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ON A F O R M U L A  O F  T H E  G E N E R A L I Z E D  R E S O L V E N T S  O F  

A N O N D E N S E L Y  D E F I N E D  H E R M I T I A N  O P E R A T O R  

M. M. Malamud UDC 513.88+517.984 

The Weyl function and the prohibited lineal, corresponding to a given space of boundary values of a non- 
densely defined Herm#ian operator, are introduced and investigated. The prohibited lineal is characterized 
in terms of the limiting values of the Weyl function. An analogue of M. G. Krein's formula for the resolvent 

is obtained and its connection with the space of boundary values is found. 

This paper is a detailed presentation of [l]. Here, from the point of view of spaces of boundary values (SBV), i.e., 

an abstract variant of Green's second formula, we investigate some questions regarding the extension of a Hermitian operator 
with a nondense domain of definition D(A). We introduce and investigate the Weyl function M(X) and the characteristic 
function C(X), corresponding to a given SBV. It is shown that the Weyl function is a Q-function of the operator A; the 
relationship between the angular limiting value M(i~)  of the Weyl function at infinity and the prohibited lineal V r is found. 

An analogue of Krein's formula for the resolvent is obtained and its application to the moment problem is given. 
We shall adhere to the tbllowing notations: gO, 9{ are separable Hilbert spaces; ['J-C I , ~ ]  (~  (!~ l , ~2))  is the set of 

bounded (closed) linear operators from{l{ 1 into 9-1:2; if9"s 1 = 9-{ 2 = 9-{, then [-q(1, H'2] = [-q~l, ~(Y(1, ~ )  = ~(H); ~(.q-/) is the 
collection of closed linear relations i n k  and, moreover, G(.q4) c ~ ( N  by identifying an operator with its graph; D(T) and 
~R(T) are the domain of definition and the range of the relationT ~ ~(.q-t), T(f)= {g ~ N {.t;, g} ~ T} and, in particular, T(0) = 
{g ~ .q~ {0, g} E T}; T "-1 = { {f, g} E .q-/'~ N {f, g} ~ T}; ixT = { {f, Ot g}; {f, g} E T}; p(T)and a(T) are the resolvent set and the 

spectrum of the relation T E {(~/); ~(A) is the regularity field of the operator A; O~p(A), ac(T), and or(T) are the point, 
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continuous, and residual spectra of the relation T; A is a Hermitian operator in ~ ,  ~J~k = (A - )~)ff?(A), ~X. = ~J~, n• = 

dim ~ll_.i;Ea(x) is the resolution of the identity for the relation A = A ~ 33(~), i.e., the resolution of the identity for its 

operator part A' ~ ~($~); PL is the orthoprojection in ~ on the subspaee L; C+ (C_) is the open upper (lower) half- 
plane, T tL is the restriction of the operator T to the lineal L. 

1, Preliminary Information. We recall briefly the fundamental aspects of the theory of the extensions of a non- 

densely defined Hermitian operator A in a separable Hilbert space gA. Let "~o e a)(A), ~ = ~ , let Pc be the orthoprojec- 
tion onto ~o, ~Jlx*" (A -~.) g~(A), IIlx. ~Jl~ is the defect subspace. For the operator A, acting from ~o  into gA(A ~($~0 ,  ~)) ,  
the adjoint operator A* ~ -g(gA, $Ao)-' is well defined. Clearly, D-T~= g-O, D(A) C D(A*), ~'l~. C ~A*) V s  ~ g X IR and the 

following equalities hold: 

A*.fA=PoAf,4 V f  a ~ D(A),A*f_K=~.Pof ~ V fK~  Ytx.. (~) 

Statement 1. If 7l = $ j ~ ,  then Ih X.["l ~lt {0} for h = o~ + i~ ~- ~.. 
Proof. I f  fA ~ El(A), (A - s = n ~ ~[, then 

0 = { n ,  f a )  = = I m ( ( A  - K) fa,/a) = - I m  ( ~,fa, fa) = - Ira ~. I I fa N2 ~ f a  = 0 .  

Statement 2 [2]. The lineals g/u4) and Yt x are linearly independent. 

Proof. If fA + fa = 0 for some fA ~ g~(A), fs e ~ . ,  , then. Af  A + ~.fX. = n e Y[.. From here (A - X)( A = n and, 
consequently, fA = n = 0. But then fx = 0. 

The following proposition is a generalization of the known Neumann formula [3] to the case D(A) # 5~. 
Proposition 1 [4-6]. L e t  D ( A ) = ~ o  c , ~ . .  Then 

D(A*) = ~(A) + Yt x + Yt T.. 

In addition, for each pair of vectors f ~  D(A*), n ~ 9"l we have the unique decomposition 

(2) 

f = f a  +f~+ fT.' A*f + n = A  fa + ~'f~.+ [ f~' (3) 

where fa ~ D(A), fx. r ]'IX. , f2 e ~T.. 

Proof (compare with [3]). Since ~ = (A-F . )~Ai@ TI2 (X.;e~), it follows that V{f,,n} ~ D ( A * ) •  there 
exist fa e ~a )  and fT. ~ J}2 such that 

A ' f -  ~.f  + n = (,4 - ~')fA § (~ - X,)&. (4) 

Applying the projection Pc to (4) and taking into account (1), we obtain the equality A * f f - f A -  fT . )=%Po( f - fA- fX) ,  

meaning that f~. e f - - f A  - f ; .  e YtX.. From here we obtain the first of the equalities (3) and, with the aid of (4), also the 
second one. 

Assuming the lack of uniqueness in (3), we obtain the equalities 

f/~ + f ;  +/-s =O, Af/~ + ~,ff + ~I~ = 0, I ;  E ~a),/~. ~ ~X.. (5) 

Multiplying the first of them by X and subtracting it from the second one, we obtain (a - X,)f,{ + (k - M f {  = 0.  Since ~ .  2. ~ ~ ,  
we have f,~ =f~ =0.But  then from (5) there follows that f~ = 0. 

COROLLARY 1 [2]. The relation D(A---'--) = ~ s equivalent to the linear independence of the lineals ~ZJ(A), Yl}: ~ ;  in 
the decomposition (2). 

The reason for the nonuniqueness of the decomposition (2) is revealed by the following proposition. 
Proposition 2 [4]. The vectorsf~. ~ ~ , - f ~  ~ 91~ are congruent modulo i i (i.e., f~ + fT. ~ D(A)) ,  if and only 

if there exists a (unique) vec to r  n E ~ such that 

In th s case Ilfall = lies, If and n =(~,-X)(ASA + ;g~ + ~_/~). 

Proof. Necessity. Let t" x and - f x  be congruent modulo 9(A),  i.e., there exists a vector t2~ ' E g}(A) suck that 

(6) 
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fa + A + f~ = o, A ~ ~(A); fz ~ ~ ;  f~ ~ n ~ .  (7) 

Applying the operator A* to (7) and taking into account (1), We have 1 # AfA +)vfx + L fy~ ~ Yi. 

we find 

~)fA + (~" - ~')fz, = (,4 - )")fA + (~" - ~')f2" l (.4 

From here and from (7) 

(8) 

If in (8) we set n * l/(X - X), then we obtain the equalities (6). In addition, from (8) there follow the relations 

II z = Z)f . I =11  U z -  l( A -   )fA  =llt 112- 11( A -~)fa I1~- 
(9) 

-I~211 fA 112--111 II 2 -I( A- ~,)fA ]12 =l (~'- L)f~ ~-- ] PII~. Ill" 
meaning that II f>,ll = II II. 

Sufficiency. We show that Vn ~ ~ the vectors PYl n and -PYt n are congruent modulo D(A). Setting f = 0, n = 
~. g - 

n in (3), from the second equality we subtract the first one, multiplied by)', and X. As a result we obtain the relations (8), in 
which l = n. From here 

P~ n=(~- X)A, Pn n=(~.-:)f:,n=Afa+Lfk+:f:. (i0) 

Now from (10) and from the equality fA + fx + f~, = 0 there follows the required relation PII~ n - P:rl: n = (K - ~')fA ~ D(A). 

COROLLARY 2 [4, 7]. Let Uxy ~ ~ (A - [)(A - ~.)-t. Then 

~ = { n E ~ ;  P~ n=U~ff pljl~n}. (11) 

Proof. If n E ~'l, then, by virtue of (8), there exists a vector fA E D (A) such that PN ~ n = (A - s PN ~ n = (A - g)fA" 
From here Plllz n = U2x Pyllr. n. Conversely, if this equality is satisfied, then the equalities (8) hold (with n instead of/) and, 

therefore, so does (3); from here n E ~.  Relation (11) is proved. 
Proposition 2 enables us to introduce the following definition. 

t ~ '  �9 , 

Definition 1. Let ~I1 ~ :-- Pn]ll.  By the equality 

V 3 Prt~n - P~ln, n ~ ~,  (12) 

p l  

the isometric operator V e E [~";v ' ~l'12], called the exclusion operator, is well defined. 
The exclusion operator V, has been introduced in [2], while in [4] one has elucidated its role in the description of the 

self-adjoint extensions of the operator A. In [4] it has been shown that the lineals II~. are closed or not, simultaneously for 
all X E C\R. In the first case the operator A is said to be regular, in the second case it is called singular [5]. 

M 

Definition 2. The subspaces ft~. = f l ~ O  ~'l~. are called the semidefect subspaces of the operator A, while the 

numbers 4 ( A ) =  dim~s are called the semidefect numbers. 
As it can be easily seen, they are the detect subspaces (numbers) of the operator A" = Po A(D(A') = D(A)) in gO0. 
2. Spaces of Boundary Values and Proper Extensions. Here the operator A is identified with the graph: A +-~ grA 

= {{f, Af};fE ~XA)}, while the symbol A* denotes the adjoint relation. In order to avoid confusion, we denote the adjoint 

operator from Sec. 1 by Ao~(e ~(gO, ~o)), and A* and Aop are connected by the obvious equality 
(:3) 

A* = { { : f I ; f ~  z~a*) = ~ A ~ ) , r  = ao*~+ n , .  ~ h i .  

We note that, by virtue of (1) and (13), the Neumann formulas (3) are equivalent to the direct sum decomposition (see [6, 8]) 

A ' = A 4 - ~ 4 - ~ l [  (q l~g{{ f~ . ,~ . f~} ; f~ ' lX} ) ,  (14) 

and Proposition 2 describes the components of the vectors from the indeterminate part ~'1 = {0, ~II} of the relation A* with 

respect to the decomposition (14). 
The lineal A" is a Hilbert space with respect to the norm 
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!:11 == )1: i1: +ll :'It := 11 :ll = + IA; :l]:+ 11" t: (Y = {:,:'})  

Definition 3. A collection 1-I = {'J-s 1-'l, r2} , whereg-C is a separable Hilbert space, while r i E [A*, .'~], i = l, 2, is 

tailed a space of boundary values of the relation A ~ if 

1) ( f ' ,g)-( f ,g ')=(ri?,rzg) - (rz?,r~)~ V f  = { f , f ' I , g = { g , g ' I ~ A * ;  (16) 

2) the mapping F :  J~ --* {I"2 j 3, q .f} from A* into ~ @ ~ is surjective. 

It is easy to see that, under the conditions 1, 2, we have ker F = A. 
Statement  3. For a Hermitian operator A with equal defect numbers n+(A) = n_(A) _< c~ there exists a SBV. 

Proof. Let U o be an isometry from ~'!_ i onto ~ll i, /-?o ~- Uo ~ Uo, let P+i be the oblique projections onto ~ : i  in the 
decomposition (14) parallel to A -i- ~lv_i, and let n~ be the orthoprojection onto the first term in IIl i. Setting 

we obtain the equality 

-.q/= ~i,  Fi = gl(Pi + UoP-i)' r'2 = -i ni(Pi + ~]oP_i ), 

(f', g) - (f, g') = 2i (f/, g)  - 2i (f-i' g-? = (F)~, F2~ )~-- (r27, r ~)~ 

which coincides with (16). The epimorphism property of the mapping I" is obvious. 

Definition 4. An extension ,4(~ ~ (8 ) ) )  of the operator A is said to be proper if it is closed and A C ,~ C A*. 
Definition 5. Two proper extensions are said to be disjoint if ,~' A ,~" = A, and transversal if; in addition, ~,' + 

,~" = A*. 

Let Y4i = F i l l =  Fi{0,~I},. (i = I, 2) be lineals in.t( (in general, not closed), where, as before, ~ =,~ (~, ~0" 
Definition 6. By the exclusion relation Vr, corresponding to the SBV {'3s F i, I'2} , we mean the lineal V r ~ t ~  = 

F{0, ~ll}, i.e., 

{h a, h 1 } ~ VFr 3 n ~ ~ : hi=Fill ,/~ = {0, n}, i = 1, 2. (18) 

If in (16) we set ~: = fi = {0, n}, $ = ~ = {0, l} E ~l, then we see that the exclusion relation V r is Hermifian: V r 

With each SBV there are connected two tra~versal selfadjoint extensions Ai = ~], for which 

�9 4 i - k e r r " ,  i=1 ,2  ( F , 4 1 = H ~  0, F,42= 0 e l l ) .  (i9) 

C V r. 

From Definitions 3-6 there follows at once the following lemma. 

LEMMA 1. The mapping r :  f -~ {I'2 {r Ylt} of the Hilbert space A* (with the norm (15)) into f / =  5( O-q-( is 
surjective and defines a topological isomorphism between A ? A  and H such that: 

1) between the proper extensions of A and the closed linear relations in ~ (i.e., the subspaces in fi/') we have the 
bijective correspondence 

2) 
3) the inclusion relation is preserved: A o~ C A o: ~ 0~ c 92; 

4) the extensions ~01 and A02 are disjoint ~ 01 A 02 = {0}; 
5) the extensions A01 and he2 are transversal ~ 01 + 02 = H ~ H;  
6) for 0 = Vr, the extension Avr is Hermitbn and has the form 

/tvr - A  + ~'l ={{f, Af  + n};f  ~ g~4),n ~ ~'l}; (2i) 

7) A 0 E "~(@) (i.e., A 0 is an operator) ~ O  rl V c = {0}. 

Statements 1-6 are consequences of Definitions 3-6. Statement 7 tbllows from statements 4 and 6 if we note that A0 
is an operator exactly then when A0 and .Avp are disjoint since ,~Vr(0) = ~.  

Proposition 3. Let D(A) = ~ o r  and let {9-C, F1, r2} be a SBV of A*. Then: 

1525 



1) a proper extension A is transversal (disjoint) to the extension '~'2 if and only if there exists an operator B ~ ['J-C] (B 

~ (t~)) such that 

A = A B = ker(F~ - B  F2); 

2) i f0  i E ~ (J-C), i = I, 2, and p(01) n o(02) ~ ~ ,  then the transversality (disjointness) of the extensions A0~ 
-&0~ is equivalent to the condition 

' 0 ~ p [ ( 0 1  --  g )  -1  - ( 0  2 -- Z) - 1 ]  ( 0  0/ O ' e ( ( 0 l . -  Z) -1 - ( 0  2 --  z ) - l ) )  

Vz ,~ 9(0~) n p(0~); 

3) if 0~ ~ ~ 0-s while 02 = B ~ [9s then we have the equivalences 

(22) 

and 

(23) 

ker(01 -B)  = {0} r 01 n grB = {0} (23') 

O e p(Ol - B) c:o Ol # gr B = H @ H 

(i.e., 01 and gr B are transversal); 

4) each dissipative extension A is proper; 

5) an extension ,~ = A0 is dissipative (accumulative) if and only if so is 0. In this case n_(,g,0) = n_(0) (n+(,~0) = 

n+(0)) and, in particular, A0 is maximal dissipative (accumulative) exactly when so is 0; 

6) the extension "~0 is Hermitian ,~ the relation 0 is Hermitian. In this case n+(,~0) = n+(0). 

Proof .  1. By virtue of  (19), the disjointness of the extensions ,g, = A0 and "~2 is equivalent to the condition 0 C~ (0 

@ 9s = {0}, meaning that 0(0) = {0}, i.e., 0 is a (dosed) operator: 0 = B E Z3 0-s In this case condition (20) assumes the 

form (22). The transversality of  the extensions A0 and ~,~ is equivalent now to the condition �9 

04. O @ YO= H = H O H c:a grB 4- (O @ J-l) = f4. (24) 

From (24) we conclude that D(B) = 9s i.e., B E [9s i1~ 

2. I f z  o E P(01) n ,o(02) , then the relations 0 i can be represented in the form 0 i = {{(01 - zo) - l f ,  f}; f E ~ } ,  i = 

1, 2. From here it is clear that their transversality (disjointness) is equivalent to the condition (23). 

3. The equivalence (23') is obvious. Assume further that 01 q- gr B = ~ @ 9s Then for all {h 1 , h2} E 9s @ 9s there 

exist vectors {f, f '} E 01 and {g, Bg} E gr B such that f + g = hi, f' + Bg = h z. From here for h t = 0 we obtain f' - 

Bf = h 2 (vh 2 E 9s i.e.,  ~,(01 - B) = 9s and, consequently, taking into account (23'), 0 C p(01 - B). Conversely, let 0 

E p(01 - B) and {h 1, h2} E 9s @ 9s Then there exist vectors {f, f'} C 01 such that f' - Bf = h 2 - Bh 1. Setting g = h 1 

- f, we obtain the equality {f, f'} + {g, Bg} = {h l, h2}, proving, by taking into account (23'), the decomposition 01 + gr 

B = 9 s  @ 9 s  

4. Assume that ,~, (D A) is dissipative. We show that A C A*. Without loss of generality, we assume that p(,~) 

~3. Setting 

, T = ( A - i ) ( a + i ) - *  ~ [fft_i,~Jlil , T = l - 2 i ( A + i ) - I  ~ [0 ,  gO], (25) 

we can see that the operator T is isometric from }'Jl i onto ][Jli-, while T is a contraction in .0. The operator T (D T) has 

the block-matrix representation 

i? = U ' M ~ [ ~ i ,  ffti], g ~ [II i, It_il. 

Since TT* = IIn._i, we have 

~ - M M *  - M U * t > _  
I - 7 " 7 = * = t , - U M *  1 - V V * )  0. 

From here we conclude that M = 0. Consequently, q" = T @ U (compare with [7], Lemma 1.2). Returning to the relation 

,g,, from (25) we obtain 

Jx = {{(1- 7~)f, i(l+ 7~)f};f= (A +i~A+fl e }'Jli @ 9"1i = ~  } = 

= {{21fA + (I -- U~., 2/AfA + i(l + U~.};fA ED(A), f i ~  ~i} = 
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= 2i(ASA j + i f  i + <iU~j;Sj~ D(A), f i e  ~ti ~ A * .  (26) 

Relation (26) means that the extension A is proper. 
5. Assume that ,g, D A and that (L~ >_ 0. According to statement 4, we have ,~ = '~0, where (see (20)) 0 = FA. 

From (16) it is clear that 0 and -A0 can be dissipative only simultaneously. Since the correspondence (20) preserves the 
inclusion (Lemma 1), it follows that i 0 is a maximal dissipative relation exactly when so is O. If, however, we have n * n (,4~) 
> 0 (r P("t0) = O) and ,~' = 'g'0" is its maximal dissipative extension, then n_(.A0) = dim(A'/A), which follows from the 
existence of the "tower" "~0 -" 'g'~ c A(l) c "4(2) ~ "- ~ '4(~) .-4.4." of dissipative extensions, each "tier" of which is one- 
dimensional. Similarly, n_(0) = dim(0'/0). Now, the validity of statement 4 follows from the isomorphism 

o7o --_ Z l ;  = (a'IA)I( IA) O, o)  

6. Since the relation A0 is Hermitian if it is simultaneously dissipative arid accumulative, statement 5 follows from 
the previous one. We note also that a maximal Hermitian relation A is maximal dissipative only in the case when n_(~,) = 
0. Otherwise (n_(A) > 0) it admits a maximal dissipative extension A', defined, for example, by extending by zero the 
operator T of the form (25): 7 ~ t'rl~ = 0. 

COROLLARY 3. The semidefect numbers of the operator A are equal to the detect numbers of the relation Vr, i.e., 

n_+(V r) = hi(A) * (dimit• fl ~o)" (27) 

Proof. From formula (21) for ,A.vr we conclude that n.__(Avr ) = n~(A) (=dim It~i (I,~0). On the other hand, 
according to statement 6, we have n+(Vi,) = n_+(Avr). Combining these equalities, we obtain (27). 

COROLLARY 4. If the self-adjoint extensions -A1 and 'g'2 of an operator are transversal, then there exists a SBV 
{]{, P~, F2} for which Ai = ker F i. 

Proof. We consider some SBV {'J{, Fi '  , 1"2' } for which A2 = ker P~. Since A1 is transversal to A2, it follows, 
according to Proposition 2, that A1 = ker(F2' - BP2'), B ~ [~].  Setting F 2 , P2' , r I - 1" i' - BF 2' we obtain the 
desired SBV {~, 1"1, 1"2}. 

Remark 1. Other approaches to the definition of a SBV for a nondensely defined Hermitian operator can be found in 
[9-t11. The case D(A) = g~ is discussed in detail in [12]. 

3. The Weyl Function. 1. Assume, as before, that II x = {]X = {fx, kfx};fx e Jlx}, 7h is the orthoprojection in ~x 
onto ~llx ~ O, It = ~ 0 ~ o" 

LEB, LMA 2. Let f~ = A* be an extension of operator A, let A' be its operator part, -fix (>i) # ~;~. n ~(f~), ~'t'(,4) #. 
Y~ (0), It"(,~) = It ~ It'(Y,), 

U~x, I+ (~. -~) (d -k)  -~, ;< r ~ p(A). 

Then the following assertions hold: 
1) U;xitr, = Itx, U;x l" It'(.4) =/( i .e . ,  U;xn = n V n  ~ It"(,4)); 

2) rfx ( d )  = (d~'-  ~,)-' I t" (~ )  = (,~ _ ~ ) - t  I t" (d)  = (,4 _ ~,)-1 51; 

3) UCx~(,4)  = I t [ (A) V~, ~ ,  0(-4). 

Proof. Let f~- @ It~ . Then ,vta @ ~ (A), we have: 

(28) 

(29) 

(30) 

Consequently, Ugx~; C I tx  and U ~  x C I t r  Since for all X, ~" E #(A) the operators U~- x are invertible and (U;.A)-t = 
UM-, it follows that the first assertion is proved, while the equality U~x 1'~'(~) = I -, tbllows from the fact that (.~ - X)-In 
= 0 Vn E ~'(A).  

Further, ( .4 _~.)-i ~ ' ( ,4)=0,  while vh E ~"(,~) and Vf A E ~A) ,  we have 

fig, _ x)L~ h, CA - Z)A) = ((/i - ~.)-~ h, (A - Z)f A) = (A,f A) = o, (3I) 
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i.e., ( : i '  - ~,)-i ~ , , ( / ] )  c ff~ ( / i ) . , .  On the other hand, D(,4) = (/] '  - )~)-1 ~ .  Therefore, by virtue of(31) (,~' - X)-lh 

E ~ I  x , o n i y i f h  .J_ D(A), i . e . , h  E ~ .  
Finally, the third assertion follows from the equalities 

I t "  u ; ~  ~ (A) = [t  + (~, - ~ ) ( A  - ~ , ) - t l ( A '  - ~ ) - i  I P ' ( A )  = [ (A" - ~)-~ + (~, - 

_ ~ ) ( A "  - k)  -~ ( A '  - ~)-"1 I I " ( A )  = ( A ' -  Z ) - x Y t " ( A )  = Yt'~ ( A ) .  

The lemma is proved. 
L E M M A  3. Let {~{, r l, 1"2} be a SBV of the relation A*. Then: 
1) for all X E /)('~z) the operator-valued functions 

~(k) = (F 2/" f i ) - l ,  7(~,) = r~ 1 q(~,), (32) 

are well defined, are holomorphic in j0(.A2) , assume values in [H, f;~] a n d  [ H, ~lx.] respectively, and 3 7(X)- 1 E [~tx., .r 
2) the function 3,(X) is the T-field of  the extension '~2, i.e., 

y(~.) = U ~ . ~  0 = y(~) + (K - ~)(A 2 - ~.)-1 7(4) V~., ~ ~ P(J-2)- (33) 

Proof.  1) For each X ~ P(~'2) we have the direct decomposition 

A* = A2 4- fiX.. (34) 

Indeed, in terms of  the vector {f, f'} C A* we define a vector g C 9(~,2) by the equality g = (A; - X) - t ( f  ' - M). Then 

VfA C ~ )  we have 
( (A - ~ ) f  A, f - g) = ( (A - ~ ) IA, J) - ( (A - ~)fa,(,42 - ~.)71 f f , _  ~f)) = 

= ((,4 - L ) f A , J ) -  ( f A , f  - ~'J) - (AfA' . t )  - ( f t ' f )  = O, 

i.e., f ~ . * f - g  ~ Yl~. Therefore, if g ' *  [ I+~ , (A2-~ . ) - I ] ( f ' -L .D ,  then 

{f , : '}  = {g, g'} + {fx., ~'fx} ~ "42 + f x '  (35) 

Equality (35) proves the decomposition (34) since the uniqueness in (34) and (35) is obvious (although, in general, ~:(A*) = 

D(,~2) + Illx. is not a direct decomposition). 
By virtue of (34) we have (F2 [" ilx) = {0} and P2 A* = F2f;~ = 5s Consequently, I" z maps fx. isomorphicatly 

onto ~ and the operator-valued functions -~(X) and 70x) of  the form (32) are well defined. 
2) Since ")(D is an isomorphism f r o m ~  onto lilt, , it follows that for each ?~. = {f/., s"fi. } ~ ~ g  there exists h ~ .q-C 

such that ~- = ~(~')h. Therefore, setting l)~- x = Ui- x @ U~- x, from Lemma 2 we obtain 

( ^ -1 

= F j r  = F29(;) h = h. 

Since U;X.fr ~ f~., F2,q(~) h = h, while P2 is an isomorphism from fX. onto ~ ,  the equality ~(X) = Ui-x3,(~'), following from 

(36), proves (33). 
Definition 7. The operator-valued functions M(X) and C(X), defined by the equalities 

M(~.) F 2 f  ~ = F I ]  ~, ( fx  = {f~, ~ , f J  e f ~ ,  k ~ 9(/~2)), (37) 

C()~) (F 1 + i F2).( x = ( r  1 - i r2) fx ,  x ~ (I;+, (38) 

are called the Weyl function and the characteristic function of the Hermitian operator A, corresponding to the SBV {.~, F l, 

h}- 
Definition 8 [7]. An operator-valued function Q(z) with values in [9-s is called a Q-function of the Hermitian operator 

A, belonging to its self-adjoint extension A, if 

Q(z)  - Q*(~) = (z - ~) y*(~) y(z) Vz, ~ ~ P(-'~z). (39) 
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Here ~,(z) is the 3'-field of the extension ,~ = ,~*. 

Proposition 4. The. operator-valued functions M(z)and C(z), corresponding to the SBV { ~ ,  Pl, ['P2}, a re  well 
defined, are holomorphic in p(A2), and assume vatues in [~(]. In addition, M(z) is a Q-function of the operator A, corre- 

sponding to the extension A2 (= ker r ~ .  
Proof. The fact that M(z) in P('~'2) is well defined and holomorphic follows from the equality 

M(z)  =rl '[(z ) '7'z ~ P('42), (40) 

which, taking into account (32), is equivalent to the definition (37). 
Now we apply Green's formula to the vectors fz ~ Ilz, .f~ ~ ~lr 

(z- ;)<,4) = r r j & , - ( r j : ,  r,?~),,= (U(z)rj~, r j & -  (4~) 
-(r2]~, M(0rj&,= ((M(~)- M*(O)rjz, rj&~ 

According to the definition of the functions q(z) and 7(z), we have the equalities 

~ - "  ~(~)rjz=g ~(0r2];=<. (42) T(z)F2J z - f z '  

Therefore, setting l"2f z = hl, F2~" ~- = h2, from (41), (42) we obtain 

( (M(z )  - M * ( ~ ) ) h >  h 2) = (z - ~)( ' l (z)h t, 7(~)h2) = (z - ~)(7*(~)y(z)h 1 , h2). (43) 

Since F 2 fiz = Fz~Ir = N equality (39) is proved. 
From (39) for s ~ = z we conclude that [M(z) - M*(z)]/(z - 2) _> 0. Therefore, - i  ~ o(M(z)) and, by virtue of 

(37), (38), we have 

C(s  = ( M ( k )  - i ) ( M ( s  + i) q, k ~ g+. (44) 

From (44) it is obvious that C(X) is well defined, it is holomorphic in C + ,  and it is a contraction in C+. The proposition is 
proved.. �9 

COROLLARY 5. The Weyl function M(X) = M*(Tx) and the characteristic function C(X), corresponding to the SBV 
{5s Pl, F2} , have the following properties: 

1) g ( ~ )  E (g)~t(ca I m k l m M ( k )  >0 V~. E r U r ); 

2) 0 ~ p(Im M (~,)) 'v'~, e ~+ U ~. (I.m M (~) v M ( ~ ) -  M*(~,)); 
2i 

3) IIC(X) H < IvX ~ C+. 
COROLLARY 6. Two simple Hermifian operators A' and A" with, in general, nondense domai~as of definition are 

isometrically equivalent if and only if, for some choice of SBV ~ ' ,  P~', P2'} and ~ " ,  F", F~"} of the relations (A')* and 
(A")*, the corresponding Weyl functions M'(X) and M"(),) or the characteristic functions C'(X) and C"(X) coincide. In this 
case the extensions A'i = ker F i' and A'~ = ker r i"  are also unitarily equivalent. 

LEMMA 4. Let {~-1~, F~, P2} be a SBV of the relation A*, and let !l'~. (.4) = {]x; f~  ~ II'~. (.,4)}o Then the 
tbllowing relations hold: 

y*(~.) = r l{(d2 _ K)-I, I +  ~.( '~2 _ ~0)-I}; 

ker(F i I" ~) = {{0,f},f~ A~0)}, i = 1, 2; 

rift;. (~i,.)=r,.fi (/i) =~(-- r'~fi); 

(45) 

(46) 

(47) 

(48) 

Proof. From (33) there follows the equality 

?(z)  - ~(~)  = (z - ~ ){ (A2 - z )  t ,  I + z(5. 2 - z ) l } ~ ) .  

Applying the operator I" 1 to (49) and taking into account (40), we obtain 

(49) 
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M(z) - M(~) = Fl('~(z) - "~(~)) = (z - ~ ) I "  1 {(A 2 - z) -1, I + z(,42 - z ) - ! }~ ) .  (50) 

The Weyl function M(z), being a Q-function, satisfies the identity (39), which, combined with (50), yields (45). We mention 

also that equality (45) can be obtained directly from the Green formula. 

Further, equality (46) is obvious, while (47) follows from relation (29) and the identity 

{(,4,.- Z,)-lh. Z,(Ai- ~,)-lh} = (0 , -h i  + {(~i-~,)-~h, h + ~,(~i,- ~,)-lh}, (51) 

in which { ( A i - L ) - l h ,  h +  ~ , (Ai -L)  -lh} ~ A i=kerF i ,  i=  1,2. 

Relations (48) follow from the equalities (47) and (32). The lemma is proved. 

2. We characterize the exclusion relation V r in terms of  the limiting values of the Weyl function. For this we 

introduce the operator 

Vr --- r f i"(~2)  "" " " = {F 2, F1}~'I (A2), ~'I'(A 2) = {0, n"(,42)}.  (52) 

The fact that the relation VI~' from (52) is indeed an operator follows from the reiations 

~",~i , 7l = 71'('42) �9 ~ 2,, (52') 

Vr=rfi =F{0, .4z(0)} 4- 1"~"(,~;) = {0, Vr(O) } 4- V~-'. 

In general, the operator V~ does not coincide with the operator part V{, of  the relation V r,  but V{ = V{ = V r for Vr(0) = 

10}. 
T H E O R E M  1. Let {9-s r i * ,  1-'2} be a SBV of  the relation A*, and let H. --t- Fi~'l,i = 1, 2. Then 

1) h E H~ = D(V r)  r l'gny Im (M(iy)h, h) < 0o r Im (M(- iy)h ,  h) < ~; (53) 
. yT*~ yT~,  

2) for each h E 9( 2 there exist the strong limits 

M (i~) "~ s - l i m M  (iy)h =s  - l i m M  (-iy)h u M (i~)h = V{'h, (54) 

and, moreover,  M ( i ~ ) h  = Vrh, if V r is an operator (i.e., Vr(0) = {0}); 

3) for each h E ~ O Vr(0) we have the equality 

s - lira M(iy) h = O; (55) 
y%* iy 

4) for each h E vr(0) \ {0} there exists the strong limit 

BMh ~ s - lim M(iy)  h = ~(k)Pa2(0)~,)h * 0 (V~, ~ r U r (56) 
yT~ iy 

and, moreover,  R(B u)  c Vr(0), R(Bu) = Vr(0 ). 

have 

Proof .  1) Let E t be the resolution of the identity for the operator part A~_ of the relation A,_ = ker P,_. From (39) we 

y ( M ( i y )  - M(iy)* 1 ~ h, h = y2(~*(iy) y(iy) h, h) = y211 y(iy)h II 2. (57) 

According to (33), 

~(iy)h = [I + i(y - 1)(.4 2 - iy)-l]y(i)h = P A2(O)~(i)h + ( A2 - i)(A; - iy)-l~i)h.  (58) 

From the relations (57), (58) we derive 

y Im (M (iy)h, h) : y211PA2(O)Y(i)h II 2 + y2 j ~  d(Et 7(i)h, y( i )h) .  (59) 

The condition Pa2(o)'Y(i)h = 0 is necessary for the uniform boundedness for each y > 0 of the right-hand side in (59). 
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Assuming that this is satisfied, from (59) and the Lebesgue monotone convergence theorem we conclude that 

Iim y2 tg 7(iy)h II 2 = f(t 2 + I)d(E, ~'(i)h. 7(i)h) = tl.4; y(i)htt z + ll y(i)hU 2. (60) 

- p  H - 

Thus, the left-hand side in (60) is finite exactly when 7(i) h e D(.~2) = D(A2) ' i.e., y(i)h e fli(A2j (= D(A2) fl ~i)" The 

equivalence (53) follows now from the relation, fl~'(A2) = Y 0)~'z (see (48)). 

2) Let  h 2 ~ ~]'~2. Then there exists a unique vec to r  n ~ ~'l"(A2) �9 such that h 2 = P2{0, - n } .  By virtue of (52), h 1 

P~{0, - n }  = Vr"h  2. Therefore,  from the definition (37) of  the Weyl function and from (47), (51) we obtain 

M (~)h 2 = F1 y(~)F2{0, -n} = FI'Y(~.)F2{(,42 - k)-ln, ~'(A-2 - ~')-ln} = FI{(A2 - ~.)'~n, ~'(A 2 - ~')'ln}" 

Consequently, for each h 2 ~ ~"~2 there exists the strong limit 

s - l'gnM (iy)h 2 = lip~r t {(a 2 _ iy)-ln,/Y("~ 2 - iY) qn} = 
yT~, yr~ 

(6i) 
= r , { O , - n }  = ~  = v~'h 2. 

Equality (61) proves (54) and statement 2. 

3, 4) From Lemma 4 we obtain the following equivalence: 

a e ~ e Vr(O) ~ "~.)h.5,42(0) v~. e p(,a,2). (~52) 

Indeed, by virtue of (45), we have Pl{0, f} = r* (X)f  v f  E A2(0), X ~ P('4'2)- Since Vp(0) = {Pi{0 , f}; f E A?(0)}, we 

have h _L Vp(0) ~ h _L T*(X)A2(0 ) e, 7(X)h J_ A2(0 ). Besides, the equivalence (62) follows easily from the Green formula 

(16) for t" = {"X = {'y(X)h, XV(X)h} and g = fl = {0, n} E ,~2. 

Further, from the identities (39) and (33) we find 

MO.))~ h= @ h + ( l + ~ ) g ' ( i ) 7 O Q h  =(l+~)g*(i){Pag(o,g(i)h+[l+(~.-i)(A ~-).):qJT(i)h}. (63, 

Taking in (63) the limit as X = iy -+ i0~ and taking into account (45), we obtain 

s -  lira M( iY) h = y* ( i)Pa~(o)~l( i)h = ri{O, PA~(O)g( i)h }. (64) 
y ~  iy 

Relations (55), (56) as well as the equality B M = 3,*(i)PA2(0)3,(i ) and the inclusion {R (B M) C Vp(0 ) follow from (64) and 
(62). The theorem is proved. 

Remark  2. The existence of the strong limit in (54) (but without the connection with VF) for vectors h, satisfying 

condition (53), is valid for any R-function and follows from its integral representation 

M(z)=A+Bz+ t),A =A*,B >_0, SdF(t)e [.h']. (65) 

Indeed, 

{ s:' } and, consequently, the limit in (66) is finite exactly when h E ker B ~ ~(F),_ where Z2(F ) = he H; _ f ' d (F ( t )h ,  h)<~o . _. 
In this case 

M (io,)h* *- (iy)h=*- lim f SdF(** 
yr,,, y't= (67) 

Remark  3. Statements 3 and 4 of  Theorem 1 can be derived also from (53), (54) by passing to another SBV {.'t(, 

PI ' ,  1"2'}, where  F~ = - I "  2, F_. = F I , or from L e m m a  4. 

We note that dim:ts 2 + dim Vr.(0 ) = dim ~II, and the equality (55) is satisfied for each h ~ ~ exactly when Az2 is 
an operator. In this case we have the equivalence 
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~)(A) = 9  ~ limy Im (M (iy)h,h)=~ Vh e H \ { 0 t .  (68) 
y$** 

Further, the relation (56), equivalent to the presence of  the linear term BMZ -. Bz in (65), characterizes extensions A2 that 

are not operators (i.e., A2(0 ) ~ {0}). Due to condition (56), the Weyl functions of the extensions .'i x e ~(g~) \ G ( g 3 ) p l a y  
an essential role in B. S. Par lo r ' s  and his collaborators' investigation [13]. 

R e m a r k  4. The limits along the imaginary axis in (54)-(56) can be replaced by the angular limits for X --, oo, X E 

IIe = {X E C + ; 0  < e < argX < 7 r - e } .  

3. We characterize the angular boundary values of the Weyl function for ), --, a = ~. For this we introduce the 

notations 
_k ^ 

I L  = ~ . .  n o  = { f l a ,  a f l o } ,  

f a ; ( i 2 )  = Ji2 Clfio,  ^" " " " "  - (69)  ,no(A2)=n~ 0 ~o(A2) 

and we define the Hermitian relation V a and the operator V2 (compare with (52)): 

Va * l " ~ a  = {{F2J;a' raJ;o); ] o e  il~), 
A l l  " . ~ l t  

V,~' : r n  a { { r z ] , ,  r l f ~ } ;  J~a e no} .  
(70) 

From (70) we obtain relations that are similar to the relations (52): 

^ t r  - ^ t - A t t  - I P  

Va =F]'la = F(~a(fix 2) * ~to(A2))=r~ta(A2) 4- F ~ a ( A 2 ) =  F ~a(A2)  4. Vs . (70') 

Clearly, F {1~(.4) is the indeterminate part of  the relation Va, while V a is an operator which, in general, does not coincide 

with the operator part V a of the relation V a (V a = V a V a if" Va(0) = {0}). In addition, 

A'a'~ A + ila = Av  a (ila = { f  o "[fo'afaI;fa e ~a~" (71) 

i~he following statement is obtained from the Hermitian property of the operator ~'a of  the form (71) and it is well 

known (see [3]) in the case D(A) = 9 .  

S ta tement  4. Let  A be a Hermitian operator i n g ,  ~9(A) = 9o  C 9 ,  Po * P@o,n+(A) =n.(A)=m < oo and a = ~ 

%(1) .  Then 

dim ker(A~p - aPo) = codim[(A - a) 9(A)] _< m. 

Proposit ion 5. Let {gZ, 1`1, 1"2} be a SBV of  the relation A*. Then 

1) h e D(Vo) r + iy)h,h)<oo r <~o; 
y $ 0  " y,l,0 ~" 

2) tbr each h E D(V a) there exist the strong limits 

(72) 

M (a)h * s - limM (a + iy)h =s - lirnM (a - iy)h = Va'h, (72') 
y,l,o y$O 

Ir and, moreover,  M(a)h = Vah = Vah if V a is an operator (i.e., Va(0 ) = {0}). 

The proof  is analogous to the proof of  statements 1 and 2 of Theorem 1. However,  it can be derived directly from 

Theorem 1. Let (A - a ) - I  and (A* - a ) - I  be the relations that are the inverses of A - a and A* - a, respectively. We 

define a SBV II' = {'J-~, FI '  , F2' } of the relation (A* - a) -1 by setting 

r/" { f ' - a f ,  f} = (-1)iF/f,  ((,4* - a )  -x = = { { f ' - a f ,  f};  ] = ~ f ' }  e A}), i=  1, 2. (73) 

From the obvious equality 

0 = ( f ' - ~ f ,  f x ) = ( f ' - a f - ( ~  --a)f, fx)= - ( ~ - a ) ( f - ~ l _ a ( f ' - a f ) ,  fx ] ,  

in which {f, f'} E A, fx ~ ~ X(A), there follows that ~x((A - a) -1) = Ill/(X_a)(A), where ~'I-x((A-a)b and ~ x(A) are the 
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defect subspaces of the relations ( A -  a) -1 and A. Therefore, by virtue of (73), the Weyl functions M'(X) and M(X), 

corresponding to the SBV {5{, r l ' ,  I'2"} and {9-t2, FI, F~}, are connected by the equality 

M'iX) = r ; f 0 . )  = ri'(r; t f i~ . ( (A - a ) - l ) )  ~ = - r , ( r :  l" ~'l,/(X_a)(A)) -1 = - M  . (74) 

Further, the indeterminate pa r t  ~1' = {0, II'} of the relation (A* - a) -1 coincides with ~ ( A ) .  Therefore, the exclusion 
relation Vp, and the operator Vp," are connected with the relation V a and the operator V~ from (70) in the following manner: 

v r = { r ; .  r ( } h ' =  { r  2, - r ,  }h~(A) = {{,~.--h, }, h, = r;}~, } ~ .  fl~} -- - v ,  
,, , (75) 

= r i } n  ( A 2 ) =  {r  2, - r ~ } n ~ ( A 2 ) = - E  �9 v§ " 

Now the relations (72) and (73) follow from the relations (53), (54) and (74), (75). 
Remark 5. Relations (72) and (72') in terms of the integral representation (65) of the function M(X) obtain the form 

f ~  d(F(t)h'h)<~176 s-IJmM(a+iy)h=flt+---tffdF(1)hy$O 

From Theorem 1 and Proposition 5 we can obtain the following characterization of the relations V r and V~ (see (70)) 
in terms of the characteristic function C(X). 

THEOREM 1'. Let {'J-f, r l ,  ]?e} be a SBV of the relation A *, and let V r = F~I . Then: 
1) h = h 1 + ih~, where {h2, h 1} ~ Vrc=~ l im(llhl l- l i  C(iy)hl l )<~; 

- y T , ~  

2) for each h = h 1 + ih? ({h a, h} E V r + i) there exists the strong limit 

C(i~)h , s - l'maC(iy)h = h - 2i(V r + i)-Ih; yT~ 
3) h = h~ + ih~, where {h~, hl'} e Var limH--~hl!-UC(a+iy)hll < ~; 

y,l,0 y 
4) for each h = h[ + ih~ ({h~, h} e V a + i) there exists the strong limit 

C(a)h ~ s - l i m C ( a  + i y )h  = h - 2 i ( V  a + i)-lh. y$O 

Proposition 6. Let MI(X) and M2(X ) be the Weyl functions, corresponding to the SBV {~ 1, I~l', I~2 '} and {9t22, Fl 2, 
r22 } of the relation A*, and let U be an isometry f r o m ~  2 onto ~ l- Then 

MI(~. ) = (Xll U M2(~,) U "1 +X12 ) (X21 U M2(~L) U "I +X22) "1, 

whereX=~'Xll X12]--" (--0/I 0]  kX21 X22) is a J-unitary operator in H1 ~ H l, J = .. 

COROLLARY 7. Suppose that, under the assumptions of Proposition 6, we have ker F; = ker F~. Then MI(X) = 

CMa(X)C* + K, where C = X~tU, K = Xp_.Xll* = K*. 
The proof of Proposition 6 is analogous to the proof in [14, 15] for the case D(A) = ~ .  
Remark 6. For the case D(A) = g-A C(X) has been introduced in [14], and the Weyl function M(X) in [16, 17]. In 

[16] (see also [18, 19]) Lemma 3 and Proposition 4 have been proved for this case. 
4. The Formula for the Generalized Resoivents. 

1. LEMMA 5. Let ), E ~(A), A C A C A*, and let '~x = A -; ~x. Then the tbllowing equivalences hold: 

k ~ c~p(A) ~ / i  andA k - -  are disjoint; (76) 

~' ~ P(A) r AandA k - -  are transversal. (77) 

In addition, 
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ker(A - ~L) = ~I(A 13 ~X), dim ker(A - L) = dim(A O ~x)- 
(78) 

Proof.  1) Since X E h(A), there exists an ex tens ion  A 2 --- A 2 such that X ~ p(~z). Let X ~ %(A), i.e., ?{f, Xf} 
A. According to (34), we have {f, Xf} = {g, g'} + {fx, Xfx}, where {g, g'} @ A2, f x  e f i x .  From here g' = Xg and, 
therefore, g = 0 since X ff ~Ip(A2). Consequently, {f, Xf} = t'x ~ A. Conversely, if ~{f, f'} = {fA + fx, AfA + Xt'x} E 

A, then {'x = {f, f'} - {fa, Afa} ~ ~. The equivalence (76) has been proved. 

2) Let X ~ p(A) and {f, f'} ~ .g,. Setting 

g = . ( 2  - X)-~(f ' -  ~.f),  g'  = It + X(.~ - X) -~] ( f '  - Z.f), (79) 

we can see that {g, g'} ~ .~. and 

((A - ~ ) f A ,  g - f )  = ((A - ~)fA, (A - X ) ' l ( f ' -  ~f) - f )  = OeA ' f ' -  ~ f )  - ((,4 - ~)fa, f )  = ( fA, f ' )  - (A fa , f )  = 0 ~/fA ~ ~3(A), 

i.e., f~. :-- g - f ~  II~. But then from (79) we obtain g' - f' = X(g - f) = Xf x. Theretbre, {f, f'} = {g, g'} + {fx, Xfx}, 
which, taking into account (34) and (76), proves the transversality of A and '~x. 

Conversely, if A and A x are transversal, then for each {g, g'} ~ '~2 we have the equality {t~, f~'} = {f, f'} + ~x, 

where {f ,f '}  ~ ,,i, ]Xe ~'lX" From here, f' - Xf = f2' - Xf2 and, consequently, ~.(.~ - k ) = R ( / i 2 - ~ ,  ) = ~ ,  since X 

p(A~. 
Proposition 7. Let 

0 E ~(~/) and X ~ P('~2)- 

1) 2~ e p(,i~0) r 0 e p (0-M(L)) ;  

2) L e o',s o) r 0 e ~ 0  - M  0Q), i=p ,  c, r; 

3) dim k e r ( ~  - X) = dim ker(0-M(~,)),  codim[(A o -  

X]] ~ A0 r F2]  ~ ker(O -M(~,)). 
Proof.  Since A x = 

{~tt:, FI, F2} be a SBV of the relation A*, let M(X) be the corresponding Weyl function, let 

Then: 

(8o) 

~.) T(A)] = codim[(0 - M  (X.)) D(0)],.- and, moreover, ] = 

AM(X) (i.e., t" E '~X r F f  E grM(X)), the chain of equivalences 

following from Lemmas 1, 

obvious relations 

2~ ~ ~p(Ao) ~ -'~0 13 A_X= D(A) r 13 grM ()Q = {0} r 0 ~ ~Jp(0 -MOQ) (81) 

5, and Proposition 3, proves (80) for i = p. Now, statement 2 for i = r is a consequence of the 

~, ~ r ~ ~ ~ C~p(fi, O), (fi~O)* = A o . , M  (~)  = M ()Q*. 

Now, from the same lemmas and Proposition 3 we obtain that ~, ~ P(A-0) r ii,0 and fitM(~. ) are transversal ~ 0 n grM (;~) = 
Y/'~ :fie:z0 E p ( 0 - M  (~.)). Since ere(T) = c(T)\(op(T) U Or(T)) "~r E ~(o~)  , the equivalence (80) is proved for i = c. 

Statement 3 is a consequence of the equivalences 

] = ~, Lf} ~ -4o r f = ]z. e '~0 Cl ~x r r f  e 0 13 grM (L) r F2a 2 e ker(0 -M0~)). 

2. We recall that an operator-valued function R h = P(,g, - X)-l  t ~ holomorphic in C+ U C_,  is said to be a 

generalized pseudoresolvent of the operator A, written NX E P~A, if A E ~ ( ~ )  is a self-adjoint extension of the operator A, 

acting in a Hilbert space ~ ~ ~ ,  P being the orthoprojection in ~ onto gD. The set of generalized resolvents Nx E Pg, A, 

for which ,g, E t3(~)( i .e . ,  A E A* is an operator), will be denoted by [2 a. 
In the collection of the extensions A, E A,* E t ; (~) ,  generating the resolvent R x E PQA, there exist minimal ones, 

i.e., such that ~ is generated by the lineals g3 and (A - X) - I  .~ (k E C+ U C_). Any two minimal extensions are 

unitarily isomorphic. 
Following [20], the family of relations T(X) E ~ ( ~ )  is said to be holomorphic at the point X 0 if there exist ~" E 

p(T(X)) and e > 0 such that the resolvent (T(X) - ~')- 1 is bounded-holomorphic [20] for I X - X o [ < c. 
T H E O R E M  2. Let {'J-C, F1, F2} be a SBV of the relation A*, let M(X) be the corresponding Weyl function, and let 

2. e P(fi'2), Go = D(A), ~ll = .r Then: 

1) the equality (A" 0 - ~.)-1 = (A 2 _ k)-x + Nk)(0 - M (X.)) -1 ~'*(E) (82) 

establishes a bijective correspondence between the resolvents of the proper extensions 'g'0 of the operator A and the closed 
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linear relations 0 in ]-[; 
2) Rxg is a solution of  the following problem with a spectral parameter r(X) ~ ~)J4 in the boundary condition: 

(A~,, - z~:= g - . ( ~  : ' -  V-- g), ( r a ] , -  r , ]}  ~ .c(z), ] = g,:" L . = e ~ f  (83) 

i.e.~ 

11t~ = (A~(~)-  X)-~, zt%) = ~,(%) ~ ( ~ ) ~  (X ~ r U r (84) 

where :t_r(X) iS a holomorphic family of (.proper) maximal accumulative extensions of the form (20); 
3) the formula (for generalized resolvents) 

]R x _ p(fi. _~)-1 ~ ,~ .-- (/i..,:(~,) _~,)-1 .=.- 

= (A2  - ;~)-1 _ ~.)(~:(;k) + M ( k ) ) - ~ q ( ~ )  (85) 

establishes a bijective correspondence between the generalized resoNents RX ~ Pl2A and the functions fiX.) ~ (R)~. 
Moreover, when '~.2 is an operator, then R x ~ [2:, if and only if fiX) is M-admissible, i.e., 

s - l imy -~ ('c(iy) + M (~,))-~ = O. y2*~ (86) 

Proof. 1) Let f E ~.  Then 
f o  (;k) * {("~0 - ;~)-lf, f +  ~'(Ao - ~,)-lf } e ~ O ,  

J~2 (%) * {(A2- %)-If, ~,2(~2 - X).lf} ~'~2- (87) 

Since the.extension -Ao is proper, it follows that f~ # (A0 " k)-~f - (:'2 - ~)"~f e ~x and, consequently, t'X = {fx, Xfx} = ]o  (~') - 
] 2 ( X ~  rlx. 

Assume first that 0 = B ~ ~0Z) .  Since X ~ p(~@, it follows that ~ (B - M(X)) - /  ff 0q~]. Therefore, from 
Lemma 4 we obtain 

( r , .  a rg(]o(~,) - ] :0 . ) )  = - r ~  ~:(x,) = - F ( ~ ) f ,  

(r~ - B r2)~(Z)(B - M()O)'Iy*(% ) f  = (lifO.) - B)(B - M  OQ)- l~ (~ ) f  = --y*(~)f. 

(%) 

(89) 

Formula (82) follows from combining the formulas (88) and the fact that Pl - BI'2 is an isomorphism from ~'l~. onto .~, since 

I f 0  ~ ~(5"0\U(N, then in this case from (87) and Lemma 4 we obtain 

{r v rtIYo(x) = {r 2, ri}(]2 + ]~) = ~rj. r M 0.)rJ~} (9o~ 

Since {F2, FI}t'0(X ) E O, from (90)~ {F2] x, ?*(%)f } ~ 8 -M (30. According to Proposition 7, we have 0 E p(0-M (%)) (r 

P(A0))" Therefore, 

1"27 x ----- ( e  --M ( ~ ) ) - l : ( ~ ) f  ~ ? k  --- '~()L)(O - M  0Q)-IF(~.)f. (9l) 

Combining (91) and (87), we obtain formula (82). 

2) Let R x = .P(.4 -K) -1 [' gA, k ~ E§ U (~., and let A' be the operator part of the relation ~.. Since Rz.(A - X)f 
= f ( v f  E ~ A ) ) ,  it follows that vX E C+ U C_ the relation T(k) * IR~. 1 + ik = T(~)* = (tR[1)" + [ is an extension of 
the operator A. We show that it is maximal accumulative (dissipative) for X E C+ (X E C_). If {f, f'} E T(X), then {f' - 
Xf, f} E ( T ( X ) -  X) -1 = R x. Therefore, if we set f' - X f =  g, ~ = ( ,~ . -  X)-lg, then we obtain(fl =: l ink < 0) 

Imff ; f )  = hn(f'- %f,f) + hn(~,f, f) = Im(g, ~,~,g) + $II ]R~.g 112 = 

= ~n((~' - ~.)(p, q~) + 1311 Pq~ ;12 = -13[ lJ ,r i12 - II P(p li~ ] = -!311 (I - P)q~ 115 <_ O. 

According to statement 4 of Proposition 3, the extensions T(X) are proper: T(X) = A_r(X), where r(X) .= .r(~.) ~ is' a function 
with values in the set of maximal dissipative (for X ~ C+) relations ing-(. For the proof of its halomorbhy w~ hmke Use of 
the identity, following from (82), 
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(z(k) + M0v)) q ----~L)-~[(A 2 - k) 1 - I R k ] y * ( ~ )  - 1 .  (92) 

From (92) we conclude that r(X) + M(X) is holomorphic in C+ ta C_ (0 ~ o(r(X) + M(X)) V~, ~ C+ U C ) .  Since M(X) 

is bounded-holomorphic in C+ U C , it follows (see.J20]) that "r(X) is also holomorphic in C+ tO C_. Thus, r(X) = r(~,)* 
(I~)j.r and the relation (84) as well as its equivalent (83) are proved. 

Conversely, if r(X) = r(~.)* ~ (15,)j.r then ,~_r(X) is a holomorphic (by virtue of (82)) family of maximal accumula- 
tive (for X ~ C+) relations from c (go).Then go2 ~ "a--r(X)(0) does not depend on X ~ C+ t2 C_ (see [21, 22]) and we 
have the relations 

�9 (A-~(x)- %)q = (A"~(x)- %)q ~ 0%, (93) 

- ' ~ are the operator and the indeterminate parts of the relation '~'-r(X), while ('4'--~(z)-%)q e (R)~. in which A_r(X) and 2 
From (93) we conclude that 

s - l imiy lRr j=s- l imiy ( ,~"  x (x) - iy )q f=-pl f  Vf  ~ go, 
yT~o ~ y$~,  - (94) 

where P1 is the orthoprojection in go = go~ ~ go2 onto go 1. According to Naimark's known lemma [3] (more precisely, its 

generalization to a holomorphic family of relations [211), there exist a separable Hilbert space ~ and a relation A, self: 
adjoint in gO , such that ('~-r(X) - X) -1 = P('~' - %)-1 1" gO (P = P,~ is the orthoprojection in ~ ontn gO). It is easy to 

show that ,g, D A. Relation (84) is proved. 
3) Since A'a is an operator, from the equality (45) we obtain 

lim (+ iy ~g* (-T- iy ff = y%o 
(95) 

= lim 1-'1 {(+ iY)('4 2 - iY)lf , (+ iY)('~ 2 - iY)-lflfl ~} = - Fl{f, A2f}.  y . [ .  - 

If r(X) E (1~)~, then G(~,) .-- -('c(~,) § M(~,)) q ~ (R)~ and assumes values in [94]. From the integral representation (65) of the 

operator-valued function G(X) there follows the existence of the' strong limit 

G(%) o [ ('ffk) +~'/(%))-~.1 (96) s -  lim ~ = ~ -  lira ~ B c = B~, B c ~ f~t]. 

From (95) and (96) we have 

= , , . ")  - 2 3 ~i?m(iy)(~(iy)('c(iy)+M(iy))-,r lira( (*(iy)+--M(iy))-I i yy ' ( - i y ) f , ( - zy )y  OY) f )=-  BGFI{f, A2, f}  , (97) 

Here we have used an elementary statement: i f f  n E ~ a n d  31im,f ,  = f ,  whileT n E [.'1-{] a n d 3 s - -  l ira T n = T, then~ 

li.tn Tnf n = Tf. Since g -  l'gniy(7~ 2 - i y )  -1 = -I,  from formulas (82), (97), and (94) we obtain 
n - ~  yT** 

-11Pg"ll z = l'.maiy(~llyf,,t ) = li, miy((A_x(/y)- iy)-lf, f) = -  Ilfll 2 + II Bg2FI{f, '~zf} 112. (98.) 
y ~  . y / ~ ,  

According to (94), R x E ~A (i.e., in (82) A E ~ ( ~ ) )  exactly when P1 = I~ .  Therefore, by virtue of (98) we have the 

equivalence 

IRXE nac :as - l im iy lR i y=- I  ~ ea Bg2Fl{f,.,i, ff} = 0  g f e  gK.42). 
yT** ' (99) 

Since the extensions A1 and A2 are transversal, it follows that Pl(gr -A2) = ~ and the equivalence (99), assuming the form 
IR x E ~ a  e:* B a =, means, taking into account (96), the M-admissibility of r(X), i.e., the equality (86). 

C O R O L L A R Y  8. Let {9-C, Ft ,  I'2} be a SBV of the relation A*, let 0 i E ~(:rt), i = 1, 2, ~, ~ P('42) ('1 p (-,~01) 
0 p (,4%), and let ~e(go)- be the Neumann-Schatten ideals in [go]. Then: 

1) V~" E p(01) C/ p(0~, we have 
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(-4Ol - ;~)-1 --(A o2 - ;~)-1 ~ $ / S 3 )  r (01 - ~)-~ -4O 2 _ ~)-i ~ ~ p ( ~ ;  (100) 

2) '~01 and A02 are transversal �9 e ,  0 e 9(81 - ~)-I _(02 _ ~)-1). 

Proof .  From the resolvent formula (82) we obtain 

( A o , - ~ L )  "1 - (fil02-~L)-I e ~ p ( O ) ~  (01 -M()~)) "1 - (02-M@))-1 ~ l~p(y-/). (101) 

Since i. E 0(,4o) Cl p(2i.2), it follows that 0 E p(O i - M(X)), i = 1, 2. Therefore,  vX E P(Ao) and v~ ~ p(0) we 

have the identities 
[I + (~ - m(~.))(0 - ~)-q-1 = I + (m(~.) - ~)(0 - M(X)) d, 

[I + (0 _ ~)-1(~ _ M(k))]~I = I  + (0 - M0~))d(M(ik) - ~), (102) 

and, taking these into account, we find 

(O 1- m0.)) ,1 - (02- M(JL))-~ = (02 - ~)-l[/+ (~ _ M(~L))(02 _ ~)-1]-1_ 

- [ I  + (01  - ~ ) . 1 ( ~  _ M O 0 ) - l ( 0 2  _ g)-l] = [I + (01 - ~)-I(~ _ M(~,))-1]-I • (103)  

• [(0z _ ~)-1 _ (01 _ ~)-i] [I + (~ - M(~))(O z - g)-l]-l. 

From here we obtain the equivalence (I00). 

Statement 2 is a consequence of  the relations (23), (103) and of the equivalence 

0 E p ( ( a  01 - )C) "I - (A 02 - ~.)-1)) r 0 G 13((01 - M00) ' l  _(02 _ M(~,))-I), 

which, just as (101), is derived from the resolvent formula (82). 

C O R O L L A R Y  9. If 0 i = B i ~ ['J~], then we have the equivalence 

(AB1 _ X)-I _(~B2 _ ~,)-t) ~ {~p(O) 4:0 B 1 - B 2  ~ ~p(-q0. 

R e m a r k  7. In the case D(A) =gQ and only in this case, all ~-(X) E (15,)~ are M-admissible. In this case (D(A) = O )  

formula (85), being a generalization of  M. G. Krein's formula for the resolvent [22], and CorolIaries 8, 9 have been obtained 

in [16-19]. For  the connection with A. V. Shtraus' formula [23], see Sec. 5. 

R e m a r k  8. In Theorem 2 the formula (86) has been obtained from (84). We show how, starting from (86), one can 
obtain formula (84). Let G(X) be the right-hand side of the equality (86). Then T(X) -.-Y G(X)- 1 + XI is a proper extension of 

the operator A for each X E C+ U C_.  Therefore, T(X) = '~'o(X), where O(~,) .-* FT00 ~ ~(y/). From Lemma 4, taking 

into account the notations (87), we obtain, assuming for the sake of  simplicity, that r(X) E ~ ( . ~ )  (i.e., ~-(X)(0) = {0}), 

r 2 ] o  = r : ( ] o  - ]2 )  = - r ~ ( x ) ( z ( x )  + M(;~))- l : (~ ,g= _(~(;~) + M(X))-~:(2g;  

r l  ] o  = l"t-f2 -F1 ~(k)(*(k)  + M ( k ) ) d ~ ( ~ ) f  = [t - M(X)('r + M(~.))-1]T*(~)f = "r + M(k))-~y*(Z ~. 

From here F ]  0 = {1"2] 0, F1]  o} e -z0~), i.e., 0(X) = -7(X) and T(X) = s 

3. Let  ~ be a subspace of  ~ .  We recall that the operator-valued function Pf lRz  [' ~, where R x ~ PQA (Nh ~ QA), 

is called a ~-pseudoresolvent ({-:resolvent) of the operator A and their collection is denoted by p s  (~a) -  -The monotone 

operator-valued function X(t) e P~E(t) I '~ = Z(t - 0) is called an ~-spectral function of  the operator A if E(t) is a general- 

ized (with output in ~ :~  ~ )  spectral function of  the operator A. The function X;(t) is said to be orthogonal if E(t) is 

orthogonal. The relationship between ~-pseudoresolvents and ~-spectral  functions is given by the formula 

Pf2]R~-~'~ j ~ _ ~  l 'dE(t))  

If P~ is the orthoprojection in ,,~ onto the operator part ~ I of the relation RX, then 

(see (94)) and, moreover, if ~ ~ Ill = g ~ ,  then Z(~) = I~ r IR~ e ~a. 

We recall that the matrix-valued function 
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Urt~(~,)=fall(~,) a12(~,)) (M(~,) y*(~)l'~ ) 
~.a2~(~') a29(~). ) '= ~.Pf?(~') Pf('42 -K)q  ~ k ~ P("i2), 

is called the FI~-pseudoresolvent matrix of the operator A, corresponding to the SBV II = {~J-f, P1, P2}. To describe the 
collections- PE~ and. f2a ~ (dim~ = n+(A)) we introduce the II~ -resolvent matrix Wr[~(~.), corresponding to the SBV II 
= { ~ ,  r~, P2} , 

a22af~a~ - a21 
g 

Lo)2I(;L) m22(s ) = (a22ag 1 , a~ "1 a f lan  " (104) 

It is holomorphic on the set of ~.-regular points .p(A; ~ ) .  of the operator A (X o E p(A; ~)  r ~ = (A - ko),D(A ) .4- ~ and 
assumes values in [~ $ ~] by virtue of the equivalence 0 E p (a~2(s ~ ~'o E p(A; ~). 

THEOREM 3. Let II = {~., r l ,  P2} be a SBV of the relation A*, let Wrlf(Z ) - be the corresponding , l-I~- 
resolvent matrix (104). Then the formula 

e~(~, _ ~.)-1 I' ~ = [r + ah2(Ml[ohl(k)z(k ) + o22(k)1 q 

establishes a bijective correspondence between the. ~-pseudoresolvents Pf1R~. 1"~ E p f ~  and r(k) ~ (!5,)-~. Moreover, 
P~IR~ I' ~ ~ f~A ~ . r r(k) is M-admissible. 

Proof. Since P~ maps isomorphically Y~z onto ~ u ~ p(A; ~) ,  it follows that al2(ko)q ~ [~] .  Therefore, from 
(82) we obtain 

eelRx i" ~=  P~(a - ;~)-~ l" ~ = Pe(d.2 - k)-~ I" ~ - P~k)(,c(~,) + 

+ M(K))I$*(~) I" ~ .=a22(K)-a21(X)(a 1 l(k) + z(k))-~ale(K)= a22(Z) _ a21(K)[al2~(k)(z(K) + a~ l(L))]-I = 

= {aa2[all,l:(K)+ a121all]- a21}[al-211;(~,)+ a121 all]-I = [(Oll(K)t(~,)+ 0)12(K)][(021(~,)'1:(~,) + 0~22(~,)]-1. 

A reference to Theorem 2 concludes the proof. 
5. The Relationship with the Classical Approach. 1. From the results of Sec. 2 there follows easily the description 

of the various classes of extensions of the operator A in terms of the yon Neumann formulas. We consider for this the 
canonical SBV {~f, p o, P20} of the form (17): 

5qc= hi,  FO ~1(~Oi + G ~:~-i), cO = -- i~l(~i § 00 ~-i)" (105) 

According to Proposition 2, Vfi = {0, n} ~ ~ we have 

-~,n)=~,AfA) +tiP~hnJ+ t iP~s fl" (i06) 

From (105) and (106) we obtain 

rl a = 2i(e~,- uoen),~, r2a = 2 (e~  + Uoen),~, 

v r = ({(P~ + UoP~.)n, i(Pr~ i -  Uoert_i)n}; n ~ ~ = 0~} .  
Therefore, the operator 

V~ = ! -2i(V r + i)q = {{p~in, UoPnin}; n ~ r t } ,  (V; e [~7]) (107) 

coincides, to within the isometry -Uo,  with the exclusion operator V e (~ [~)',~'_',.])of the form (12): V' e = -UoV e. 
Further, if A C .~ C A*, then 

? ~  a = ao ~ r ?  ~ o .  r ;  -- {{-,~ +~uc_i,f,. + uof_,}}; ] = ?a+ L+ ?_,~ ;*}. 

From here we find the Cayley transform e;' of the relation 0 under the condition - i  ~ %(0): 
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q5" ._ 1 -  2i(0 + i)-1 = {{)~, Uof..i}; f ~ .  = p ~ . f ,  f = f A  + f i  + f . i  ~ ~ }" 

Setting �9 * -Uo*I" and taking into account (107), (108), and the obvious equivalences 

0 f/ V r = {0} r ker (V~ - ~')  = {0} r ker(Ve - q~) = {0}, 

(1o8) 

(t09) 

we conclude that the admissibility condition assumes the known [4, 7] form: (V e - ,:b)f = 0 r f = 0. We sum up the 

presented facts. 
Proposition 8. The formulas 

~,~)  = aX, A) 4- (-r ~(,~) c II~, 

a qa + fi  - dPfi) =a/a + i~. + doll), f ~ = fA + fi  -- dPfi' 

(~ ~0) 

(111) 

establish a bijective correspondence between the collection of proper extensions J~ ~ ~(~) ,  for which - i  ~ %(A), and the 

collection of admissible operators ~ ~ ~(~i, ~-i). Moreover: 

1) ~ = ( A  -i)(.,i +i) -1 l'~,.n 9,.(.~ +i); (112) 

2) A is Hermitian (dissipative) ,~ q5 is an admissible isometry (contraction) from ~)(q~) C ~i into N(<[~) C: ~.i;  

3) ~, is self-adjoint (_maximal dissipative) ~ ~ is an admissible isometry (contraction), for which ~(r = ~ i ,  ~(r = 

II.,. (D(r Iti). 
Proof. The relations (110), (111) follow from the first Neumann formula (14) and the relations (108), (109). One has 

only to make use of the obvious equivalence - i  ff ~rp(0),~ - i  C Op(.A0), which, besides, is a consequence of the equali~ 

M ( i )  = Jill i [see formula (118)] and Proposition 7. 
Further, formula (112) follows from the relations (11 I), rewritten in the form 2/./ / ;  (.4 + i )( f;~.- fA),  2iCbfi = (-4 -- i ) .  

(f~i-fA) " Statements 2 and 3 are consequences of formulas (110), (111) and of Proposition 3. 
Remark 9. The description of the Hermitian extensions 5, E t~(O) in the tbrm (110), (I 11) has been oblained in [4], 

the dissipative ones in [7, 24], and all proper ones in [24] (see also [25]). In these investigations the relations (110)-(112) 
have been established with the aid of the Cayley transform. We mention also that the relations (110), (111) in the case - i  

%(A) can be replaced (see [24]) by the following ones: 

~D( J~ ) = ~9(A ) 4- {fi - g i, ~', g4} ~ ~}, A (fA + fl  - g4) = A f  A + i(fi+ g-i)" 

2. Let Co(X) be the characteristic function corresponding to the "canonical" SBV of the form (105). Then ~ + iF ~ 
= 2rClPi, F ~ - iF ~ = 2r:10o~.i. If f ~ =  0~i, Lf~.} e ~ . ,  then, according to (14), we have 

= ] + ()A( = O A, AIA, L ,  = If,, 

From here r:tPi.f ~ = f., gllQO~_/.f;~ = Uof_ i and Co0.)f,-(~.) = -Uof_,O~). Writing relation (113) in the form of the system 
of equalities 

f~'=fA +fi- f -4 '  )4:~'=AfA + ~ ' - i f - i  (114) 

and taking into account that AX-" A 4- ~'l~, (see Lemma 5), from (114) we obtain 

- 2 i f  + = A f  A - V )  + i(f A - f .~) = ( A ~ +_ i)(f A - f ~ ). 

From here, f- i  = (Ax - i)('AX + i)-ifi  and, consequently, 

Co(Z) = - U o ( A z - i ) ( A z +  i)'I t ~i" (i ~5) 

Equality (115) means that Co(X ) differs only by the isometric factor - U  o from the characteristic function in [7]. Thus, in the 
case of a SBV of the form (105), by virtue of (115) and the equality V' e = -UoVe, Theorem i '  and Proposition 5 coincide 
basically with Shtraus' results, proved in a different way in [7]. 

3. We find the expression for the Weyl function Mo(X), corresponding to a SBV of the form (105), assuming that A., 
= ker ra is an operator. According to (34) and (28), we have 
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From here we obtain 

F ~ f~. = -~ .  ~ YOn)f,. = ifz, 7(9~) = Ui).Ni) = iUiff~q i. 

Now from (116), (117), and Lemma 4 we obtain 

~.fi + ~.(fi~2 - L)-~ ~ )  =fi + ()~ --i)y*(E)f~= 

= [ I -  iO~ - i ) e ~ l U ~ . .  

Consequently, 

(It6) 

(117) 

MOO-) = FI~ = P~i[i+(~ - OU~] ~ ~i = P~li~A2 +/)(A2 - )Q-I ~ ~i" (118) 

Thus, in the SBV (105) (under the condition that '/~2 is an operator), formula (85) for the generalized resolvents assumes the 
form 

]R~. = (fi'2-)~)-1 _ (ff~2 - i)('42 - )~)I[X("L) + MO@)]-IP~li(A 2 + i)(fi'2 - X) q, (1 t9) 

where Mo(X ) is defined by the equality (118). In the form (119) it has been derived by ShmuYya n [26] from Shtraus' formula 
[23] (see also [27], where a formula, close to (I19), has been derived also from Shtraus' formula). 

We note also that, although the characteristic function and the Q-function of a Hermitian operator A have been 

defined (for the case D(A)  = 0 'and n_+(A) = 1) already in 1944 by Livshits and Krein with the aid of the equalities (I 15) 
and (118), respectively, the connection between them has been detected by Krein and Langer only in 1973. On the other 
hand, Definition 7 makes this connection obvious. 

Let fiX) E 03@1:. The indeterminate part .~2 ---. fiX)(0) of the function fiX) does not depend on X E C+ [221. 
Consequently [21, 22], 

x(;~) = z~O.) �9 ~2 ,  ~ 2 =  0 ~ ~ ,  . ~  .--- zOO(O), . ~  = . ~ 9  .~ ,  

where rl(X ) is the operator part of the relation z(L) (1:10~) ~ ~3(Hl) Vk ~ r If rl(X) takes values in [~1], then we 
define the Hermitian relation "r(i~) by setting r ( i~ )  = r l ( i~  ) ~ ~2,  where 

"t:~(i~,)f= s - yT~li-mzl(iYff W e  :filet e { f  ~ ~:t; Y?~lim y Im ('Cl(iY),:,,f) < oo}. 

We give without proof the following M-admissibility criterion. 
Proposition 9. Let {'J(, Pl, 1'2} be a SBV, let M(X) and V r be the corresponding Weyl function and excluskm 

relation, and let fiX) E (15,)j_c. If the operator-valued function rl(k ) takes values in [.'~ 1], then the M-admissibility condition 
of fiX) is equivalent to the condition of admissibility of the relation - r ( i ~ ) ,  i.e., 

s - l'may'l('c(iy)+M(iy))-I = 0 r -1:(ion) fl V r = {0}. 
yT~ 

6. Examples and Applications. 1. Let % be a unit vector of the Hilbert space O, ~ = {eo}, g~o = It• = 0 (9 ~ ,  
~. = ,~* e ~ ( 0 ) . .  The operator A = .4 1' ~ o  is Hermitian, nt(A) = 1, A~s = Pt~ofi~. It is easy to see that  fx=: (:-- - k)'~eo 

e I l z ,  i .e., .  ~Ilz(A) = ~ [  ( .~) .  We define a SBV {'J-f, I'~, r2} of the relation A* = { {f A~ef+ Ceo}, f ~  D(A~e),  c ~ (~ }, 
setting 

Y'[=r F l f = ( f ' e ~ 1 7 6  f ' A ~ p f  +ce~ (120) 

From (120) we obtain 

A~t'fx" = P~o ~ ( ~  - E)-le~ = )u~ (ill- L)-leo = )~f~. -).(f~,eo)eo, 

r~.f z = r~ {fz,;~fz } = (fz,eo), F2A = ( f z , i e o ) -  k(fz,eo)= 1. 
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Consequently, the Weyl function has the form 

( ( -  -' )= C d('E(t)eo'e~ (121) " M(k)=(fx,eo)= A - k )  eo,e o 3 t-~. " 

The case d i m ~  = n < c~ is examined in a similar manner. Setting A= A ~gD o(~o = 0  0 ~), we obtain a 

t-Iermitian operator, for whichnt(A)=n, ~ ( A )  = ~'l'[ (.4)= (.4 - k) -1 ~l.The SBV { ~ ,  F:, 1"2} of the relation A* = { ~  .4f+ n}; 

. f~ q)(fi.) = D(A~p),.n e ~l} is defined more conveniently than in (120): .q/= ~ll, F i r  = P ~ ,  F2.f = - n ( f  = {f, Af+n}).  
Since ~ =[(A. -~.)qn; n ~ ~}, we have Ft.fx = F:{(~ - k)-ln, k(5.-k)-:n} =P:n(~, -~.)tn, F j x =  n. Thus, the corre- 

sponding Weyl function M(X) coincides with one of the ~l-resolvents of the operator A: 

M()0=P~I(-4 _~.)-t f, Yr. (121') 

2. Let ~ =/2[0, ~,), let {ek} ~ be the standard basis in 12[0, ~) ,  and let .~ = ,~* be the operator generated in l 2 by 

the Jacobi matrix associated with a certain moment problem: 

Ae~ = bt_te ~ + a~ek + b~e~+~ (b ~ = O, bt > O,a~ = gk,k ~ N+). (! 22) 

Assume, as before, that .A = A I" O0 (..~o = ~  0 eo). Then the equafionA~py= kP~y(A~p=P~0.4)is equivalent to the 

finite-difference equation 

bk_~Yk_~ +a~Yk +b~Yk+~ = )~y~, k= 1, 2, 3 ..... (123) 

Therefore, from the condition n_+(A) = 1 there follows the existence (and uniqueness) of the solution {yk(X)}~', belonging to 
L_[O, r162 of the equation (123). If Pk(X) and Qk(X) are orthogonal polynomials of the first and second kind [28, 29], then the 

solution {yk()t)}~" can be represented in the form 

k=0 k=O 

where the function w(X) is such that 

~[Pk(~)m(k) + O~(s 2 < ~'. (124) 
k=0 

From (120) we obtain I':t'), = r:{f~,, Xfx} = ~o(k). Consequently, by virtue of (t21) we have c~(k) = M(L) = ((A - 
X)-ieo, %) and, therefore, a:(X) E (R). 

Remark 10. The fact of the existence of a function c~(X) (E (R)), satisfying condition (124) (and also its properties), 
constitutes the content of the finite-difference analogue of H. Weyl's theorem, involving the Storm-Liouville eqtlation on the 

semiaxis. Thus, in the above given operator proof of this theorem, the analogue of the Sturm- Liouville minimal operator on 
the semiaxis is a nondensely defined operator A. According to the equality c~(X) = ((A - X)-1%, %), the measure a(t) = 
d(E(t)e o, %) from the integral representation (121) of the function w(X) = M(X) is a solution of the Hamburger moment 
problem 

sk = f t k d(J(t) ( = (A keo, eo)), k e N+, (125) 

generated by the Eq. (122) (% is the generating vector). 

3. Let A be the Hermitian operator in gJ = /2[0, co], generated by the Jacobi matrix associated with the moment 
problem (125). From statement 4 one obtains the following proposition, due to Hamburger (see [28]). 

Proposition 10. In order that the moment problem (125) be determinate it is necessary and sufficient that at least one 
of the series 

~,Pk(a) 2, ~,Qk(a) 2, a=Y. 
k=o k=L (126) 

be divergent. 
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Proof. Necessity. The indeterminacy of the problem (125) is equivalent (see [28, 29]) to the relations n_+(A) = 1 r 

Y~IPk(~.)I 2 < ~o -, from which, by virtue of (124), there follows Y~IQk()~)I 2 < ~o 
k=0 k=l 

Sufficiency. Assume that the series (126) converge. Introducing the operator A o :-- A ~" ggo (0o ~ ~ El eo),we show 

that n__(Ao) = 2. Since. fa ":= {Pk(a)}0 e ker(A a) and far D(Ao), it follows that ker(A o - a) = {0}. Indeed, otherwise 
we would have dim ker(A - a) _> 2, contradicting the fact that the spectrum a(A) of the operator A is simple (a(A) is 
simple since e o is a generating vector for A). Further, fa = {Pk(a)}~' and ga = {Qk(a)}~ ' are solutions of (123) for X = a 

and, consequently, fa, g~ E It a(AO), i.e., dim. Yl a (Ao) = 2. According to statement 4, we have n,=(Ao) = 2. But then 
n+(A) = 1 and the problem (125) is indeterminate. 

Remark 11. Analogous arguments can be applied to higher-order finite-difference equations. We mention also that 
the consideration of the operator A o gives the possibility to give a natural (operator) interpretation to the polynomials of the 
second kind: g~. # {Q~(K)}~ (~ It~.(Ao) n 0o)  is a semidefect vector of the operator A o. 

4. Let {Sk}02n be a strictly positive sequence, let g2 be the Euclidean space of the polynomials Cn[t ] of degree at most 
n with the inner product 

?l n ?1 

(f, g)= Zsj+kaj'~k (fit)= 2 a k t  k , g(t)= Z ~ t  k e r (127) 
j,k=O k=O k=O 

Assume, further, that {Pk(t)}~ are polynomials orthogonal with respect to the sequence {sk}~ n of polynomials (of the first 
kind). We consider in g2o =- ~ El {e,(t)} the Hermitian operator A (e [~o '  ~])  of multiplication by t. Then A*= {{.f, A~]+ 
cPn } ; f e  ~ ,  c e r where Aop* = [~,  ~o]  and 

A eke- tPk(t) = bk. 1Pg. l(t) + atPk(t ) + bkP k + l(t), 0 < k < n - 1, 

A~pek = ae k ( 0 < k < n - 2 ) ,  A~pG. l = b, .  2e~_ 2 + a~_ lG.1, A~pG =b~. le, .  l, (128) 

where b_l = 0, b k > 0, a k = a k, 0 _< k _< n. We shatl identify the operator Aop ~ [g2, ~o] with the operator ,g~ 
[g)], where ~o is the zero extension of the operator A ('g'o% = 0). Setting 

5-[= r I-'l] = (f, Pn)' F2} = (f' bn - lP n-1 + anPn) --C, ] = {f  , A~*pf + cP n}, (129) 

we obtain a SBV of the relation A*. It is easy to see that 

n 

fx(t) = h(L, t) ~- Z Pk(~)Pk(t) ~ Its, A~p f~.(t) = ~,fx(t)-LPn(L)Pn(t), 
k=0 

rl]k = en(k), r2.f ~ = b._ 1 Pn_l (~,) +anPn(L) - XPn(k) = - b,,en+t(~.). 

(130) 

(131) 

Here fx = {fx, Xfx}, h(X, p.) = (fx, f~,) is the polynomial kernel, corresponding to the system {Pk(t)}~ (it is also the repro- 
ducing kernel of the space gD = r n[t]). The selection of the moment $2n+1 for the determination of the polynomial Pn+l(t) 

is immaterial; its replacement by S~n+l changes b n and Pn+ 1(0 into b' n and P'n+ 1(t) without changing their product: bnPn+ l(t) 
= b~P~+l(t ). 

Now from (129) and (131) we find the Weyl function M(X) and the operator Vp: 

M.(;.) = P" (~') b, Pn+lO.)' %z * Fa{0, It} = r rl{o, It} = {0}, v r = {0}, (132) 

where It = {Pn(t)}. The obtained relations illustrate Theorem 1" a) lira M(iy) = Vp = 0; b) the Weyl function Mt(X ), 
yrs, 

corresponding to the SBV {C, F2, -F1}, contains a linear term: 

bnPn+l(~.) - ] Dn . an_l(K) 
M I ( ~ , )  = - M ( ~ , )  -1 = . . . .  On.l h,+a-~ ( d e g G n .  I = n  - 1).  

P,(~) VD,+I Pn(~.) 

We mention that the alternation of the zeros of the polynomials Pn(X) and Pn+l(X) and their simplicity are conse- 
quences of the equality (132) and of the inclusion M(X) E (R). The alternation and the simplicity of the zeros of the quasi- 
orthogonal polynomials Pn+I(X, Ti) ~ Pn+I(X) - TiPn(X ) (i = 1, 2) are also consequences of the Ne,0anlirma property of the 
Weyl function M2(X) = Pn+1(X, rl)/Pn+l(X, 7-2), r 1 > ~'~, corresponding to the SBV {9-f, Ptl , I'al}, where ri  1 = (r~ - 
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72)(7-iF1 + P2), i = 1, 2. We note also that if -oo  < o~ _< A2 -< 3 -< o~, then the zeros of the polynomial Pk@) are 

situated in (~, 3). 
The application of Theorem 3 to the truncated moment problem 

o o  

s k = Stkd~(t), 0 <- k < 2n- 1, StZ"drr(t) _< s:z,, (133) 
- - o o  - - ~  

gives us the possibility to describe the collection V(S; N) of all its measure-solutions a(t)and also the subclass V(S, N) of 

those or(t) E ~'(S; N) for which in (133) we have 
o o  

s2~ = St2~d~r(t). (134) 
- - o o  

Proposition 11 [28]. Let s = {Sk}~ n be a strictly positive sequence in R, let Pk(X)  and Q k ( X )  be orthogonal polynomi- 
als of the first and second kind, respectively. Then the Nevanlinna formula 

( d~(t) _ Qn+~(~,)'c(k)- Qn(~.) Qn(~.)oO~) + Qn+iO~) 
) t -~,  = P,+I(~,)'~(~.)LPnO~ ) = PnOQo~(~,)+Pn+I(~, ) (135) 

establishes a bijective correspondence between a(t) ~ ~'(S; R) and r(~,) (= -c~(X) -~) E (15,). Moreover, we have the 

equivalence 

(r(t) ~ V(s;R ) r x(~,) e (,~), lira y~(iy) = (e=~ tim o~(iy) ) ,r~. ,,Ol,. , ~ - - . ) - - = o . )  (136) 

The proof follows from Theorem 3 and formula (132) for M(X) if we take ~ = { II }. and we note that the:-G-spectral 
functions a(t) = (E(t)ll, ll) of the extensions A, = A,* are the only solutions of the problem (133) and the equality (134) is 
satisfied precisely by those a(t) which are generated by the spectral measures of the operators A = fk* D A (~, R x E f/a)- 
It remains to note that the condition of the M-admissibility of the function r(X) assumes the form (I36) since, by virtue of 

(132), l im M(iy) ;e ~o. Setting w(X) = -r(X) - I ,  we obtain the second equality in (135), in which w(X) satisfies already 
yt~ 

Nevanlinna's condition: lira o:(iy)/y = 0. 
yt~ 

5. Let A be a Hermitian matrix in C n (A @ [cn]), let g be a vector (E Ca). We consider the bordered matrix 

1 = A1 = r [(~n+l] 

as the extension of the operator A E [C n, C n+l] (a = 5), and we define the SBV {~, FI, P?.} of the relation (see [30]) A* 
= {{y,, AO~+cJ;f~ r c ~ r  

H= ~, Fl{f , f~lf+c } = c, F2{f,f~lf+c}=(f,e~+l). (137) 

Here, {ek}~ +t is a basis in C n+l, en+ 1 E C n+l E3 C n. The Weyl function, corresponding to the SBV (137), has the form 

M(7~)=)~-a+g*(A-~,)-lg,  (70,) = I ~ ( A -  ~,)-lg). 

From (138) we can easily see that 

(138) 

M (~.) = - det('41 - ;~ ) -~  (R). 
det(A-~,) 

From (13) there follows the alternation of the eigenvalues {Xk} ~' and {Xk}~ +1 of the matrices A and h l' 

~-~ <;~1 -< ~.2 < ~2 -< -.. -< ;;.. ~ ~.. ~ ;;..§ 

This fact is usuaIIy derived from the Courant-Fischer variational principle. 

(~39) 
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From here we obtain, in particular, the alternation of the zeros of the orthogonal polynomials Pk(~.) if we represent 

them in the form 

P A x ) =  i ao bo 0 ... o o l 
d e t ( s  bo a 1 b l ... 0 0 

4 = . . . . . . . . . . . . . . . . . .  �9 

0 0 0 bk_ 2 ak_ 1 

From formula (139) one can derive the converse statement: for two alternating collections of  numbers {Xk} ~ and {~.k}~ +l, 

there exist matrices A and ,41 = A~ =IA,  g]  such that a ( A ) =  {Xk}' ~, o( ,~)  = {Xk}~ +~. 
k 5  t~ j  

6. Let '~2 * ~" = -~* >-- 0, '~'1 = "~2 - K ' K ,  where "4i ~ g ( ~ ) , / C K  ~ ~3[g~], and 0 ~ p(K*K). We define the 

bounded operators .42(n).-* , 'lzE&(--~, n), .41(n)= ~.2(n)-/C'K. Considering ,~i(n), i = 1, 2, as transversal (0 ~ o(A(n) - 
~,l(n))) extensions of  the zero operator A ' 0, we introduce the SBV {5-~, F~(n), r'2(n)} of the relation A* = -,~ (~ ~ , .  by 
setting 

H ~, F/('0] = ( - l ) i q ( K * ) - 1 ( f  " -  Ai (n) f ) ,  (i = t , 2 ) f  = { f , f ' } .  (140) 

Then ~z. = (A2(n) - ~.)-1~ and V ] x  = {.fx, kfx} (fx * (A2(n) - k) ' l f )  we obtain 

From here we find the Weyl function Mn(X), corresponding to the SBV (140): 

Mn(~, ) = - I  + K(A2(n ) -  )~)-1K*, yn (X,) = (A2 (n)-)v)  -I K*. 

According to [19, 31], for each SBV {'34, F1, I'2} such that ,a, 2 _> 0 we have the equality 

dim E& (-oo,-e)  = dimE0_M(_~)(-oo,0) - dimE0_m(_=)(-=,,0) ge  > 0,  

(141) 

(142) 

whereM(0)  = s - R - l int  M(X), M ( - ~ )  = s - R - l i ra  M(X). In connection with the operator ~-1 (r = 0), 
;k.r0 X~-= 

from the equality (142) we obtain 

dim EA1(,)(-,,o,-e) = dimE_uA_e)( -~ ,O)  = dimEm,(_e)(O,+~) g e  > 0. (143) 

Under the additional condition K(.J,f+ ~.)-I~ ~ Co.the operators K(A 2(n) + ~.)-1~ E ~;** (Vn ~ ~-+) , and the spectrum o(Al(n)) 
in the interval ( - ~ ,  - e )  is discrete for each e > 0. Therefore, in the equality (143), both sides of  which are finite for each 

e > 0, it is possible to take the limit from below for n + ~ and e _> 0 [32]: 

dim E a 1 (-oo,-e)  = dim E_M(_~)(-=,,0) = dimEM(-e)(0,+~), (144) 

where M(X), which, naturally, can be called the generalized Weyl function (it is not the usual one: 0 (E p(~M(i)) if A2 

[g2"A]) , has the form 

u(x) =-I + K(&-  YxX'. (145) ! 

It is easy to see that the relation (144) remains valid also for unbounded perturbations K*K such that D(~K*K) = D[K*K ] = 
9 ( K )  ~ DIAl = D(~a)=D(Til12)  �9 -and the forml'  # ~ a - ! ' g * K i s  closed and semibounded from below (here t' T is the 

closed quadratic form, associated with the semibounded operator T =  7"* > m: D(~' r) = ~D((T - rn)l,'2), ~r[u] = ][(r - m)l~u][2). 
In this case the operator "~'1, understood as the form-sum, is associated with the form t ' :f 'a I =~ '= f'a--~'h"K' while the 

function M(X) of the form (145) has to be understood as: 
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M (k) = - I  + K(A - Z)-"rZ(K(A - k)-lr2) *. (146) 

We note that relation (144) can be proved directly, omitting the limiting process from (143), and without the condition 

If G(0) ."- I + M(0) ~ t~p, then from (144) for e = 0 there follows the estimate 

N(A1)  .-- dimE~ (-oo,0)= Z ~'P<~G(0)II~ �9 (t47) 
~,i(a(0))>I 

If  the negative part o f  the spectrum a(,g,1) is discrete, but infinite, then for the eigenvalues kn(Ai )  < 0 we have (see 

[31]) the equivalence 

kn (A.I) = O(n -p) r ~,-n(l - G(0)) = O(n-P). (148) 

Now from (144)-(147) there follows the known Birman-Schwinger  principle. For its formulation we introduce the Hilbert 
spaces D~[A] with the metric [lu][~ = A[u, u] + e]lul] 2 (e > 0) and also (assuming ker A. = {0}) the space ~,~ which is 

the completion of  Do[A] with respect to the A-metric. 

Proposit ion 12 [33]. Let A --- A* > 0 (A ~ U(~)) ,  B = B* > 0, ~B]  :~ ~A]  and assume that the f o r m  t' .-e- t~A - ~'B 

is closed and semibounded from below. Then: 

I) the total multiplicity of  the spectrum of  the operator C = C*, associated with the form [' (I' = t'c), in the interval 

( - ~ ,  - e ) ,  a > 0, is equal to the total multiplicity of the spectrum in (1, oo) & t h e  form t~B in the space DelAI; 

2) if the form t' B is compact in D I[A] (gAa), then the negative spectrum of the operator C is discrete (finite); 

3) in order that the negative part of  the spectrum of  the operator C h associated with the form ht'a - 1~t~ be discrete 

(finite) for each h > 0, it is necessary and sufficient that the form - t'8(=B[ u, u I) be compact in DI[A ] (,~,~). 

Proof.  Statement 1 is a consequence of  the equalities (144)-(146). Further, from the compactness of the form t' e 

in DI[A ] there follow (see [33]) the closedness and the semiboundedness from below of  the form ~" :-- ~A "- ~B ~ 3  C 

= C* _> m: t' = t 'c .The remaining statements follow now from the chain of equivalences: the form ['~ is compact in De[A] 

an arbitrary (A + e)-bounded set is B-compact ~ the operator T = B-b'2(A + e.) -I/2 e ( ~  r TT* = I+M(--r ~ ~ .  In 

particular, the compactness of  the form t'B in K-A A is equivalent to the compactness of the operator I + M(0) (Ivl(0) .-* s - 
R -  lim M(X)). 

X?0 
We illustrate relation (147) by two known examples. 

a) L e t  gA = L;[0, oo), Ay = -y", ~(A) = @ (y e @ ~ y ~ W22 ' y(O) = 0), By =q(x)y, C ,  A - B (q(x) >- O, q ~ C~o" ~1 ). 
In this case 

M() . ) f  = - f  + 7 ~ G ( x ,  t, )~)f(t)dt, 
0 

1 
where.  G(x,t,Z)=-~----~shta/-Z~exp(-xa/-~),t <_ x. We find M(0): 

M(O)f = - f  + f ~ ( t ) G ( x , t , O ) f ( t ) d t ,  G(x,t,O) = t, t <_ x: 
0 X, t>-X,  

From here and from (147) for  p = 1 there follows the Bargmarm bound estimate [33-35]: 

N ( C )  - dimEc(-o~,0 ) < sp(I + M(0)) = 7xq(x)dx. 
0 

b) Let ,~ = L2(lR3), A = - A ,  By =q(x)y, C = A - B ,  By = x/q-~Y and assume that q(x) ( ~  0) belongs to the Rollnik 
class [34]. Then 

M(k) = - f  + f l  3 ~ e x p ( - a / Z - ~  I x - t ] ) f ( t )d t .  
4r~i.r-t I 

Therefore, for M(0) we obtain the expression 
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i - -  ] 

From (149) and (147) for p = 2 we obtain the Birman-Schwinger bound [33, 34]: 

2 ~ ( q(x)q(t)12dxdt" N (C) = dim E c (-co,0) < I1M(0) + I ~;z = J J  16~;21 x - t 

From relation (148) we can obtain information on the asymptotic behavior of the negative spectrum of the Schr6dinger 
operator. 
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