the 
normal modes of the exact dynamics. 

In Table II, we list the decay rate ff for the slowest decaying normal 
mode with k = 1 for this split step scheme. It is apparent that the error in ff 

Table II. Decay Rate of Slowest Decaying 
Normal Mode of the Split-Step 
Scheme (4.1)-(4.7) with k = 1 ~ 

v At #/v 

0.1 -7.3175 
0.01 -9.0462 
0.001 9~2855 
0.0001 -9.3109 
0.+ 9.3137 

Here ~c = exp(# At). 
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behaves like At as At  ~ 0 + .  In Fig. 2, we plot the errors between the exact 
normal mode and that of the splitting method (3.11)-(3.17). It is apparent 
that the errors in Dp are significantly larger than in u, especially near the 
boundaries x =  +1. 

6. E X T R A P O L A T I O N  M E T H O D S  

It is possible to reduce the error of the splitting methods introduced 
in Section 4 by applying local Richardson extrapolation methods. Let us 
consider first the solution to the initial-value problem 

~u/Ot= (A + B +  C)  u (6.1) 

where A, B, and C are (spatial) differential operators. A fully implicit 
splitting method (Yanenko, 1971) for solution of (6.1) is 

u~-u(t) 
- -  - A u l  (6.2) 

At 

u2 - u~ _ Bu2 (6.3) 
At 

u(t  + A t )  --  u2 
- Cu( t  + A t )  (6.4) 

At 

The effect of the operators A, B, and C is accounted for separately in the 
three fractional steps (6.2)-(6.4). Under very general conditions, the 
scheme (6.2)-(6.4) is unconditionally stable and its solution converges to 
the solution of (6.1) as At-+ 0 with global errors of order At. Higher order 
accuracy can be obtained by such variants of (6.2)-(6.4) as alternating- 
direction implicit methods. However, these latter methods are tricky when 
three or more operators A, B, C,... are involved, if the split operators do 
not commute, or if higher than second-order accuracy in time is desired. 

A simple way to achieve high-order accuracy while maintaining 
unconditional stability is to extrapolate locally the error in (6.2)-(6.4). 
Denoting the solution to (6.2)-(6.4) as u ( t + A t ) - L ~ t u ( t  ), then a suitable 
Richardson extrapolant that leads to second-order global accuracy is 

u( t  + A t )  = (2L~,/2 - L~,) u( t )  (6.5) 

This scheme requires roughly three times as much computational work as 
(6.2)-(6.4). Third-order accuracy is obtained using 

1 ]_4(2L2a,/4 _ LAt/2) 2 _ (2L2 /2  _ L~,)] u(t )  (6.6) u( t  + A t )  =-5 

which requires roughly seven times the work of the original scheme. 
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The unconditional stability of (6.5) is easily demonstrated for com- 
mutative operators A, B, and C by noting that, for the simple scalar 
equation 3u/~t = -2u ,  (6.5) gives 

[( ) ] 1 2 1 u(0) (6.7) 
u(n A t ) =  2 l + �89 At  l + 2 At  

so [u(n At)l ~< ]u(0)l for all At > 0 if Re 2 >1 0. 
The third-order method (6.6) is only conditionally stable for Re 2 >~ 0. 

There is a small region of instability when 2 At  is nearly pure imaginary, 
with 0 ~ I m  2 A t <  1.04. The maximum growth rate of this instability is 
achieved for 2 At ~ 0  +0.792i; its growth rate is only tcn with K ~ 1.00333. 
This instability is so weak that it requires nearly 700 time steps to grow by 
a factor ten. An occasional stable explicit time step would stabilize the 
scheme and remove the effects of this instability. For  larger values of 2 At 
and values away from the imaginary axis with Re 2 < 0, (6.6) is stable. 

6.1, Extrapolated Implicit Time Stepping 

If the time stepping scheme (4.1)-(4.7) is denoted symbolically as 

u(t + A t ) =  L~,u( t )  

0.01 I 

-1.0 1.0 

Fig. 3. Plots of the errors in the extrapolated splitting scheme (6.5) with At = 0.01, 5 x 10 3, 
and 2.5 x 10-3. (a) u(x) - fi(x); (b) p(x) -/~(x); (c) Dp(x) - Db(x). 
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Table IIL Decay Rate of Slowest 
Decaying Normal Mode of the Richardson 

Extrapolation (6.5) when k = 1 

v At 6/v 

0.1 9.06126 
0.01 -9.30726 
0.001 -9.31355 
O. + -9.31374 

then the ex t rapo la t ed  scheme (6.5) removes  the f i rs t -order  (in At)  errors  of 
u(t)  while main ta in ing  the uncond i t iona l  s tabi l i ty  of this implici t  method.  
The e r ror  es t imates  (4.10)-(4.12) imply that  the errors  in this ex t rapo la t ed  
scheme are of o rder  At  3/2 for fixed x in ter ior  to the doma in ,  but  the boun-  
dary  errors  (4.13)-(4.16) remain  unchanged.  The n o r m a l - m o d e  growth  rate  

K is now of the form 

K = e ~A' + O(,dt 5/2) (6.8) 

so the g lobal  t ime behav ior  is in e r ror  by O(At3/2). In Table  III,  values of  

3.{11 

! 

o (~) 1.o 

Fig. 4. Plots of the errors in the higher order extrapolated splitting scheme (6.9) with 
At=0.01, 5x 10 -3 , and 2.5x 10 3. (a) u(x)-f~(x); (b) p(x)-f~(x); (c) Dp(x) Dl~(X). 
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Fig. 4. Continued, 
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the decay rate 6 are listed for the slowest decaying mode when k = 1. In 
Fig. 3, we plot the errors in the slowest decaying normal mode of this 
extrapolated splitting scheme. 

6.2. Higher Order Extrapolated Implicit Time Stepping 

Both the O(At)  and O(At 3/2) errors are eliminated by the higher order 
extrapolation scheme 

1 
u(t + At) = - - -  [4 ~ (LA,/4) 4 -- 2( , f2  + 1 )(L a,/2) 2 + L~,] u(t) (6.9) 

2 x f l 2 -  1 

The error in the scheme (6.9) is O(At  2) for fixed x interior to the domain, 
while normal modes have growth rates of the form 

~c = e~ + O(At 3) (6.10) 

The boundary error estimates (4.13)-(4.16) remain unchanged. Plots of the 
error in the slowest decaying normal mode for this scheme are given in 
Fig. 4. Decay rates for this mode are listed in Table IV. 

Note that while these extrapolation schemes do remove interior errors 
as well as errors in the growth rates of normal modes, they do not remove 
either the boundary layer behavior of the splitting method or the O(1) 
boundary errors in Dp. 

7. REDUCED B O U N D A R Y  DIVERGENCE M E T H O D S  

The problems with the splitting methods given in Section 4 originate 
with the appearance of nonsolenoidal (divergent) flow near the walls where 
the divergence condition V . v  = 0 is dropped in favor of boundary con- 

Table IV. Decay Rate of Slowest 
Decaying Normal Mode of the 

Second-Order Richardson Extrapolation 
(6.9) when k = 1 

v At 6/v 

0.1 -9.34337 
0.01 -9.31391 
0.001 -9.31374 
0.+ 9.31374 
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ditions. In this section, we explore two classes of methods to alleviate this 
difficulty, namely, improved pressure boundary conditions and improved 
velocity boundary conditions. 

7.1. Improved Pressure Boundary Conditions 

7.1.1. Introduction 

The boundary conditions (4.8), Dp=O, on the splitting scheme of 
Section 4.1 are in error by O(1), yet the resulting scheme is first-order in 
At in the interior of the domain Ecf. (4.10) (4.12)] and the pressure is 
determined to order (vAt)  1/2 in the boundary region [cf. (4.16)]. In 
general, it appears that the pressure boundary condition can be one-half 
order less accurate in At than is required of the full scheme. Thus, while the 
first-order boundary condition (4.18), D p = v D 2 u  ", does not lead to 
improved results with the first-order splitting scheme of Section 4.3, it does 
lead to second-order results with the second-order splitting 

bl :~ __ U n 
- - -  Op "+1/2 (7.1) 

At 

U* - -  U n 
ikp,,+ I/2 (7.2) 

At 

Du* + ikv* = 0  (7.3) 

U n+ ] b/* 1 

At 2 
v (D2-k2 ) (u  ''+1 +u*)  (7.4) 

U n + l  - - V *  1 
v ( O 2  _ k2) (v , ,  + 1 -t- v*  ) (7.5) 

dt  2 

Here we impose the boundary conditions 

u"+l = v"+t = 0  (7.6) 

D p n +  1/2 = -9 D 2 u  n (7.7) 

Indeed, the normal modes of (7.1)-(7.5) have the form (5.9)-(5.11) with 
(5.13) and (5.14) replaced by 

2 2 x - 1  
) 2  = k 2 . } _ _ _  / ~ 2  k 2 (7.8) 

v a t '  v z~t K + l 
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Also, pn+ 1/2 = tc~/~(x), with 

~ c - 1  1 
/~(x) - ~ck d~ A sinh k x  + ~ C sinh 2x (7.9) 

analogous to (5.12). In this case, the matrix eigenvalue condition (5.15) 
becomes 

r 

- \ - 7 5 7  - 2 - j  cosh k 

1 
- cosh k 
K 

1 
- sinh k 
K 

vfi2 cos fi ( 1 - -  v22) cosh 2- 

cos fi cosh 2 

- - ~  sin/~ k sinh 2 
k z 

= 0  (7.10) 

Therefore, to within exponentially small corrections in dt, the dispersion 
relation is 

K -  cos fi cosh k = 0  /~ cosh k sin fi 3 - K  2 k  1 + ~ c o s  fi sinh k +  2 K + l  (7. l l)  

The eigenvalue ~c satisfies 

1 
~c = 1 + ~ At + ~ ~ At 2 + O(At  5/2) (7.12) 

so the effective growth rate is accurate to O(At).  For this method there is a 
numerical boundary layer, but the interior solution has errors of order At z. 

7.1.2. Improved Pressure Boundary Conditions 

An arbitrary velocity field can be decomposed into its irrotational and 
solenoidal components v~ and Vs, respectively: 

where 

v = v l + v  s (7.13) 

V X V  I = 0  

V ' v s = 0  
(7.14) 

Therefore, the boundary condition @/On = vn. V2v can be rewritten 

0p 
--=vn-[V(V'v)-Vx(Vxv)] =vn-V(V'vr)-vn" l-Vx(Vxvs)] 
3n 

(7.15) 
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Since v~ may be assumed to vanish in incompressible flow, it is logical to 
replace the boundary condition (1.5) by the equivalent condition 

@~On = - v n "  [Vx  ( V x v ) ]  (7.16) 

For the model problem of Section 2, this modification of (1.5) becomes 

Dp = -v(Vxy - U vy) = - i r k ( D r  - iku) 

When the boundary condition 

Dp~ + 1/2 = - i v k D v "  

(7.17) 

(7.18) 

(since u n = 0 )  is used in place of (7.7), the matrix (7.10) is replaced by 

1 
- cosh k 
K 

1 
- sinh k 
K 

1 _ vk2) cosh ~ coshk v/22 cos/2 

cos/2 cosh 

/ 2 .  k 
- -  sin/2 - sinh 2 

k 2 

=0(7.19)  

To within exponentially small factors in At, the dispersion relation (7.19) is 

/2 . 3~c - 1 
tc ~ sm/2 cosh k + ~ cos/2 sinh k 4 

k (~: - 1 )2 
- -  cos/~ cosh k = 0 (7.20) 

2 ~c+l 

Now it is easy to see that, in contrast to (7.12), 

~c= 1 + o J t  + ~ a2 At2 + O(A t 3) ( 7 . 2 1 )  

so the error in the growth rate is O(At2), in contrast to the e r r o r  O(Jt 3/2) 
in (7.12). The use of the tangential derivative boundary condition (7.16) 
gains a factor ( J t )  1/2 in accuracy over the normal derivative boundary 
condition (7.7). In Table V, values of the decay rate 6 are listed for the 
slowest decaying modes with k = 1. 

7.2.  H i g h e r  O r d e r  P r e s s u r e  B o u n d a r y  C o n d i t i o n s  

With the high-order time-difference scheme (1.11), it suffices to supply 
boundary conditions for the Poisson equation (1.13) or (1.15). With 
tangential boundary derivative conditions of the form (7.16), the order of 
accuracy of the boundary derivative can be chosen one order less than the 
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Table V. Decay Rates of the Slowest 
Decaying Normal Mode of the Pressure 

(7.1)-(7.6), (7.18) with k= 1 

v At 6/v 

0.1 -13.31925 
0.05 -9.72680 
0.025 9.40409 
0.01 -9.32743 
0.005 -9.31712 
0.0025 -9.31458 
0.001 -9.31385 
0.+ -9.31374 

desired interior error. However, this must be done consistently so that 
stability of the discrete approximation is maintained. Thus, to obtain third- 
order interior accuracy, we could choose 

@,+l  @n 02p,, 
On ?~ + At o--[-~n+ 0(3t2) 

- v 3 t V x  V x - -  + O ( A t  ~) (7.22) 
On At 

For this scheme, the boundary layer structure of Q = V'  v implies that 

Q Io~ = O ( , ~  At 5/2) 

However, with this scheme there will be a slow numerical instability; 
indeed, with (7.22), there are nonzero normal modes satisfying 1r = 1. This 
weak instability is easily eliminated by the iteration schemes outlined 
below; for example, we may modify (7.22) as in 

OP"+lOn = , - v  @" (VxV"-v"At 1) -c~ c3V'v'~?n (7.23) 

to remove the instability. 
More generally, the boundary conditions for @/On allow significant 

control of the boundary values of Q n + l = V . v  "+1. For the continuum 
problem, (7.16) holds. However, for a divergent velocity field, (7.16) reverts 
to (7.15) in the form 

= v  -- v n ' g x  (Vx v)I,~D (7.24) 
c3D 
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The boundary condition (7.24) suggests an iteration scheme to remove 
the boundary errors. Suppose we solve (1.13) with the boundary conditions 

@ ,  + l,k + ~ ~D (?P= + 1,k ~D O Q "  + 1,~ ~ = -c~ (7.25) 
~n an 

where k is the iteration index at level n + 1 and c~ is an iteration parameter. 
It may be shown that, for suitable choice of c~, this iteration converges so 
that dQ=+~'~/c?n=O.  Therefore, the iteration method (7.25) maintains 
incompressibility, including the walls, so that the Navier-Stokes equations 
are satisfied throughout the computational domain. 

Solution of the Poisson equation (1.13) for p"+ ~ with the Neumann 
boundary conditions (7.25) requires that a compatibility condition hold. It 
is required that 

~ [ 
D On da  = V k ~ n  c~ ~n 

[ Q "  F")  =fffot- +v. dv 
For this to hold for all k, it is necessary that 

,) c ~  do-=0 

which holds because (1.12) implies that 

D ~ 3 ~  do- = VZQ,,+ J,k d V  

ffj 
, Q,, + l,k ee v" + l.k. n 

= d V = ~  - - d a = 0  
v A t  .p V A t  

7.3. Improved Velocity Boundary Conditions 

Kim and Moin (1985) observed that replacement of the viscous boun- 
dary conditions (4.7) in the split scheme (4.1)-(4.6) by 

U n+l = A t D p  =+' (x=  +1) (7.26) 

v = + l = i k A t p " + '  ( x =  +1) (7.27) 

improves the accuracy of the scheme. Unfortunately, the boundary con- 
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ditions (7.26)-(7.27) allow a mode with K= 1, so the scheme is weakly 
unstable. However, (4.l) and (4.4) imply that 

u,,+ 1/A t = Dpn+ I = u"/At 

so u n = 0 if  x r l .  The improved boundary conditions 

u,,+ 1 = 0, v,+J = i k z l t p , , + l  (7.28) 

remove the instability and give more accurate results. This formulation of 
the velocity boundary conditions was given by Zang and Hussaini (1986) 
and Fortin et al. (197t). 

Let us illustrate this scheme for the Crank-Nicolson method 
(7.1)-(7.5) with the boundary conditions 

u * = u  "+l =0,  v n + ~ = i k A t p  '~+~/2 (7.29) 

The matrix eigenvalue condition is then 

(- cosh k cos 17 0 / 

1 cosh k cos ~ cosh ~ ] 

K J = 0  /~K . (~:-  1)k 
2x -___~_1 sinh k - - ~ -  sm/7 sinh 2 

K 2 

(7.30) 

To within exponentially small factors in dt, the dispersion relation is 

fi 2~c - 1 (~c - 1 )~ k 
~ tc sin/7 cosh k - t - - -  cos/7 sinh k q cos/~ cosh k = 0 (7.31) 

K K2 

Table VI. Decay Rate of the Slowest 
Decaying Normal Mode of the Improved 

Velocity Boundary Condition 
Scheme (7.1) (7.5), (7.29) 

v A t ~/v 

0.05 -10.19966 
0.025 -9.46642 
0.01 -9.33509 
0.005 -9.31889 
0.0025 -9.31502 
0.001 -9.31397 
0.+ -9.31374 
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For small At, the expansion (7.21) holds once again. In Table VI, we list 
values of the decay rate 8 for the slowest decaying modes of this scheme 
with k = 1. 

The present scheme is interesting in that it leads to second-order 
results for flow quantities at intermediate time steps, despite the fact that 
the full time-step boundary condition (7.28) is in error by O(At). 

8. CONCLUSIONS 

In this paper, we have analyzed the effect of boundary conditions on 
incompressible flows. We have explained and analyzed a numerical boun- 
dary layer of thickness (vAt) 1/2 that appears in many formulations of 
incompressible flow problems and we have explained techniques for the 
development of high-order methods. 

For first- or second-order methods, we recommend the use of splitting 
methods in the form (4.1)-(4.5) or (7.1)-(7.5) with the tangential-derivative 
boundary conditions (7.16) or the modified velocity boundary conditions 
(7.28). To achieve higher order accuracy, we may employ either the 
extrapolation methods outlined in Section 6 or, perhaps even better, use 
schemes of the form ( 1.11 ) with high-order pressure boundary conditions of 
the form (7.23) or iterative conditions of the form (7.25) (with only a few 
iterations per time step). 

We have shown that we can characterize methods for the solution of 
incompressible flow problems as belonging to either parabolic or elliptic 
type with regard to the determination of the pressure field. The elliptic 
schemes typically have smaller errors in the divergence field, with the errors 
decaying exponentially away from the boundaries of the computational 
domain. On the other hand, the parabolic schemes have smooth solutions, 
without numerical boundary layers, but care should be exercised with 
respect to the boundary conditions in order that initial divergence errors be 
eliminated. This analysis explains why "elliptic" schemes, such as that 
introduced by Harlow and Welch (1965), have been found to be more 
accurate than parabolic schemes. 

We have also shown, using Weyl's lemma for the decomposition of a 
flow into its solenoidal and irrotational components, that it is possible to 
derive accurate boundary conditions for the pressure that involve only the 
tangential derivative of the boundary vorticity. This form of the boundary 
condition tends to minimize the effects of numerical boundary layers 
induced by splitting methods. 
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APPENDIX A. BOUNDARY-DIVERGENCE-FREE IMPLICIT 
TIME SPLITTING 

Marcus (1984) uses a modification of the splitting scheme of 
Section 4.1 to remove the boundary errors discussed above. The idea is 
that splitting error induces large boundary errors because a large 
divergence of (u, v) develops near the boundaries ]xf = t on the viscous 
step (see Section 5). This modified method is based on the observation that 
the normal flow boundary condition u = 0 is applied twice each time step in 
the splitting scheme of Section 4.1 [cf. (4.4) and (4.7)]. By modifying these 
conditions on u, it may be possible to reduce the error in the boundary 
divergence. The modified scheme is given by dropping the intermediate 
boundary condition (4.4), u* = 0, in favor of the Condition 

Du"+X+ikv"+~=O ( x =  +_l) or D u " + t = 0  ( x =  4-_1) (A1) 

while applying (4.1)-(4.3) and (4.5)-(4.7). Thus, normal flow is allowed at 
the boundary during the inviscid pressure step in order to ensure that (A1) 
holds in the viscous step. 

It may be shown by normal mode analysis (see Section 5) that this 
modified scheme gives results that are identical to those of the full implicit 
coupled scheme of Section 3.1, so there is no boundary layer behavior. The 
scheme is stable in time. Higher order differencing methods (such as 
Crank-Nicolson differencing) will yield higher order results for this 
method. However, the price paid for the removal of the boundary errors is 
that the boundary condition (A1) couples the pressure and viscous frac- 
tional steps, which makes the computational work similar to that of the full 
implicit coupled schemes. Indeed, this method may be implemented using 
the same Green's function ideas outlined in (3.11)-(3.15). For problems 
that are not separable, this work becomes unreasonably large. However, 
divergence-free boundary conditions may be imposed in an iteration 
scheme to minimize the computational work. We do not believe that this 
scheme is competitive with those of Section 7. 

APPENDIX B. PENALTY METHOD 

Here the method to solve (2.1)-(2.4) is, with the simplest implicit time- 
stepping, 

i X n  + 1 _ _  l,l n 

Dpn+ 1 + v(D2u~+l _k2u,,+ 1) (B1) 
At 
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1An + 1 _ _  L)n 

At = - ikp"+l  +v(DZv"+l -kZv"+l )  

ep,,+ i = _(Du,,+I + ikv,,+ l) 

un+l =/An+ [ = 0  (X = ~ 1 )  

(B2) 

(B3) 

(B4) 

with e > 0 chosen to minimize errors. This penalty method is a variant of 
the penalty method now widely used in finite-element methods (Temam, 
1979). It is also closely related to the artificial compressibility method 
(Chorin, 1968; Temam, 1979). The dispersion relation for this scheme is 

fi tan/~ + (k2/2) tanh ~ = 0 (Bs) 
where fi is given by (5.13) and 

i~=[k2+ e(m-- 1! ]~/2 
~c At(l + e) (B6) 

Thus, the modes of this scheme agree with the exact eigenmodes with 
errors of order e, with no significant boundary errors. To minimize errors, e 
should be chosen as small as possible, consistent with the stability of the 
fully discretized scheme in both space and time. 

A quantitive measure of the accuracy of this method is obtained by 
writing 

so the decay rate is 

~c=(1 + ~v At) -~ (B7) 

6 1 
v v a t  

ln(1 + ,gv At) (B8) 

In the limit v At, 6 / v ~  -~ ,  so the error in t~ is a measure of the errors 
induced by the penalty parameter E for small time steps. Some results are 
given in Table VII for k = 1 and 10. 

In practice, the penalty method is not convenient for multidimensional 
problems, because it involves the solution of nonseparable equations for 
flow quantities at time step n + 1. Also, for small e, the equations at step 
n +  1 are very stiff. For the Navier Stokes equations, (B3) is replaced by 
the artificial compressibility relation 

e p + V - v = 0  (B9) 
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Table VII. Decay Rates of Slowest Decaying 
Normal Mode with k = t and 10, Using the Penalty 

Method (B1)-(B4) a (A2.4) 

re k = 1 k = 10 

0+I 8.947154 103.0083 
0.01 9.280810 103.0361 
0.001 9.313415 103.0394 
0.000001 9.313737 103.0394 
0. + 9.313742 103.0395 

"Here ~ is defined by (B7). Equation (B8) shows that 
~/v~  - ~  as v At ~ O + .  

where e>0  is the penalty parameter. If (B9) is substituted into the 
Navier Stokes equation, one obtains 

c3t + v -Vv : - 1  V ( V ' e  v) + v V2v (B10) 

Since the penalty parameter makes this problem very stiff for small e, the 
time stepping scheme for (BI0) should be strongly A-stable. Thus, full 
implicit rather than Crank-Nicolson schemas should be used to solve 
(BIO). 
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