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AN e

ON A FORMULA OF THE GENERALIZED RESOLVENTS OF
A NONDENSELY DEFINED HERMITIAN OPERATOR

M. M. Malamud UDC 513.88+517.984

The Weyl function and the prohibited lineal, corresponding to a given space of boundary values of a non-
densely defined Hermitian operator, are introduced and investigated. The prohibited lineal is characterized
in terms of the limiting values of the Weyl function. An analogue of M. G. Krein’s formula for the resolvent
is obtained and its connection with the space of boundary values is found.

This paper is a detailed presentation of [1]. Here, from the point of view of spaces of boundary values (SBV), Le.,
an abstract variant of Green’s second formula, we investigate some questions regarding the extension of a Hermitian operator
with a nondense domain of definition D(A). We introduce and investigate the Weyl function M(\) and the characteristic
function C()), corresponding to a given SBV. It is shown that the Weyl function is a Q-function of the operator A; the
relationship between the angular limiting value M(io) of the Weyl function at infinity and the prohibited lineal Vp is found.
An analogue of Krein’s formula for the resolvent is obtained and its application to the moment problem is given.

We shall adhere to the following notations: 9 K are separable Hilbert spaces; [H |, H,] (G, H,)) is the set of
bounded (closed) linear operators fromH | into Ho; if H; = H, = H, then [#, 5] =[H], T(H,, )= T(H); (s is the
collection of closed linear relations inH and, moreover, G(H) C e by identifying an operator with its graph; 2(T) and
R (T) are the domain of definition and the range of the relationT & B(H, T(f)={ge 7 (f, g} € T}and, in particular, T(0) =
(ge# {0 g)eTHT ' ={{f. gl e H® # {f.g) e T aT = {{f, agh; {f. g} € T}; p(Dand o(T) are the resolvent set and the
spectrum of the relation T e ’5(9{), p(A)- is the regularity field of the operator A; oP(A), 0.(T), and o (T) are the point,
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continuous, and residual spectra of the relation T; A is a Hermitian operator in g, mkz (A - VDA, T, = m%, n,(A) =
dimIt,; £, is the resolution of the identity for the relation A =A"€ B®), ie., the resolution of the identity for its

operator part A€ C(f)), P_ is the orthoprojection in & on the subspace L; C, (C_) is the open upper (lower) halt-
plane, TtL is the restriction of the operator T to the lineal L.

1. Preliminary Information. We recall briefly the fundamental aspects of the theory of the extensions of a non-
densely defined Hermitian operator A in a separable Hilbert space P Let-H, = _5(—/1—5 N =95 , let Py be the orthoprojec-
tion onto P, My= (A 1) »A), N, = mx is the defect subspace. For the operator A, acting from 9 into H(eTH, H)),
the adjoint operator A* € -G, 8 ). - is well defined. CI early, D(A%)= §, D(A) C D(A*), N, € DA*) VA e C\Rand the
following equalities hold:

AYy =PyAf, Vf & DA)LAY,=APf, Ve, (0

Statement 1. If M= $§ ., then mkﬂﬁ ={0} forh=a +if = A
Proof. If - fy &€ DA A-Nfy=ne R, then

O=(nf)==ImA-Nf,fp=-Im(Afyf)=-Imrif, IF=f, =0
Statement 2 [2]. The lineals 2(4) and i, are linearly independent.
Proof. If f, + f, = O for some fy € DA), fy e My, | then Afy + Af, = n e M. From here (A — \)fy = n and,
consequently, f, = n = 0. But then f, = 0.

The following proposition is a generalization of the known Neumann formula (3] to the case” D(A) # 8.
Proposition 1 [4-6]. Let - D(A) =9, < f) Then

DAY = (A + T, + fﬂx. (2)

In addition, for each pair of vectors S € D@A*), n € T we have the unique decomposition

f=hi+h+ ko A*f+n=AfA+kfk+XfI, 3)

where fa € D&), f € nx,f € ﬂ

Proof (compare with [3]) Since §=(A-}) D(A)@ T (o2 X). it follows that YVi{fn}e DA*)x T . there
exist f, € PA) and ;& Ntz such that

Af-Afrn=(A-Mf+ (A - f @

Applying the projection Py to (4) and taking into account (1), we obtain the equality A*(f~fy — fp) =AP(f-f,-f)
meaning that hzEf-1s —fi =] ﬂl. From here we obtain the first of the equalities (3) and, with the aid of (4), also the
second one.

Assuming the lack of uniqueness in (3), we obtain the equalities

Fat B+ F=0,Af + f +Lf =0, f e dA).f, e M, 5)

Multiplying the first of them by X and subtracting it from the second one, we obtain (A - My + (k- x)f;{ =0. Since M, L M5
we have fy = f; =0.But then from (5) there follows that £} = 0.

COROLLARY 1 [2]. The relation D(A) = § s equivalent to the linear independence of the lineals DA, T, ’J"t— in
the decomposition (2).

The reason for the nonuniqueness of the decomposition (2) is revealed by the following proposition.

Proposition 2 [4]. The vectors f, € T, ~f5 € Tl_ are congruent modulo ¢ ¢ (i.e., f, + f; € D(4)), if and only
if there exists a (unique) vector -n & T} - such that

h=B n,fx*—Pnnzzeﬂ o 9. (6)
In this case ||| = [f;] and n=(1-X) (AfA +Afk+xfx),

Proof. Necessity. Let f, and —f be congruent modulo D (A), i.e., there exists a vector f, € D(A) such that
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fA+fk+fX=0vaEﬂA);fxE ﬂ)‘;fxe nx. (7)

Applying the operator A to (7) and taking into account (1), we have [ = A fy +1 f, + A fz € M. From here and trom (7)
we find

I=A-D)f+ -V fi=A- N+ A-T) .

If in (8) we set n = /(A — X), then we obtain the equalities (6). In addition, from (8) there follow the relations

7, [ =10~ DAf =1 P -[(a-Rf =1 P-4 - 0)sa -

)
S P11 (PRSI S (R i

£l

meaning that [ £ = [ ]

Sufficiency. We show that vn € Tt the vectors P:n nand —Fy_n are congruent modulo 2XA). Setting f = 0, n =
n in (3), from the second equality we subtract the first one, multxphed by’“ A and A. As a result we obtain the relations (8) in
which / = n. From here

By n=(=Nh By n=(b-2)fn=Afy + 1 +1f;. 10y

Now from (10) and from the equality f, + f, + f5 = O there follows the required relation Pﬁ n- Pfﬂ n= (l )")fA e D(4).
COROLLARY 2 [4, 7]. Let U, . = (4 ~R)(A-A)™. Then

M={ne®; Pm_n=UﬂPm n}. (I

Proof. If n € T, then, by virtue of (8), there exists a vector f, € D (A) such that Pm n=(A-1)fy Pm n= (A 7»)f,4
From here B m, "= Uz, A My n- Conversely, if this equality is satisfied, then the equalmes (8) hold (with n mstead of [} and,
therefore, so does (3) from here n € N. Relation (11) is proved.

Proposition 2 enables us to introduce the foll owmg deﬁmnon

Definition 1. Let M = = Pn M. By the equality

V, By n=Fynne R, (12)

the isometric operator V, € [ﬂ"k . ﬂ%], called the exclusion operator, is well defined.

The exclusion operator V, has been introduced in [2], while in [4] one has elucidated its role in the description of the
self-adjoint extensions of the operator A. In [4] it has been shown that the lineals ﬂ';L are closed or not, simultaneously for
all A\ € C\R. In the first case the operator A is said to be regular, in the second case it is called singular [5].

Definition 2. The subspaces Ttj =T, © M) are called the semidefect subspaces of the operator A, while the
numbers 7y (A) = dlm“i, are called the semidefect numbers.

As it can be easily seen, they are the defect subspaces (numbers) of the operator A’ = Py A(D(A') DAY in 9.

2. Spaces of Boundary Values and Proper Extensions. Here the operator A is identified with the graph: A ¢> gra
= {{f Af};fe D(A)}, while the symbol A* denotes the adjoint relation. In order to avoid confusion, we denote the adjoint
operator from Sec. 1 by Ak(e T, 9) and A" and A, are connected by the obvious equality

A*={ff}fe DAY = XA}, f = Akf+nne N},

We note that, by virtue of (1) and (13), the Neumann formulas (3) are equivalent to the direct sum decomposition (see {6, 8])

A

(13)

and Proposition 2 describes the components of the vectors from the indeterminate part T = {0, N} of the relation A" with
respect to the decomposition (14).
The lineal A" is a Hilbert space with respect to the norm
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ﬂfi]2=llfi|2+»]|f'||2=llfilz+[|A;,f]2+nn92 (f:{f,f’})_ (15)

Definition 3. A collection II = {}{, '}, T',}, where H is a separable Hilbert space, while T'; € [A*, H], i = 1,2, is
called a space of boundary values of the relation A" if
D ¢ o-Ge) =0, - (Rfng), vi={rrli={astean 16

2) the mapping T': fo {rz A f} trom A” into H @ H is surjective.

It is easy to see that, under the conditions 1, 2, we have ker I" = A.

Statement 3. For a Hermitian operator A with equal defect numbers n (A) = n_(A) < oo there exists a SBV.

Proof. Let Uy be an 1sometry from Tl onto fn,, Uy=Up @ Up., let P ; be the oblique projections onto ﬂi. in the
decomposition (14) parallel 10 A + My, and let n, be the orthoprojection onto the first term in N,. Setting

Fi
H=N, T =m,(P;+UyP ), Ty =~im (P + UyP_): (17

we obtain the equality
(. 9-(&)=2(8)-2%( 8 )= T, 2~ T F.T &)

which coincides with (16). The epimorphism property of the mapping " is obvious.
Definition 4. An extension A(e B(§)) of the operator A is said to be proper if it is closed and A C A C A*.
Definition 5. Two proper extensions are said to be disjoint if A’ N A" = A, and transversal if, in addition, A’ +
A" =A%
Let #; == I}{O,ﬁ}‘ (i = 1, 2) be lineals in M (in general, not closed), where, as before, 1=§ € §,.
Definition 6. By the exclusion relation Vy, corresponding to the SBV {H, I';, T,}, we mean the lineal Vp.= M=
T{o, N}, e,

hzh}evrq:iinefﬂh =T, A={0,n},i=1,2. (18)

If in (16) we set ? =f={0,n,g=01={00¢€ ﬂ then we see that the exclusion relation V is Hermitan: Vp
C Vr.
With each SBV there are connected two transversal selfadjoint extensions A, = A, for which

=kerl}, i=12 (TA|=# ®0,TA,= 0 ® 7). (19)

From Definitions 3-6 there follows at once the following lemma.

LEMMA 1. The mapping T: f ~ {T,f, I';#} of the Hilbert space A* (with the norm (15)) into H =H @ H i
surjective and defines a topological isomorphism between A*/A and H such that:

1) between the proper extensions of A and the closed linear relations in H (i.e., the subspaces in # ) we have the
bijective correspondence

A=A9e->e=rA”={{r2f,rf};fefi}; (20)

%) (Ag)*= Agu; o

3) the inclusion relation is preserved: Ag & Ay & 8; € 6y

4) the extensions Ag and Ag, are disjoint & 8, N 8, = {0};

5) the extensions AGI and Ag7 are transversal ¢ 0, + 6, = H @ 5 ;
6) for § = Vp, the extension AVr is Hermitian and has the tform

AVF =A+ N ={{f Af+n};fe DA), ne N} (21)

A, EB®) Gee. , Ag is an operator) <8 n V= {0}.

Statements -6 are consequences of Definitions 3 -6. Statement 7 follows tfrom statements 4 and 6 if we note that A,
is an operator exactly then when Aa and Av are disjoint since AVF(O) = T

Proposition 3. Let D(4) = H,# 89, and let I{, T, T} be a SBY of A", Then:
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1) a proper extension A is transversal (disjoint) to the extension Az if and only if there exists an operator B € [H] (B
€ G #)) such that

A=Ap=kenl|-BT,): 22)
2)if g, € TH),i=1,2, and p(6)) N p(B,) = &, then the transversality (disjointness) of the exiensions Aﬁl and

Ag, is equivalent to the condition
0 pl®, -2 =8, ~2)7'] (0 ¢ 0p((®, -2 - (8, ~2)))

23
¥z < p(8,) n p(d,); 9

3) it 6, € B @), while 6, = B € [H], then we have the equivalences
ker (6, -B) = {0} & 6, n gr B= {0} (23"

Oep,-B)=0,=gB=HSH

(i.e., 6; and gr B are transversal);

4) each dissipative extension A is proper;

5) an extension A = Ay is dissipative (accumulative) if and only if so is 6. In this case n_(A,) = n_(9) (n (Ay) =
n.(0)) and, in particular, ;‘\9 is maximal dissipative (accumulative) exactly when so is 6;

6) the extension A is Hermitian & the relation 8 is Hermitian. In this case n, (Az) = n_(6). -

Proof. 1. By virtue of (19), the disjointness of the extensions A = A, and A; is equivaﬂent to the condition 8 N (0
® H) = {0}, meaning that 6(0) = {0}, i.e., 6 is a (closed) operator: § = B € T (H). In this-case condition (20) assumes the
form (22). The transversality of the extensions Ag and Az is equivalent now to the condition :

0+ 0O H=H=HDH >gB+ 0O )= A. (24)

From (24) we conclude that DB) =H  i.e., B € [H]. ¢

2. If zy € p(8;) N p(6,), then the relations 6, can be represented in the form 6, = {{(6; — zp) 7 't, f}; f E H}, i =
1, 2. From here it is clear that their transversality (disjointness) is equivalent to the condition (23).

3. The equivalence (23') is obvious. Assume further that 6, + gr B =H @ H. Then for all {h;, h,} € H & H there
exist vectors {f, f'} € 6, and {g, Bg} € gr B such that f + g = h;, {’ + Bg = h,. From here for h; = 0 we obtain ' —
Bf = h, (vhy, EH), i.e., ‘R(Gl — B) =H, and, consequently, taking into account (23"), 0 € p(6, — B). Conversely, let 0
€ p(6; — B)and {h;, h,} € H @& H. Then there exist vectors {t, {'} € 6 such that f' — Bf = h, — Bh;. Setting g = h,
— f, we obtain the equality {f, {'} + {g, Bg} = {h;, h,}, proving, by taking into account (23"), the decomposition §, + gr
B=H @H.

4. Assume that A (D A) is dissipative. We show that A C A", Without loss of generality, we assume that p(A) #
. Setting

T=A-DA+i'e M., M) T=1-2i(A+iy « [9, 9), 25)

we can see that the operator T is isometric from Mt_; onto TR, while T is a contraction in . The operator T (D T) has
the block-matrix representation

- T M
= (0 U]’ Me I, M), Ue M, 7).
Since TT* = IM_» we have
-~ -MM* *
[ O e N
UM [-UU* ’

From here we conclude that M = 0. Consequently, T = T & U (compare with [7], Lemma 1.2). Returning to the relation
A, from (25) we obtain

A={U-Tyid+Tf=@A+if,+fie M BN =H} =
= {{2f, + U - UYf, 2iAf, + il + UY}; f, €DA), fie M} =
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oS (R (AU, .
- {21 (AfAJ + (lﬁ] + kiUf,-)’f”‘ e D(A), fie n,}cA . (26)

Relation (26) means that the extension A is proper.

5. Assume that A D A and that A = 0. According to statement 4, we have A = A,, where (see (20)) § = TA.
From (16) it is clear that # and A4 can be dissipative only simultaneously. Since the correspondence (20) preserves the
inclusion (Lemma 1), it follows that Ae is a maximal dissipative relation exactly when so is 6. If, however, we have 5 = n_(ffle)
>0 (< p(Ay) =@) and A’ = A, is its maximal dissipative extension, then n_(A,) = dim(A'/A), which follows from the
existence of the "tower” Ag¥ AgC A C Ay C ... CA, = A’ of dissipative extensions, each "tier” of which is one-
dimensional. Similarly, n_{6) = dim(6'/8). Now, the validity of statement 4 follows from the isomorphism

0°/6 = A'fA=(A"/A)[(4/A) (0(®) =B, p(A") = D).

6. Since the relation A, is Hermitian if it is simultaneously dissipative and accumulative, statement 5 follows from
the previous one. We note also that a maximal Hermitian relation A is maximal dissipative only in the case when n_(A) =
0. Otherwise (n_(A) > 0) it admits a maximal dissipative extension A’, defined, for example, by extending by zero the
operator T of the form (25); T | n =0

COROLLARY 3. The semidefect numbers of the operator A are equal to the defect numbers of the relation Vp, i.e.,
n(Vp) = ny(4) = dimN,, N ). @7

Proof. From formula (21) for Ay, we conclude that ny(Ay) = n4(A) (=dimR,; N Hp). On the other hand,
according to statement 6, we have n (Vp) = ni(AVr)' Combining these equalities, we obtain (27).

COROLLARY 4. If the self-adjoint extensions A, and A, of an operator are transversal, then there exists a2 SBV
f{, I';, T,} for which A; = ker T;.

Proof. We consider some SBV {H, I';, T,'} for which A, = ker I'}. Since A, is transversal to A,, it follows,
according to Proposition 2, that Al = ker(Ty," — BI',), B € [H]. Setting I', = I',', I’} = '}’ — BI';' we obuain the
desired SBV {H{, Ty, I',}.

Remark 1. Other approaches to the definition of a SBV for a nondensely detined Hermitian operator can be found in
[9-11]. The case 5(74_) = $ is discussed in detail in (2.

3. The Weyl Function. 1. Assume, as before, that Tty = {f,‘ = {fx, LAY A e N}, m s the orthoprojection in f’lk
ono H ®0,.N=F 6 9,

LEMMA 2. Let A = A" be an extension of operator A, let A’ be its operator part, - 1T, (4) =T, 0 p(A), V(A) =.
AQ), V(A)=Tt © TI(A),

Up =1+ G -0 (A= 4, C e p(d). (28)

Then the following assertions hold:

D chng =T, Up, PMAY=1Ge., Ugn=n ¥ne N"(A));

2) M (A=A - A= A - NA) = (A -V ] ' (29)

3) UpNe(A)y= N5 (A) VA, L e p(d). (30)

Proof. Let f, € i, . Then vf, € D(A), we have:

(A=A Upf) = (A=) fy + A= O - W1 f)= (A~ T, Yo fo)+
+ A -0 f)=@-T¥y fr)=0.

Consequently, - Ut € T4, - and Uy Y, © fﬂg. Since for all X, ¢ € p(A) the operators Uy, are invertible and (Uy) ™! =
Uny it follows that the first assertion is proved, while the equality - Uy, PTV(A) =1 < follows from the fact that (A — A\)™'n

= 0vn € TV(A).
Further, - (A =41 W(A)=0, while vh € N (A) and vf, € DA), we have

(A" =2 h (A=R)f) = (A - b (A-R)f) = (, £) =0, b
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ie., (A" - A1 (A < fﬂ”;L (A).-. On the other hand, D(A) = (A’ — L)1 §. Therefore, by virtue of (31) (A’ — \)~1p
€ My,only ifh L DA), ie.,h € T

Finally, the third assertion follows from the equalities
N =1 +0-0AE-DNA - A = (A -0 + -

—OA - A - O = (AT -VTA) = R A).

The lemma is proved.
LEMMA 3. Let {H, I';, T,} be a SBV of the relation A”. Then:
1) forall X & p(Aﬁ the operator-valued functions

ET m)—l, YA =7, 7N, (32)

are well defined, are holomorphic in p(A,), assume valuesin [# Mol and [% Ty) respectively, and3y(\) ! € [Ty, #;
2) the function y(\) is the y-field of the extension A,, i.e.,

YA = U © =90 + A =D, - V190 YA, § € p(Ay). (33)

Proof. 1) For each A € p(Az) we have the direct decomposition

-~ ~

A=A, + R, (34)
Indeed, in terms of the vector {f, f'} € A* we define a vector g € D(A,) by the equality g = (A, — N)~I(f" — M). Then
vi, € DA) we have

(A=A f —=((A-M) i D—(A-R) [ (A, - N -M) =

=((A-M [ - Fpf ~-M=@AfpH-Fpf)=0,
ie, fizf-ge Ny, Therefore, if g =U+MA, -V F L J),. then

Fri={ggt+ihMle A, +0,. (35)

Equality (35) proves the decomposition (34) since the uniqueness in (34) and (35) is obvious (although, in general, DA*) =
D(Az) +T,  is not a direct decomposition).

By virtue of (34) we have @, 1 ﬁx) ={0} and T,A" = TN, =4 Consequently, T, maps R, isomorphically
onto H and the operator-valued functions 4(\) and y(A) of the form (32) are well defined. )

2) Since 4(¢) is an isomorphism fromH onto Ti;x, it follows that for each ?-f = {f;, §‘f&.} S ﬂg there exists h € H
such that ?? = 4(Oh. Therefore, setting fJO\ = U @D Unn from Lemma 2 we obtain ‘

. oA { - -1
LUpfo=T; Un f =T, % +(L-0T, (A2"7‘) ool
Mg £, &% fi+a(A -2 £, (36)

=T fe=TiQh=h

Since UOJ?C € 5:1;, ,¥(A) k= h, while T'; is an isomorphism from ﬁ;h onto H, the equality y(\) = fipﬁ((), following trom
(36), proves (33).
Definition 7. The operator-valued functions M(X) and C()), defined by the equalities

MO Ty fy =Ty fo (Fa= U 2t e Ry h e pldy), G7)
R SN2 (38)

CR T, +iT)f=@-iT)fr,re T,
are called the Weyl function and the characteristic function of the Hermitian operator A, corresponding to the SBV {H,T,,

I's}.
Definition 8 [7]. An operator-valued function Q(z) with values in [H} is called a Q-function of the Hermitian operator
A, belonging to its self-adjoint extension A, if

0@ -0*Q) = - D PO ¥2) Yz (e p(Ay). (39)
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Here v(z) is the y-field of the extension A = A™,

Proposition 4. The operator-valued functions M(z) and C(z), corresponding to the SBV {H, T, T}, are well
defined, are holomorphic in p(AZ), and assume values in [H]. In addition, M(z) is a Q-function of the operator A, corre-
sponding to the extension A, (= ker I'y).

Proof. The fact that M(z) in p(AZ) is well defined and holomorphic follows from the equality

M) =T\ ¥(z) Vz e p(d,), (40)

which, taking into account (32), is equivalent to the definition (37). R
Now we apply Green’s formula to the vectors f, e 71, f:§ e N,

@ =DV f) = O, f 1 o o= (Co f o Ty F dsg= (MET, f 1 T f -

~ (T f o MEOT, f = (M) = M OO, Ty f oo “
According to the definition of the functions 4(z) and y(z), we have the equalities
YT, f, = o XN, f, =f WOT,f ¢ =1 (42)
Therefore, setting I',, = hy, [of; = hy, from (41), (42) we obtain
((M(2) ~ M g, hy) = (z = DY@, WOR) = (2 = DA C¥Ay, by). @3)

Since T, M, = Fzﬁc = H, equality (39) is proved.
From (39) for ¢ = z we conclude that [M(z) — M*(2)]/(z — %) = 0. Therefore, —i € p(M(z)} and, by virtue of
(37, (38), we have

CA) = MA) - M) +i)!, A e C,. (44)

From (44) it is obvious that C(A) is well defined, it is holomorphic in C, and it is a contraction in C_. The proposition is
proved.-

COROLLARY 5. The Weyl function M(A) = M*(A) and the characteristic function C()\), corresponding to the SBV
{H, Ty, I',}, have the following properties:

D MQ})e Ry(emAImMQA)>0 VieC UC )
M(l)-M"(k))_

) 0epImMA) VAe C,UC ImM(Q) = 5
i

3 e < 1va € c,.

COROLLARY 6. Two simple Hermitian operators A’ and A" with, in general, nondense domains of definition are
isometricaily equivalent if and only if, for some choice of SBV {H’, I';’, I';’} and {H", T, T',"} of the relations (A")" and
(A")*, the corresponding Weyl functions M’(\) and M"(\) or the characteristic functions C’(\) and C“(\) coincide. In this
case the extensions A} = ker T}’ and A? = ker I';” are also unitarily equivalent.

LEMMA 4. Let {H, ', T,} be a SBV of the relation A*, and let 3 (A) = {7 f, e N} (A)}.  Then the
following relations hold:

TA) =Ty{(A; - AL I+ MA, - Ay1% (43)
kex(T, I ) = {{0. 71, fé A}, i=1,2 (46)
LR, (A)=T,0 (A) == TRy (47)
T =Ty (A), 107 = 1, (A). (48)

Proof. From (33) there follows the equality
Y@ -TQ) =G~ O{(Ay ~ 2y, T+ 2(Ay - 2y D). (49)

Applying the operator 'y to (49) and taking into account (40), we obtain
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M(z) -M@) =T (1) - ) = - O {4, - 2rL, T+ 2(A; -2 (L) (50)

The Weyl function M(z), being a Q-function, satisfies the identity (39), which, combined with (50), yields (45). We mention
also that equality (45) can be obtained directly from the Green formula.
Further, equality (46) is obvious, while (47) follows from relation (29) and the identity

{(A;-AyTh, MA; - A)h} = {0, A} + {(}i AR B+ A - A TR}, (50

in which {(A;-Ay1h, A+ MA;-Aylh} e A;=kerT,,i=1,2.

Relations (48) follow from the equalities (47) and (32). The lemma is proved.

2. We characterize the exclusion relation Vi in terms of the limiting values of the Weyl function. For this we
introduce the operator

VE = TR (Ay) = {1, T (A,), 77(A) = {0, 07 (Ay). (52)

The fact that the relation V{ from (52) is indeed an operator follows from the relations
n= nI(A"z) (2] n”(A-z), (521)
Ve=TR =T{0, A,(0)} + MM"(A,)= {0, VO)} + V.

In general, the operator V{* does not coincide with the operator part Vp of the relation Vp, but Vi = Vp = Vp for Vp(0) =

{0}.
THEOREM 1. Let {{, I';*, T',} be a SBV of the relation A%, and let #; = I';N,i=1,2. Then

1) he %= DVp) e limy Im (M@, b) < o= & limy Im (M (-iy)h, b) < =; (53)
. ylee yloo

2) for each h € H, there exist the strong limits

M (iso) = s — LimM (iy)h =5 — imM (~iy)h u M (io)h =V, (54)

and, moreover, M(ioo)h = Vph, if Vp is an operator (i.e., Vp(0) = {0});
3) for each h € H © V(0) we have the equality

s- lim-Ai.(-ly—)h =0; (55)
yToo 1y .

4) for each h € V(0) \ {0} there exists the strong limit
Byh=s- HrmM_;;y_) h=Y 0P, M+ 0 (e T U D), (56)
y o

and, moreover, R(B,) < VH0), R(By) = V(0). i )
Proof. 1) Let E, be the resolution of the identity for the operator part A} of the relation Ay = ker I';. From (39) we
have

J| M@~ M(iy)‘ h, b = Y y) Wiy) b, h) = Y2y Gy 12,
2 _ ©7)

According to (33),
Yiyh =+ iy — 1)(A, - iy) WDk = Py YD+ (A5 — i) A; — iy)yy(ih. (58)

From the relations (57), (58) we derive
)
1 +1
d(E, (i) h, y(i)h). (59
Ty (B y(Dh, y(i)R)

y Im (M (iy)h, ) = YAl P PREHOL 12 4 y? J

-0

The condition PAZ(O)y(i)h = 0 is necessary for the uniform boundedness for each y > 0 of the right-hand side in (59).
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Assuming that this is satisfied, from (59) and the Lebesgue monotone convergence theorem we conclude that
. . 7 . , NPT 74 .
Hmy PP = [ +1) dE 1R 1 Om = A vOA[ + [ vaf (60)

Thus, the left-hand side in (60) is finite exactly when KDk € D(Ay) = DAY), ie., YDk € N (A DAY NN The
equivalence (53) follows now from the relation - 1 (A,) =y ()3, (see (48)).

2) Let h, € H,. Then there exists a unique vector 7 € J1”(4,) - such that hy = I';{0, —n}. By virtue of (52), h; #
I'{0, —n} = Vp"h,. Therefore, from the definition (37) of the Weyl function and from (47), (51) we obtain

M (Mhy = rl‘?(x.)rz{o, ~n} =T FAT{(A, - 1), MA, Ay in} =T {(A, -A)'n, M4, - A)yln}.

Consequently, for each h, € H, there exists the strong limit
- liTmM(iJ’)hz = liTmF;{(Az —iyYyin, iy(zi2 ~iyyin} =
- re= 61)
=T {0,-n} =h; = Vh,.
Equality (61) proves (54) and statement 2.
3, 4) From Lemma 4 we obtain the following equivalence:

he 3 © VO) oy LAD) Vi ep(d,). : (€2)

Indeed, by virtue of (45), we have I'|{0, f} = y*\f vf € A(0), N € p(Ay). Since VR(0) = {I,{0, f}; f € A,(0)}, we
have h L Vp(@ ©h L v*(MAL0) ® y(AMh L A,(0). Besides, the equivalence (62) follows easily from the Green formula
(16) for f = £, = {y(OOh, A\y(\h} and g = 1t = {0, n} € A,.

Further, from the identities (39) and (33) we find

M), _ M'(i)h+

)= MOy (1 Dy non =(1e2 1Oy ok 1+ 2 o). (63

Taking in (63) the limit as A = iy — ic and taking into account (43), we cbtain

M{iy)

S*I'T b —=h =Y ()P0 YDk = FI{O PA2<0JY(1V1} (64)
yTe

Relations (35), (56) as well as the equality By, = y*(i)PAz(o)'y(i) and the inclusion R (Byy) C V(0) follow from (64) and
(62). The theorem is proved.

Remark 2. The existence of the strong limit in (54) (but without the connection with Vy) for vectors h, satisfying
condition (53), is valid for any R-function and follows from its integral representation

M(z)=A+Bz+ J-l-i—[idF(t) A =A"B 20, [dF()e [#. (65)

-0
-

Indeed,

o

y Im (M (iy)h, ) =y* f

—co

and, consequently, the limit in (66) is finite exactly when h € ker B N I,(F), where Z,(F )= {he A }’:0[2 d(F(n)h, k)<°°}. :
In this case

1412

> d(F(tHh, k) + y*(Bh,h) (66)

lty+l

M(iw)h¢s-liTrnM(i)')h=s~lunJ‘ dF(tih=— de(t)h
y o0

(67)

Remark 3. Statements 3 and 4 of Theorem 1 can be derived also from (53), (54) by passing to another SBV {%H,
Iy, Iy}, where T'y = T, I'; = I}, or from Lemma 4.

We note that dimH, + dim Vp(0) = dim 7, and the equality (55) is satistied for each b € H exactly when A, is
an operator. In this case we have the equivalence
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2(A) =9 & limy Im (M (iy)h, h) == Vh & 30\ {0}, (68)
y o9

Further, the relation (56), equivalent to the presence of the linear term Byz # Bz in (65), characterizes extensions Az that
are not operators (i.e., A5(0) # {0}). Due to condition (56), the Weyl functions of the extensions A, € &) \G@) play
an essential role in B. S. Pavlov’s and his collaborators’ investigation [13].

Remark 4. The limits along the imaginary axis in (54)-(56) can be replaced by the angular limits for A = o, A €
IL=N€C,;0<e<argh <7 — ¢} ’

3. We characterize the angular boundary values of the Weyl function for A - a = d. For this we introduce the
notations

R,=mz, N, = {N,aN,},
WAy =4 N, Ni(d)=, © R4 (69)
and we define the Hermitian relation V, and the operator V; (compare with (52)):

Va$rﬁd ={'{1“2]?:1’rlj:a};faE f";la}’

” ™ 7 ~ ~ - T (70)
V) =TR, = {{T,f . T\f 3 fe ML
From (70) we obtain relations that are similar to the relations (52):
V,=TR, =TV, (4) ® N(4)) =T R,(&) + TR (&) =T N,A&) + V. (70"

Clearly, T’ N,(A) is the indeterminate part of the relation V,, while V] is an operator which, in general, does not coincide
with the operator part V; of the relation V, (Vi = Vi = V_if V,(0) = {0}). In addition,

A za+f =4, B, ={f={,d)fe M) (7D

The following statement is obtained from the Hermitian property of the operator A, of the form (71) and it is well
known (see [3]) in the case D(A) = 9.

Statement 4. Let A be a Hermitian operator in§), D(4) = H§, < 9§, Py = Pg ., n,(A) =n(A)=m<woanda =3 &
op(A). Then .
dim ker(Ag,, - aPy) = codim[(A - a) D(A)] < m.

Proposition 5. Let {H, T'|, T} be a SBV of the relation A*. Then
. - . l _ - .
1) he DV) @ix{xa-;-,hn(M(aﬂy)h,h)@o @lyg%ylm(M(a iy)h,h) < oo; 72)

2) for each h € DV,) there exist the strong limits
M (a)h = s — limM (a + iy)h =s — imM (a - iy)h =V, h, (729
ylo- ylo

and, moreover, M(a)h = VZh = V_ h if V, is an operator (i.e., V(0) = {0}).

The proof is analogous to the proof of statements | and 2 of Theorem 1. However, it can be derived directly from
Theorem 1. Let (A — @)~ ! and (A* — @)~! be the relations that are the inverses of A — a and A* — g, respectively. We
define a SBV II' = {{, I';’, T',’} of the relation (A" — a)~! by setting

T {f —af. ft = DT, (A" —ay == {{f ~af.f; f={ff e AD,i=1,2. (73)
From the obvious equality

0=(¢" -0 =" ~af~ & —aff)=-(R-a F- =~ £, ),
in which {f, '} € A, £, € Tt \(A), there follows that T1,((4 — a)1) = Tyyq_n(A), where T ((A - a)1) and T y(A) are the
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defect subspaces of the relations (A —a)~! and A. Therefore, by virtue of (73), the Weyl tunctions M'(A) and M(A),
corresponding to the SBV {H, I';’, I',"} and {H, T';, I',}, are connected by the equality

M0 =TyM) =TT I f,(a —ayly! =—T,T, P A, ey A =M (Tl—?} (74)

Further, the indeterminate part - 1’ = {0, '} of the relation (A* — a)~! coincides with ‘ft,(A). Therefore, the exclusion
relation V. and the operator Vp.” are connected with the relation V, and the operator V; from (70) in the following manner:

V= (I T} = {Fz,-rx}ﬁe(A)={{h?’_h‘}’ h=Tif g, fae Rgt=-V,
V= {0, T (Ay) = {Ty, T 1Ay =V,

Now the relations (72) and (73) follow from the relations (53), (54) and (74), (75).
Remark 5. Relations (72) and (72') in terms of the integral representation (65) of the function M(A) obtain the form

(75)

1472 T \
f HAF (O h)< o, s—imM(a+iph= | 2 dr(n.
(t—a) ¥40 t—a

—00 ad

From Theorem 1 and Proposition 5 we can obtain the following characterization of the relations Vp and V, (see (70))
in terms of the characteristic function C(\).

THEOREM 1'. Let fH, T}, T',} be a SBV of the relation A*, and let Vp = Tl . Then:

1) h = hy + ih,, where {h, i} € Vp & 11%2( A =1l CEy)R Nl < oo;

2) for each h = hy + ihy ({h,, h} € Vp + i) there exists the strong limit

Clico)h = 5 - li%n CliyYh = h-2iV+iylh;
y oo

3) h = hj + ihj, where {h,h})e V,& liﬁ}w < oo;
y y
4) for each A=k +ihy ({hy,h} € V +i) there exists the strong limit

Cl@h = s~ imCla+ iy =h -2V, + iy'h.
y

Proposition 6. Let M;(A) and M,(X\) be the Weyl functions, corresponding to the SBV {H |, I'\’, I','} and {H,, T',2,
I',2} of the relation A¥, and let U be an isometry from ¥, onto ;. Then

MV =X, UM,A) U+ X15) (X, UMW) Ut + X0y,

h X=(X” XIZJ—A i N N
where Xy, Xop is a J-unitary operator in 12d = (—i] 0}-4
COROLLARY 7. Suppose that, under the assumptions of Proposition 6, we have ker I'y = ker I'3. Then M(\) =
CM,(MC* + K, where C = XU, K = X5X;* = K*. -
The proof of Proposition 6 is analogous to the proof in [14, 15] for the case 1’—3(—25 =9.
Remark 6. For the case 5(:4_) = § C(\) has been introduced in [14], and the Weyl function M()\) in [16, 17]. In
[16] (see also [18, 19]) Lemma 3 and Proposition 4 have been proved for this case.
4. The Formula for the Generalized Resolvents.

1. LEMMA 5. Let A € p(A),A C A C A" andlet A, = A + flk. Then the following equivalences hold:

Ag O'P(A~) = A andﬁk — are disjoint; (76)

Lep(d)e /iandgx — are transversal. {an

In addition,
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ker(A — 1) =m;(A N T,), dim ker(4 - 1) =dim(4 N T,). (78)
i Proof. 1) Since X € p(A), there exists an extension A, = Aj such that A € p(A,). Let X € g,(A), i.e., 3{f, M} €
A. According to (34), we have {f, AMf} = {g, g'} + {f), My}, where {g, g'} € A2, fa € Ny. From here g’ = g and,
therefore, g = O since A & o (A')) Consequently, {f, Af} = f) € A. Conversely, if 3{f, '} = {f, + f,, Afy + M} €
A, then §) = {f, f'} — {fa, AfA} € A. The equivalence (76) has been proved.

2) Let A € p(A) and {f, f'} € A. Setting

g=(A AN =M, g =U+MA -V -2), (79)
we can see that {g, g’} € A and
(A-A)p g ~F) = (@~ R)fy (A =MW =M =) = Fuf '~ M)~ A=KV ) = (£ ) - Af0 ) =0 Vf, € DA),

e., fiz8—fe . But then from (79) we obtain g’ — f' = A(g — f) = Mfy. Therefore, {f, '} = {g, &'} + {f, My},
which, taking into account (34) and (76), proves the transversality of A and A,.
Conversely, if A and A, are transversal, then for each {g, g’} € A, we have the equality {f,, £,'} = {f, '} + f),
Wh~ere {ffre A, f;‘e fh;‘. From here, ' — M = f,' — Af, and, consequently, R(A _A,)=R(A2_x) =9, since A €
p(As).
Proposition 7. Let {H, T, I';} be a SBV of the relation A%, let M(\) be the corresponding Wey! function, let
6e 8 and X € p(A,). Then:

1) Aep(Ay & 0e pO-MMN);
2) heofdy) & 0eoc®~-MQ), i=p,c,r; (80)

3) dim ker(Ay — \) = dim ker(8 -M (1)), codim{(A4 - A) DA)] = codim{(® —M (A)) DO)L.- and, moreover, f =
FMre Ay o ,f € kel@-MQ)).
Proof. Since A)\ = AM()\) (e, t € f\x Tt e gr M(\)), the chain of equivalences

Lec(Ag e ern Ay=DA) =8N gMA) = {0} = 0 ¢ 6,0 - M(L) @D

following from Lemmas 1, 5, and Proposition 3, proves (80) for i = p. Now, statement 2 for i = ris a consequence of the
obvious relations
Lec(Ag) &L €O (Ag) (Ag) =Age, M(R) =M (L)'

Now, from the same lemmas and Proposition 3 we obtain that A & p(Ag) & Agand Ay, are transversal & 0N grtM Q) =
HB Ho0e p®-M Q). Since o (T) = c(T)\(op(T) Uo() VT e B(®) » the equivalence (80) is proved for i = c.
Statement 3 is a consequence of the equivalences

FeltMieAges f=fe A4gN N, &Tf €0 gM}) o I,f e ker(@-M (1))

2. We recall that an operator-valued function R, = P(A — A" Lt o holomorphic in €, U C_, is said to be a
generalized pseudoresolvent of the operator A, written Ry € PQ,, if A € B(9) is a self-adjoint extension of the operator A,
acting in a Hilbert space $> 9, P being the orthoprojection in $ onto $. The set of generalized resolvents R, € PQ,,
for which A € B(®)(i.e., A € A" is an operator), will be denoted by {,.

In the collection of the extensions A € A* € T(§), generating the resolvent Ry € PQ,, there exist minimal ones,
ie., such that § is generated by the lineals & and (A — N)7!'9 (N € €, U C_). Any two minimal extensions are
unitarily isomorphic.

Following [20], the family of relations T(A) &€ B(®) is said to be holomorphic at the point Ag if there exist { €
p(T(\) and &€ > O such that the resolvent (TO\) — )~ ! is bounded-holomorphic [20] for | A — Ay | < e&.

THEOREM 2. Let §{, I';, I',} be a SBV of the relation A”, let M(\) be the corresponding Weyl function, and let
Aep(A,),9,=D(A), N = 9. Then:

1) the equality (Ag—Ay' =y~ M1+ )@ M Q) ¥ () (82)

establishes a bijective correspondence between the resolvents of the proper extensions Ay of the operator A and the closed
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linear relations # inH;
2) R,g is a solution of the following problem with a spectral parameter 7(\) € (R) in the boundary condition:

(Ao, =N =g~n(ef'~A=g), (T, .~ T fYet). f={fhn=Pyf, (83)

R, = (‘Z—/c(l) =ML ) =1.R)e (IR)}}( AreC, UC), (84)

where A—r(k) is a holomorphic family of (proper) maximal accumulatve extensions of the form (20);
3) the formula (for generalized resolvents)
Ry PA-W1T O =(A_-2)" =
= (A =M1 = R)ER) + MO Y (R) i
establishes a bijective correspondence between the generalized resolvents Ry, € PQ, and the functions 7(\) € (Ryy.
Moreover, when A, is an operator, then Ry, € Q, if and only if 7(\) is M-admissible, i.e.,

(85)

: =1 fmss. - \
s— il%gy (iy) + M @y)y1 =0. (86)

Proof. 1) Let f € $. Then A )
FoM) = {(Ag -V f+ MAy -y el

Fo) = LAy - MY Ay(A, - M) I ed,, (37)

Since the extension Ay is proper, it follows that £, = (44 - A7'f - (4, - Ay!f e T, and, consequently, Ty = {f, M} = IROR
f'zo"}e n.

Assume first that § = B € B @). Since A € p(Ap), it follows that 3 (B — M(\))™! & [H]. Therefore, from
Lemma 4 we obtain

(T ~BI)(F o) = £,(A) =Ty F,(0) = —y*R)f, )
(Ty =BT AB - MO )= (M (L) - BYB - M M)y (R )f = —(L)f. (89)

Formula (82) follows from combining the formulas (88) and the fact that I', ~ BT, is an isomorphism from flx onto M, since
A € p(Ap). _ _
If 6e G(H)\T(H), then in this case from (87) and Lemma 4 we obtain

ATy Ty HF o) = {T, T M F 5 + £) = {T, Fo, Y (R + M (T, 3. (90)

Since {T, I';}f,(\) € 6, from (90) = {Tzf YA Ye 8-MQ). According to Proposition 7, we have 0 € p(8-M Q) (&= A
€ p(A,).  Therefore,

Lofy= @ -M G RY = Fi =1O-M Q)Y R)f o

Combining (91) and (87), we obtain formula (82).

2) LetRy = PA-M1 1 8, Le €, UC, andlet A’ be the operator part of the relation A. Since Ry(A ~ A)f
=f(vf € DA)), it follows that YA € C, U C_ the relation TA) = R}' + A = T(A)* = (R;1)* + & is an extension of
the operator A. We show that it is maximal accumulative (dissipative) for A € C. (A € C_). If {f, '} € T(\), then {f' ~
A, E (T — N7 = R,. Therefore, if we setf' — Af = g, ¢ = (A — \)7lg, then we obtain (8 = ImA < 0)

Im(f’, f) = Im(f* - Af, ) + Im(Af, /) = Im(g, R, 8) + Bl R, g 1 =
=Im((A" - A)Q, @) + B PO 2 =—B[ Il 2~ 1 P IR ] =PIl (I - P)p 12 < 0.

According to statement 4 of Proposition 3, the extensions T(\) are proper: T(\) = A _ 00> Where 700 .= #(A)" is a tunction
with values in the set of maximal dissipative (for A € C_ ) relations in®. For the proof of its holomorphy wé make use of
the identity, following from (82),



() + MO =y (A, - Ay = R, Jye(R) L 92)

From (92) we conclude that 7(A) + M()) is holomorphic in C,. U C_ (0 € p(r(\) + M(\)) VA € C, U C_). Since M(\)
is bounded-holomorphic in C, U C_, it follows (see:[20]) that 7()) is also holomorphic in C, U C_. Thus, 7(A) = 7(N)"
S (R)H and the relation (84) as well as its equivalent (83) are proved.

Conversely, if 7(\) = 7(A\)* € (R)y, then A-r(k) is a holomorphic (by virtue of (82)) family of maximal accumula-
tive (for N € C,) relations from 5(8). Then *9-2 = A_T()\)(O) does not depend on A € €, U C_ (see [21, 22]) and we
have the relations

'f) =‘ﬁ] D @y A_1(1)= 15.'_1()”)@ 3.:’72 (‘52 * {0,‘92}),

' (A—tm -wt = (A,—'r(k) ‘}‘)',1 ® 0"2’ ©3)

in which A__ " and 9, are the operator and the indeterminate parts of the relation A_ > while (A _)-Mle ®g -
From (93) we conclude that

s= ImiyRyf=s -limiv(A ) - DY =-Pf Vfe D, on

where P is the orthoprojection in H=9 @ *92 onto 9 ;- According to Naimark’s known lemma [3] (more precisely, its
generalization to a holomorphic family of relations [211), there exist a separable Hilbert space :9 and a relation A, self-
adjoint in & , such that (A_,y — M)~ = PA-M'T Y (P= Pg is the orthoprojection in $ ontn ). It is easy to
show that A D A. Relation (84) is proved.
3) Since A, is an operator, from the equality (45) we obtain
im (£ iyy'(F iy)f=
o (95)
= Im DG D)A, =) XAy - Y A ft =~ Ty {f A, 1.
If 7(\) € Ry, then GA) = ~(1h) + ML) e (R),, and assumes values in [H]. From the integral representation (65) of the
operator-valued function G(\) there follows the existence of the strong limit

. G(A) . A+ M) .
S'Qi‘zo‘(“=8‘££‘3°[‘((_)7(*)‘)“] +Bg= B, Bg < 124, 00
From (95) and (96) we have
31 . . . V- IN (i . (T()+M _1. ¥ . “ %, . e
M ))ED) + MO = il%?o(‘ly"—ly(i»“ DY (- )= )y (zy)fj=—|| BTy f. Ay £} o)

Here we have used an elementary statement: if f, € H and 3 lim f, = f, while T, € [H]and3s— lim T, = T, then 3
n—oo

. -~ n—o
lim T f, = Tf. Since s— li%niy(A2 ~iyyl=-1, from formulas (82), (97), and (94) we obtain
y o

n-co

~HPyfI2 = 1'11{2 MR, f, H= iiTxPoiy((ﬁ_,(iy) —iyyIf, ) == UfI2+ 1 BEET\{f, &, f1 12, (98)

According to (94), R\, € Q, (i.e., in (82) A€ ‘G(jj)) exactly when Py = I g. Therefore, by virtue of (98) we have the
equivalence

. . - 12 -~ -~
R, e Q& 5= ImiyRy =g ¢ BET\{f, 4,1 =0 Vfe »(A,). 99)

Since the extensions Al and Az are transversal, it follows that I';(gr Az) =M and the equivalence (99), assuming the form
R, € Q, ¢ Bg= means, taking into account (96), the M-admissibility of 7(}), i.e., the equality (86).
_ COROLLARY 8. Let {H, T, I';} be a SBV of the relation A% letd, € Bn, i =L.2.Aep(dy)Nnp (591)
N p (Ag,), and let -Gp(fl) - be the Neumann—Schatten ideals in  [$]. Then:
D ve € p(d) N p(d,), we have
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(Ao =M Ay, -V e 6,@) & (8, - ()1 8, - L) e CRE (190

2) 7\91 and AGZ are transversal - < 0 € p(8, - {1 8, - ).
Proof. From the resolvent formula (82) we obtain

(A, 1! ~(Ag,- )" € €, ) & (8, ~ MO -0, -MM)) < G (7. (101)

Since’ A € p(Ag)N p(A,), it follows that 0 € p(8; — M), i = 1, 2. Therefore, VA € p(Ay) and v € p(8) we
have the identities - R
[+ (€= MONO® - O =1+ MM - DO - MM,

[+ © =0 1C~ MONT =1+ (8~ MO M) ~ ), (1o
and, taking these into account. we find
(8= M) - Oy~ M) = (8, = O UT + ( ~ MO, - {11~
U+ 8 =0 G- MO0, = O = + @, ~ O UG - MOY) 1T (103)
X (6 =01 =@~ O I+ (€ ~ MO))©, - ) 1T,

From here we obtain the equivalence (100).
Statement 2 is a consequence of the relations (23), (103) and of the equivalence

0 € p((Ag, ~A)" = (Ag,~ A1) & 0 € p((8; - M) <8, - M),

which, just as (101), is derived from the resolvent formula (82).
COROLLARY 9. If 8, = B, € [H], then we have the equivalence

(Ag,~N1~(Ap, -0 e €,0) =B, -B, « 6,17

Remark 7. In the case D(A) = and only in this case, all 7(\) € (R)y are M-admissible. In this case (D(A) = )
tormula (85), being a generalization of M. G. Krein’s formula for the resolvent [22], and Corollaries 8, 9 have bzen obtained
in [16-19]. For the connection with A, V., Shtraus’ formula [23], see Sec. 5.

Remark 8. In Theorem 2 the formula (86) has been obtained from (84). We show how, starting from (86), one can
obtain formula (84). Let G()) be the right-hand side of the equality (86). Then T(A) = G(\)~! + Al is a proper extension of
the operator A for each A € C, U C_. Therefore, T(\) = AG(A)’ where 8(3) = TT() e &(2). From Lemma 4, taking
into account the notations (87), we obtain, assuming for the sake of simplicity that 7(A) € B(H ) (i.e., 7(AW)(0) = {0G}),

T,fo=Ty(Fo— F2) =-TyM)() + MY W R ) = ~(1(h) + MY Iy (L)
T fo=Tf, TR + MO WX = (F- MR)ER) + MO TR = 10000 + MOy Ry

From here Tfg={Tyfq. T fgl € ~wh), ie., 600) = —7(\) and T\ = A_ .

3. Let € be a subspace of $. We recall that the operator-valued function P eR, 'L, where Ry € POy Ry € Q,),
is called a ¥ -pseudoresolvent ( L-resolvent) of the operator A and their collection is denoted by - PQ§ (Qﬁ), _The monotone
operator-valued function Z(z) = PgE() M’ =3 - 0)is called an € -spectral function of the opérator A if E(t) is a general-
ized (with output in $o8 spectral function of the operator A. The function Z(t) is said to be orthogonal if E(t) is
orthogonal. The relationship between X -pseudoresolvents and € -spectral functions is given by the formula

Y0 o (dEQ)
PQIR}‘.;\Q - f‘t':i—' (IRA‘= Pg)(A ‘-;s.)—l F.ﬁ = f:.x.).
If P, is the orthoprojection in & onto the operator part 9, of the relation R, then
E(eo) = 5 -1i = [ - j
() = 5 -UmE(®) = P}, (oo) = 5 lim%(s) = PP, M€

(see (94)) and, moreover, if £ & Tt = H}, then N=)=lp o R, € Q,.
We recall that the matrix-valued function



aj(A)  ap(R) MO L
Unehy=| LA Y .
) (021(7») 7 (122(7\.)) (PQYO\-) Po(&y - 1)t TQ} Aep(4,),

is called the TIL -pseudoresolvent matrix of the operator A, corresponding to the SBV IT = {H, T';, T;}. To describe the
collections - PQ and - QA (dim€ = n (A)) we introduce the IIK -resolvent matrix ~ Wre(A), corresponding to the SBV II
= {Q’ rl’ I‘Z}s

o1 (A)  0p@R) Apdy  apasla —
A) = = | 922012 34140y — a4y
ne®) ( ) J (104)

01(A) @A) ajy apay

It is holomorphic on the set of X -regular points - p(A; £)- of the operator A NEPMADoH=UA- -dp)DA)+ O and
assumes values in [X & K] by virtue of the equivalence 0 € p (a1p(Ap)) & Ay & p(A; Q).

THEOREM 3. Let Il = {Q, I';, T';} be a SBV of the relation A™, let - Wpo(L) - be the corresponding  IT% -
resolvent matrix (104). Then the formula ‘

PR(A =1L = [0 ()th) + 0001wy (WA + 0]

establishes a bljecnve correspondence between the Q-pseudoresolvents Pgle M e PQ§ and 7()\) € (R)¢- Moreover,
PeR, ML et & 7(\) is M-admissible.
Proof. Since Pg maps isomorphically Jt, onto £ VA € p(A; L), it follows that (112(10)1 e [Q] Therefore, from
(82) we obtain
PR, P 0= Po(A ~ A1 1C = Po(d, ~ Ay 1 — PeyA)(T(h) +

+ MO R TR =ay(h) ~ay(M)ay (M) + A tap (V) = ay(A) — @y (Wap; W) + ay (W) =

= {"22 [a73 18) + a3 an] = ‘121}[ aiy ) + a3} a”] =101 AMTR) + @ M)ey AT + ey (W] L

A reference to Theorem 2 concludes the proof.

5. The Relationship with the Classical Approach. 1. From the results of Sec. 2 there follows easily the description
of the various classes of extensions of the operator A in terms of the von Neumann formulas. We consider for this the
canonical SBV #{, T'\%, I',9} of the form (17):

H=P, I} =m(P,+ 0, ® ), 13 =_i7‘_1(3°;+(j036-i)- (105)

According to Proposition 2, vii = {0, n} € Tt we have
0 Pon —FPy 1
LOV_[Ja), [ [T (106)
2iln Afa Aan‘_n zPﬂ_‘_n

T\A =2iP - U )n Tyii = 2(Pq + UgPp ),

From (105) and (106) we obtain

V= {{(Pq,+ UgPq)n, iPn - UpPp JnYine Tt = D5}
Therefore, the operator

Vo =1-2i(Vp+iyl = {Ppn UpPp n};ne MY, (V) e (MY (107)

coincides, to within the isometry —U,, with the exclusion operator V, (e [ﬂ,,‘.ﬂ",]) of the form (12): V, = —U,yV,.
Further, if A C A C A", then

Fed=AyeTfe0= TA={{~i+iUsf, fi+ U}k F = Fut Fit 7e AL,

From here we find the Cayley transform ®’ of the relation 6 under the condition —i & o,(6):
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O = 1200+ = {f, Usf}; Fu=Puf, f=fatFivF, e A} (108)

Setting ® ¥ —~Uy"®’ and taking into account (107), (108), and the obvious equivalences

8N Vp={0} & ker (V, - &) = {0} & ker(Va - ) = {0}, (109)

we conclude that the admissibility condition assumes the known [4, 7] form: (V, — &)f = 0 & f = 0. We sum up the
presented facts.
Proposition 8. The formulas

DA)=DA) + (-D)DD), D@ < T, (110)
Ay +f,-OF) =Afy +if,+ ), 3 =fa+fi-f; (n

establish a bijective correspondence between the collection of proper extensions A e B(®), for which —i & op(f\), and the
collection of admissible operators ® e T, T)). Moreover: ‘

D ®@=(A-A+iyi M N RA +i); (112)

2) A is Hermitian (dissipative) & & is an admissible isometry (contraction) from (®) < T, into R(®) < N

3) A is self-adjoint (maximal dissipative) & & is an admissible isometry (contraction), tor which (@) = ﬂ‘-, R(d) =

I, (o@)= 7).

Proof, The relations (110), (111) follow from the first Neumann formula (14) and the relations (108}, (109). One has
only to make use of the obvious equivalence —i ¢ ap((?) e~ ap(f\g), which, besides, is a consequence of the equality
M (i) = ilp, [see formula (118)] and Proposition 7. )

Further, formula (112) follows from the relations (111), rewritten in the form  2if; = (A + )(fz.—Fo)» 2Pf;= (A - D).
(fy =7 . Statements 2 and 3 are consequences of formulas (110), (111) and of Proposition 3.

Remark 9. The description of the Hermitian extensions A € B(8) in the form (110), (111) has been obiained in [4],
the dissipative ones in [7, 24], and all proper ones in [24] (see also [25]). In these investigations the relations (110)-(112)
have been established with the aid of the Cayley transform. We mention also that the relations (110), (111) in the case ~i &€
ap(f\) can be replaced (see [24]) by the following ones:

NA)=DA)+ {fi-g,{frg;} e Ol A, +fi~g)=Afs +if+g))

2. Let Co() be the characteristic function corresponding to the “canonical” SBV of the form (105). Then 9 + irg
=2m®, I - iy =2m 0, P, If fo={f, My} € M, then, according 10 (14), we have

Fo=F a0+ FOO - F00 (F (= U0 ALY Fur = U 2 e Ty, (113)

From here ﬂl?,fl = f, ;U, P_ifs = Ugf,; and CoM) f;(A) = —Uyf AA). Writing relation (113) in the form of the system
of equalities

A=fa+fi=fi My=Af+ ¥i-i;

(114)
and taking into account that A,ﬁ = A -i-f't;_ (see Lemma 5), from (114) we obtain
24 = Afy - My 2 iy~ f) = (A2 0)(fy ~ £
From here, f_; = (A, — i)(A, + i)~!f; and, consequently,
Co) =~Uy( A= i)Y A+ iyt | R, (115)

Equality (115) means that Co(N) differs only by the isometric factor — Uy from the characteristic function in [7]. Thus, in the
case of a SBV of the form (105), by virtue of (115) and the equality V., = —U,V,, Theorem !’ and Proposition 5 coincide
basically with Shtraus’ results, proved in a different way in [7].

3. We find the expression for the Weyl function My(\), corresponding to a SBV of the form (103), assuming that A,
= ker I, is an operator. According to (34) and (28), we have )
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2 ij_( Upfi J_(ﬁj NSy
& [Afx M, f )~ ) TR ﬁ;,k(,;z_x)_xﬁ}ﬁe R, (116)

rg f?s. = —'l‘fi = KA‘M = gf)u '}’(7\,) = U!}X(l) = iUi?\.[fn," (1 17)

From here we obtain

Now from (116), (117), and Lemma 4 we obtain

(A -2 f; \{
Fit My =07 )
=[I-ih~DPRULY,

Iy f =J§+(7~—i)r1o( =fi+ 0=y A )f=

Consequently,

MyA) =Ty) = PRli+h-nUZI M T, =PpAA, + D(A,-A)1 p . (118)

Thus, in the SBV (105) (uander the condition that AZ is an operator), formula (85) for the generalized resolvents assumes the
form

Ry =(4,- 17 = (Ag - 0A, - ') + My Py A, + (A, - 1), (119)
where Mg(\) is defined by the equality (118). In the torm (119) it has been derived by Shmul’yan [26] from Shtraus’ formula
[23] (see also [27], where a formula, close to (119), has been derived also from Shtraus’ formula).

We note also that, although the characteristic function and the Q-function of a Hermitian operator A have been
defined (for the case D(A) = § and n,(A) = 1) already in 1944 by Livshits and Krein with the aid of the equalities (115)
and (118), respectively, the connection between them has been detected by Krein and Langer only in 1973. On the other
hand, Definition 7 makes this connection obvious. )

Let (\) € (f{)}(. The indeterminate part H2. = 7(A)(0) of the function 7(\) does not depend on X € C, [22].
Consequently [21, 22],

M =10 @ H2, H2= 08 H2, 32 =10)0), #'= 0O 372,

where 7;(\) is the operator part of the relation T) (1;(4) € G(HY) VA e €,). If 7;(\) takes values in [H1], then we
define the Hermitian relation 7(ice) by setting 7(ice) = 7,(ice) © H 2, where
T (i) =5 - iiTx?otl(iy)f Vfe 3 % {fe s, %2 y Im (1,(iy)f. f) < o}
We give without proof the following M-admissibility criterion.
Proposition 9. Let {{, I';, T's} be a SBV, let M(\) and Vp be the corresponding Weyl function and exclusion

relation, and let 7(\) € (f{)}c. If the operator-valued function 7;(\) takes values in [H,], then the M-admissibility condition
of 7(\) is equivalent to the condition of admissibility of the relation —7(ie), i.e.,

§= i%gy'l(t(iyﬂM(iy))-‘ =0 & ~1(ies) N V- = {0}.

_ 6. Examples and Applications. 1. Let e be a unit vector of the Hilbert space 9, N = (e}, §y = nt=9 0N,
A=A"e B(®). . The operator.A = A I § is Hermitian, n,4) = 1, Aép = Pgoﬁ. It is easy to see that- f, = (A ~A)le,
e, e, M@A=N](A) . We define a SBV {{, I';, T} of the relation A= {{f, Agpf+ cey), fe D(4,) ¢ € €},
setting

H=C r1f=(f,€0), T2f=(f,A€o)"C(f={f’A(‘)‘pf+C€0})- (]20)

From (120) we obtain
Agph =Py A(A-1)"eg = APy (A~R)ep =My, — A e0)eo,

TA =0{fi. M=) Tof = (fi.deg) = Mfr.e0) =1
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Consequently, the Weyl function has the form

MO =(fe0)=((A-2) e ,e(,\ f@@fﬂ’ﬂ?) (121)

The case dim M = n < oo is examined in a similar manner. Setting A= A ?‘9 (ﬁo =9 O M), we obtain a
Hermitian operator for whichn,A)=n, T, (4) = ML (A)=(A -1 . The SBV {H, I‘l, I} of the relation A™ = {{f, Af+ n};
fe MA) = D(AOP) -ne J1} is defined more convemently than in (120): #=TN,T f Pyf, F2f =—n(f ={f Af+n}).
Since fﬂ_"{(A AlmneN), we have T f),—r {(A =Ayln, M(A -A)ln} = Psn(A ~Ayln, I‘zf;~= n. Thus, the corre-
sponding Weyl function M(N) coincides with one of the T -resolvents of the operator A:

M) =Py(A -2t T 0L (121

2. Let § = L[0, ), let {¢,}& be the standard basis in 5[0, o), and let A = A” be the operator generated in /, by
the Jacobi matrix associated with a certain moment problem:

Ae,=b e +ae, +be (b ,=0,b,>0,a,=3,.keZ). (122)
Assume, as before, that A =A [ 9,(0,=9 © ¢p).. Then the equation Ag_,,yz APgy (A(;p-‘: P@oﬁ) is equivalent to the
finite-difference equation :

Beo1¥i1 + @Yt B =My k=1,2,3,... (123)

Therefore, from the condition n, (A) = 1 there follows the existence (and uniqueness) of the solution {y,(\)}§°, belonging to
L[0, o), of the equation (123). If P(\) and Q. (M) are orthogonal polynomials of the first and second kind (28, 29], then the
solution {y,(A\)}§5" can be represented in the form

(A=) S nhe = Y[RMoM) + QM) (= Ty,

k=0 k=0

where the function w(A) is such that
YA Mok + QM <. (124)
k=0

From (120) we obtain F;f'}\ = T'\{f), M)} = o(d). Consequently, by virue of (I21) we have w(\) = M(A) = (A —
N~ leg, eg) and, therefore, w(A) € (R).

Remark 10. The fact of the existence of a function w(A) (€ (R)), satistying condition (124) (and also its properties),
constitutes the content of the finite-difference analogue of H. Weyl’s theorem, involving the Sturm— Liouville equation on the
semiaxis. Thus, in the above given operator proof of this theorem, the analogue of the Sturm— Liouville minimal operator on
the semiaxis is a nondensely defined operator A. According to the equality w(\) = (A — N leg, gg), the measure o(t) =
d(E(teg, o) from the integral representation (121) of the function w(A) = M(A) is a solution of the Hamburger moment
problem

S = ftkdc(z) (=(Afey e)), ke 2,

-0

(125)

generated by the Eq. (122) (e, is the generating vector).

3. Let A be the Hermitian operator in 9§ = 510, o], generated by the Jacobi matrix associated with the moment
problem (125). From statement 4 one obtains the following proposition, due to Hamburger (see [28]).

Proposition 10. In order that the moment problem (125) be determinate it is necessary and sufficient that at least one
of the series

Y Bia)P, D0, a=7
k=0

k=1 (126)

be divergent.
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Proof. Necessity. The indeterminacy of the problem (125) is equivalent (see [28, 29]) to the relations n(A) =1e

IR < o -, from which, by virtue of (124), there follows 3 QM < oo,
k=0 , k=1
Sufficiency. Assume that the series (126) converge. Introducing the operator Ag= A [ 8, (8,9 O ¢y). we show

that n(Ag) = 2. Since - f, * {A (@)} € ker(4 - a) and f,¢ D@A,), it follows that ker(A, — a) = {0}. Indeed, otherwise
we would have dim ker(A ~ a) = 2, contradicting the fact that the spectrum o(A) of the operator A is simple (0(A) is
simple since e is a generating vector for A). Further, f, = {P,(a)}§’ and 2, = {Q@)}$° are solutions of (123) for A = a
and, consequently, f,, g, € Tt (Ay), i.e., dim N1, (Ay) = 2. According to statement 4, we have n.(Ag) = 2. But then
n.(A) = 1 and the problem (125) is indeterminate.

Remark 11. Analogous arguments can be applied to higher-order finite-difference equations. We mention also that
the consideration of the operator A, gives the possibility to give a natural (operator) interpretation to the polynomials of the
second kind: & = {GM)}] (e M4 N Hy) is a semidefect vector of the operator Ap-

4. Let {sk}%“ be a strictly positive sequence, let § be the Euclidean space of the polynomials C_ft] of degree at most
n with the inner product

&)= X siuoBe =Yk, ey= Y B e € ). (127)
k=0 %=0 k=0

Assume, further, that {P,(t)}§ are polynomials orthogonal with respect to the sequence {s.}8" of polynomials (of the first
kind). We considerin §y = & © {P,()} - the Hermitian operator A (€ [§y» H1) of multiplication by t. Then A* = {{f, A’ S+
P, };fe B, ce C}, where A * = 9, 9,1 and
Ae= PO = by (Pr )+ PO + byPr (), 0Sk<n-1,
Agpe =Ae, (0Sk<n-2), Aye, 1=b, £, ,+a, e, |, A;:> w =0, 160 (128)
whereb_; = 0, b > 0, @ = g, 0 < k < n. We shall identify the operator A;p € (9, B, with the operator A; €
[9]1, where A is the zero extension of the operator A (Age, = 0). Setting

H=C, Flf=(f,Pn),r2f=(ﬁbﬂ_]Pn_1+a,an)-jc,f={ﬁA;pf+an}, (129)

we obtain a SBV of the relation A", It is easy to see that

O =hG. = Y BMPRG) e Ty, A5 f(D) = M0 - AP, AP ,0), (130)
k=0 .
T fo=P,0).Tofa=b, P, (M) +a,P,0)-AP ) =-bP, O\, 130

Here £, = {f), My}, h(\, p) = (6, f,) is the polynomial kernel, corresponding to the system {P,(t)}§ (it is also the repro-
ducing kernel of the space § = € ,[1]). The selection of the moment S, , | for the determination of the polynomial P, ;(t)
is immaterial; its replacement by S5 |, changes b, and P, (1) into b; and P/ |(t) without changing their product: b P, ;(t)

= bPn1(®-
Now from (129) and (131) we find the Weyl function M(A) and the operator Vy:
My =——2 2L 10, = €, 1y (0, My = 0, V= (0) 132
' BB (A) 2 Pk T ’ (132)

where Tt = {P,(t)}. The obtained relations illustrate Theorem 1: a) lim M(y) = Vp = 0; b) the Weyl function M;(\),
yie
corresponding to the SBV {C, I';, —T';}, contains a linear term:

My =My = BBy Lf" A+a+ St oo —nty,
n+l1 :

() £}

We mention that the alternation of the zeros of the polynomials P (\) and P, ;(A) and their simplicity are conse-
quences of the equality (132) and of the inclusion M(A\) € (R). The alternation and the simplicity of the zeros of the quasi-
orthogonal polynomials P, ;A\, 7) = Pyq(N) — 7P, (M) (i = 1, 2) are also consequences of the Nevanlinna property of the
Weyl function Ms(\) = P, (N, 71)/Pys1(\, 7o), 7y > 75, corresponding to the SBV {H, I'\1, T,1}, where T}} = (r; —
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)Tl + Ty), 1 =1, 2. We note also that if —o0 < o < Az < f§ £ o, then the zeros of the polynomial P\ (A} are
situated in (o, B).
The application of Theorem 3 to the truncated moment problem

se= [thdo(), 0sks2n-1, [Pdotr) <5, (133)

gives us the possibility to describe the collection V(S; R) of all its measure-solutions ¢(t) and also the subclass V(S, R) of
those a(t) € V(S; R) for which in (133) we have

S2a= [1do(s). (134)
Proposition 11 [28]. Lets = {s,}3" be a strictly positive sequence in R, let P (A) and Q(\) be orthogonal polynomi-
als of the first and second kind, respectively. Then the Nevanlinna formula

[d00) __ 0Bt =0,(0) _ QM) + 0, (A)
-3 1),,4.1(3')'50") - Pn(;“) Pn(l)m(l) + Pn+1 (X)

—~—o0

(135)

establishes a bijective correspondence between o(t) € V(S; R) and 7(\) (= V—w()\)“l) € (R). Moreover, we have the
equivalence ' ’

. 51 Tim va(v) oo | e 1 @) _ o)
o(t)eV(sR ) & 1(M) e (R), ggn(zy)-wk@yg y 0 T (136)

The proof follows from Theorem 3 and formula (132) for M()\) if we take £ = {1} and we note that the - Q»spectral
functions o(t) = (E@1, 1) of the extensions A = A* are the only solutions of the problem (133) and the equality (134) is
satisfied precisely by those o(t) which are generated by the spectral measures of the operators A = A" D A (& Ry € Q4).
It remains to note that the condition of the M-admissibility of the function 7(\) assumes the form (136) since, by virtue of
(132), lim M(y) # oo. Setting w(A) = —7(\)~}, we obtain the second equality in (135), in which w()\) satisfies already
Nevan]inixra’s condition: Hm w(iy)/y = 0.

yle
5. Let A be a Hermitian matrix in C* (A € [C"]), let g be a vector (€ C"). We consider the bordered matrix

- - A g
A=A = « n+1
154 (g a) € [C™]

as the extension of the operator A € [C®, C**!] (a = 3), and we define the SBV {H, Ty, I';} of the relation (see [30]) A*
={{f Af+chife ™ ce )

H=C, rl{fo"{lf+6}¥5’ L{fAf +cl=(f.ep). (137)

Here, {e,}3*! is a basis in C**} e, .| € C"*1 © C". The Weyl function, corresponding to the SBV (137), has the form

MA)y=r-a+g (4A-2)"g, (y(k):l@(A_QL)“lg)_ (138)
From (138) we can easily see that
MOy =_detA=h)

dger(a—n) - & (139)
From (13) there follows the alternation of the eigenvalues {\}} and {,}3*" of the matrices A and A:
Ashishyshs. st <h<i,,,.

This fact is usually derived from the Courant— Fischer variational principle.



From here we obtain, in particular, the alternation of the zeros of the orthogonal polynomials P, (\) if we represent
them in the form

A= det(A - J,c), J = by o b .. O 0
" boby by
0 0 0 ... by a4y
From formula (139) one can derive the converse statement: for two alternating collections of numbers {N\}} and {A}5
. . A
there exist matrices A and A1 = Al =( % g] such that o(A) = {NJT, g(Al) = {)\k}rfﬂ-
g . a;

6. Let Ay = A = A* =0, A = A, — K*K, where A, e B®), KK e B[P], and 0 € p(K*K). We define the
bounded operators Az(n) A ,E; (—oc n), A 1(n= Az(n) K*K. Considering Ai(n), i = 1, 2, as transversal (0 € p(A(n) —

l(n))) extensions of the zero operator A = 0, we introduce the SBV {H, ', T, m} Of the relation A™ = -§ ® 9, by
setting

o= 9. T F =) K - A f), (=12) F={f.f

(140)
Then Tty = (Ax(n) - 1)1 and Vfi= (i, My} (= (A(m) - YY) we obtain
LA =) [-f+K'K(A4m-27"f] LA =E)'f fed.
From here we find the Weyl function M_(\), corresponding to the SBV (140):
M, M) =~1+K(A4m)-1)TK", 1,00 = (A -2 K" (141)
According to [19, 31], for each SBV {H, T';, I';} such that A, = 0 we have the equality
dim Eée (=o0,—€) =dim Eg_pp(_g)(—,0)~ dim Eg_ py(—oy(—=2,0) Ve=20, (142)

where M(0) = s — R — lim M(Q\), M(—«) = s — R — 1lim M(\). In connection with the operator A (=86 =0,
AL0 Moo
trom the equality (142) we obtain

dim EAI(,,)(—"O,—E) = dimE_Mn(_g)(—‘”,O) =dim EM"(—E)(O'+°°) Ve20. ' (143)
Under the additional condition K(A,+A)2 € ©_ the operators K(.§2(n) +A)2e@_ (Yn e 2,),and the spectrum o(A ()

in the interval (— oo, —¢) is discrete for each ¢ > 0. Thereforg, in the equality (143), both sides of which are finite for each
€ > 0, it is possible to take the limit from below for n - « and ¢ = 0 [32}:

) dim E’il (—°°,.-E) = dlm E—M(—s)("‘”vo) = dlmEM(_g)(0’+°°) ’ (144)

where M(\), which, naturally, can be called the generalized Weyl function (it is not the usual one: 0 ¢ p(SM(D) it A, &
[$1) , has the form

M) =-1+K(&~2)"K". (145)

It is easy to see that the relation (144) remains valid also for unbounded perturbations K*K such that 2(g*g) = DK'K] =
K)o DAl = D(P y=D(AY?). -and the form?¥ = by~ ¥g*xis closed and semibounded from below (here  ¥p is the
closed quadratic form, assocxated with the semibounded operator T=T*2m: ;) = T - m)?), bu] = [[(T — m)12u|2).
In this case the operator A,, understood as the form-sum, is associated with the form E: 5 =t=t;-t .., while the
function M(\) of the form (145) has to be understood as:
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M\) =~ + K(A - L) AK(A ~ )12 (146)

We note that relation (144) can be proved directly, omitting the limiting process from (143), and without the condition
KA +ey2e 6,
If GO)Y=1+M0)e Gp, then from (144) for ¢ = 0 there follows the estimate

N_(Al) = du—nE{il (—oo,O) = E }\,}; < aG(O)Hép .

A (G(0))>1 (147

If the negative part of the spectrum o(A,) is discrete, but infinite, then for the eigenvalues A7 (A}) < 0 we have (see
[31]) the equivalence

A A) = 0(n™") & M1 = G(O) = O(r™?). (148)
Now from (144)-(147) there follows the known Birman—Schwinger principle. For its formulation we introduce the Hilbert
spaces D,[A] with the metric [[ul|2 = Afu, u] + ¢[u]|? (¢ > 0) and also (assuming ker A = {0}) the space § ; which is
the completion of DO[A] with respect to the A-metric.

Proposition 12 [33]. Let A= A*20 (4 € G(®)), B = B* 2 0, D{B] 2 DA] and assume that the form - ¥ = £, ~ ¥,
is closed and semibounded from below. Then:

1) the total multiplicity of the spectrum of the operator C = C¥, associated with the form & & = ¥0), in the interval
(—o0, —¢), &€ > 0, is equal to the total multiplicity of the spectrum in (1, o) of the form ¥y in the space D [A];

2) if the form ¥, is compact in D;[A] (9,), then the negative spectrum of the operator C is discrete (finite);

3) in order that the negative part of the spectrum of the operator C,, associated with the form A¥, — ¥, be discrete
(finite) for each h > 0, it is necessary and sufficient that the form - Eg(=Blu, 1) be compact in D;[A] (8 ,).

Proof. Statement 1 is a consequence of the equalities (144)-(146). Further, from the compactess of the form ¥
in D{[A] there follow (see [33]) the closedness and the semiboundedness from below of the form ¥ = ¥, - P =3C
= C*2 m: ¥ = B,. The remaining statements follow now from the chain of equivalences: the form ¥g is compact in DAl
® an arbitrary (A + ¢&)-bounded set is B-compact & the operator T = B4 +ey? e @ o TT* = [+M(-e)e & . In
particular, the compactness of the form p in §, is equivalent to the compactness of the operator I + M(0) (M(0) = s —

R — lim MQ\)).
A0
We illustrate relation (147) by two known examples

a)let =L 5[0, =), Ay = —y", XA) = W2 (y W2 <ye W2 ¥0)=0), By=q(x)y,C+A-B(q(x)20,q¢ Cy -
In this case

MQ)f =~f + [\Ja()g()G(x.,1,2) f (1),
0

where - G(x,1, k)—ﬂshtﬂexp(—x\/_—) t< x. We find M(0):

Py =

b t, 1<
MO)f =—f + |q(x0)g(r)G(x,1,0) f(¢)dr, G(x,t,0)={
0
From here and from (147) for p = 1 there follows the Bargmann bound estimate [33-35]:

N_(C) = dim Eg(—e,0) <sp(l + M(0)) = [ xq(x)dx.
_ 0

b) Let 9 =L,(R%),A=-A, By =q(x)y, C=A-B, By =.Jg(x)y = and assume that g(x) (=0) belongs to the Rollnik
class [34]. Then

VaGq@exp(—~=A [x 1)

amx -1},

MA)y=~f+ jw F(nat.

Therefore, for M(0) we obtain the expression
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MOYf = — vg(x)q(t)
O)f=-f+ e ~————4n!xﬂ| f(0ar. (149)

From (149) and (147) for p = 2 we obtain the Birman—Schwinger bound [33, 34]:

N_(C)=dim E(~=,0) <[ M)+ I} = J Jléq(;cl)q(z)l2 s
noix—t

From relation (148) we can obtain information on the asymptotic behavior of the negative spectrum of the Schrédinger

operator.
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