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Undefinability of 
Propositional Quantifiers 
in the Modal System $4 

A b s t r a c t .  We show that (contrary to the parallel case of intuitionistic logic, see [7], [4]) 
there does not exist a translation from $42 (the propositional modal system $4 enriched 
with propositional quantifiers) into $4 that preserves provability and reduces to identity 
for Boolean connectives and D. 
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Introduct ion  

A.M. Pitts showed in [7] that there exists a translation from propositional 
intuitionistic logic with propositional quantifiers into ordinary propositional 
intuitionistic logic that reduces to identity for the quantifiers-free fragment. 
The result was obtained also in [4] by sheaf duality and some semantical 
techniques, inspired by analogous previous work of [8] on provability logic. 
These semantical techniques, which are nothing but applications of kinds of 
Ehrenfeucht games, originated from K. Fine's papers [1], [2] and they are 
basically used in order to deduce the existence of maximum and minimum 
interpolants [8] as well as the definability of propositional quantifiers [4] 
from a statement (called 'expansion lemma' in [8], 'combinatorial lemma' in 
[4]) about the games corresponding to the logic in question. In fact, this 
statement, which appears in this paper too (see (1) below), is implied by the 
definability of propositional quantifiers themselves. We show that it fails for 
the modal system $4, so to this logic Pitts' result cannot be extended. 

Let us formulate the problem more predsely. $4 2 allows formulas built up 
from propositional letters Pa, p2,..- using the boolean connectives, the modal 
connective [] and the propositional quantifiers 3pi (we use the notation c~(p-) 
to mean that the formula c~ contains free variables only from the list p'~. $4 2 
is axiomatized by taking any standard set of axioms and rules for $4 (see 
e.g. [5]) and, in addition, the axiom schemata a(/7, ~/pi)  --* 3pia(ff, p~) (with 
usual restrictions for substitution) and the following rule: from t~(~,pi) 
Z(/7) infer 3pic~(~,pi) --+ /3(p-~ (where it is clear that Pi must not occur in 
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the list p-). What  we are looking for is a translation r from formulas of $4 2 
into formulas of $4 that  satisfies the following requirements: T(p) = p for 
atomic p, r ( a  h/3) = r (a )  h v(fl), r ( a  V fl) = r ( a )  y r(fl), r(-~a) = --,'r(a), 
r (=a)  = Or(a)  a n d ,  finally, 

es4~ a ~ ~-s4 r (a ) .  

In [3] (where the corresponding question was positively solved for the modal  
system K) it is shown in deta~s (but from a slightly different point of view) 
that  the existence of a translation is equivalent to the algebraic fact that  the 
'cilindrification' morphisms among finitely generated free algebras have a 
left adjoint satisfying an additional 'stability' condition, the so-called 'Beck- 
Chevalley condition'. 1 We show here how to prove what is relevant for 
the purposes of the present paper, namely the fact that  the existence of a 
translation satisfying the above requirements implies the existence of the 
adjoints to the cilindrification morphisms. Simultaneously, we recall some 
elementary notions and fix notation. 

An interior algebrais a Boolean algebra B endowed with a unary operator 
[] : B ~ B satisfying the equations: [ ] ( x h y )  = [ ] x h  []y, []-V = T, 
Dx _< x, []x < Q[]x. Such algebras appear as Lindenbaum algebras for 
the modal  system $4. Typical examples of interior algebras are obtained 
from preordered sets, i.e. from sets endowed with a reflexive and transitive 
relation. If (P, ~p) is such a preorder, we call T'[](P, <p)  or simply p o ( p )  
the interior algebra given by the (complete) power-set Boolean algebra P(P)  
endowed with the interior operator [] defined by: 2 

o(S) = {plVq ~ P (q <_P P :ez q e S))  

for every S C_ P.  By cilindrification morphisms, we mean the morphisms 
among finitely generated free algebras which are the values of the free algebra 
functor at a set-theoretic injective map among the free generators. Otherwise 
said, if X , Y  are finite sets, .T(X), 9r(Y) are the related free algebras, a 
citindrification morphism is any morphism , : ~-(X) ~ 5r(Y) for which 
there is an injective map i : X ......... ~ Y such that  the square 

1The existence of the adjoint only is not  sufficient. To see this, note  tha t  the existence 
of such a t ranslat ion implies interpolation.  However in locally finite varieties left adjoints  
always exists, even if interpolat ion fails, since in this case 'ci l indrification'  is a meet -  
preserving map  between finite lattices. 

2Notice tha t  we use _< where s tandard l i terature uses 3>. 
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X i ~ y  

~]x lrr~ 

.T( X ) - - ~  .T(Y) 

commutes ,  where ~TX : X , ~-(X) and ~TY : Y ' 9r(Y) are the canonical 
embeddings  into the  free algebras (i.e. they are the X and Y-componen t  
of the  uni t  of adjunct ion among the forgetful and the  free algebra func- 
tot) .  We are part icularly interested in the case in which X = { P l , . . . , P ~ } ,  
Y = {Pl , . . .  ,P~,Pn+I} and i is the obvious inclusion from { P l , . . .  ,P,~} into 
{Pl , . . . ,Pn,p~+I}.  The existence of the left adjoint to the related cilindri- 
fication morph i sm e : ~ ' ( P l , . . . , P n )  ~ ~ ( P l , . - . , P ~ + i )  3 means tha t  there 
exists a m a p  (not an interior algebras morphism!)  in the opposite sense 
L* : ~ ' ( p ] , . . .  ,pn+l) --~ . T ( p l , . . .  ,Pn) satisfying the conditions 

(A1) x <_ ~(y) ::=v d ( x )  <_ y 

and 

(A2) x < LL*(X) 

(notice tha t  the la t ter  condition can be equivalently replaced by the right- 
to-left side of the former).  

Now, suppose tha t  the claimed translat ion 7- exists. We define L* as 
follows. Pick x E .T (p l , . . . , pn+1) ;  free algebras can be described as Linden- 
b a u m  algebras so tha t  x is the equivalence class of a formula [ a ( p l , . . . ,  p~)]. 
We take T(3pn+la) ;  as (at least in principle from the requirements  we 
asked for r to  satisfy) we cannot  exclude tha t  the quantifiers-free for- 
mula  ~-(3pn+la) contains other  proposit ional letters apart  f rom p l , . - . , p n ,  
we define ~*([o~]) to  be the  equivalence class of the formula obtained from 
v(3pn+]a )  by replacing these extra  proposit ional letters, say, by T. To 
prove ( d l )  suppose tha t  x = [ a ( P l , . . . , P n + l ) ] ,  y = [/3(pl, . . . , :on)] and tha t  
x _< t(y). This means  that  ~-s4 w ~ /3 and also tha t  ~-sa2 3pr~+lC~ ~ /3. 
By the  propert ies  of r ,  it follows tha t  ~-s4 r(3pn+l~) --+ fl and also tha t  
**(x) < y: to see this, notice tha t /3  contains at most  p l , . . . , p , ~  and on the  
other  hand  we have a proof  of r(3pn+la) ~ / 3  within $4,  so we can replace 
extra  proposi t ional  letters by T in this proof, yielding what  we need. 

3It is evident that the existence of the left adjoint to cilindrification morphisms of this 
kind is equivalent to the existence of the left adjoint to cilindrification morphisms of any 
kind (because left adjoint do compose and isomorphisms have their inverses as adjoints). 
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To show (A2), suppose that  x = [a (p l , . . - ,Pn+l ) ] ;  take a propositional 
letter pk (k > n) not occurring in T(3pn+lC O. Now a ( P l , . . . , P ~ , P k / P ~ + I )  
3pn+la  is a theorem of $4 2, so ~(Pl,.. . ,Pn,Pk/P~+I) --+ r (3p~+l~)  is a 
theorem of $4. Replace in the related proof pj (for j > n, j # k) by T and 
then Pk by P~+I. This yields x _< te*(x). 4 

In section 2, we prove that  e* does not exist, so that  no translation r with 
the above properties exists too. The question about existence of greatest  and 
least Craig's interpolants of two given formulas is, as well, solved negatively: 
for, the least interpolant of ~ ( P l , . . . , P n + I )  and Pl Y - . -V p= V T could be 
clearly used in order to define ~*([a]). 

1. F i n i t e  m o d e l s  

Here we present some background from [1], [2], with slight modifications. In 
the following we deal with triples (P, <_p, pp), where P is a finite set, <p  is 
a preorder relation on P and pp is a specified root of P,  meaning tha t  for 
every p E P ,  we have that  p <_ pp. When the context is clear our triples 
will be denoted simply as P and we drop also the subscript P in <p  and 
pp. Given such a triple P and a finite set L, an L-evaluation (or simply, an 
evaluation) on P is a function u : P .~ L. 

We define for every natural  number n > 0 and for every pair of L- 
evaluations u : P - -+  L and v : Q ~ L, the notion of n-equivalence 
(writ ten u ~ v). This notion can be introduced in two equivalent ways. 

First definition: For n = 0 we put u ~0 v iff u(pp) = v(pQ). For n > 0, 
we introduce the n game over u, v. This game has two players, player I 
and player II. At each move, player I can choose either a point in P or 
a point in Q and player II must  answer a point in the other  preorder.  
The game terminates after n moves and the relevant rule is tha t ,  if 
(p E P, q E Q) is the last move played, then in the succesive move the 
two players can only choose points (p~, q/> such tha t  p~ < p and q' _< q. 
If (pl ,q1>, . . . ,  (p~,%) are the point chosen at the end of the game, 
player II wins iff for every i = 1 , . . . ,  n, we have that  u(pi) = v(qi). We 
say that  u ~ v iff u "~o v and player H has a winning strategy for the 
n-game. The relations ,,~ are clearly equivalence relations. 

Second definition: for n = 0, ~0 is defined as before and for n > 0 we 

4The trick of replacing pn+l by pk and back is due to the fact that  we cannot  exclude in 
principle that  p , + l  occurs in r(3p,~+l c~) (in this sense, the above analysis is a little more 
general than  that  in [3]). 
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define ,-~ by induction on n, by means of the following clause: 

u ~ , ~ v  iff u ,,~o v & Vp E P 3q E Q (u v " ~ - l  vq) & 

& Vq E Q 3p E P (up "~-a vq) 
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(here up is u restricted in the domain to the downward closed subset 
{P'IP' <- P} having p as spedfied root and similarly for vq). 

The notion of u being infinitely equivalent to v (written u , , ~  v) is defined 

as 'u ~ v holds for all n _> 0'. As our preorders are finite, this is the same 

as joint ly saying tha t  u "~o v and tha t  player II has a winning strategy for 
the above game with infinitely many moves. 5 

].  PROPOSITION Given two L-evaluations u : P ~ L, v : Q ) L, we have 
that: 

(i) u ~n+k v =~ u "~n v, for all n, k; 

(ii) for  any fixed n and L, there are only finitely many equivalence classes 
of  L-evaluations with rescpect to ~ .  

PROOF. (i) is immediate.  As to (ii), we argue by induction on n. For 
n = 0, the claim is immediate; for n > 0, notice tha t  with every u we 
can associate (in an injective way up to ~,~ equivalence) a pair given by an 
element of L and a finite set of ~n_l-equivalence classes. • 

Let ,T'L be the set of closed sets of L-evaluations, meaning the sets S 

of L-evaluations having an index, i.e. satisfying the following condition for 
some n > 0: 

V u : P  ~L,  V v : Q  " L ( u E S & u , ' ~ , ~ v  ::¢. v E S ) .  

9VL is an interior algebra with respects to set-theoretic finite unions, inter- 

sections and complements and whose interior operator is defined by 

DS = { u : P  ..... ~ L I ~ / p E P  , u p E S }  

(notice tha t  if S has index n, then o S  has index n + 1). For every Y C_ L, 
tL (Y )  = {u ] u(p) E Y }  has index 0, so that  ~L: P ( L )  ; ~'L is a Boolean 
algebras morphism. 

SGiven that u ~,~ v for every n, we can define an infinite strategy for player II as 
follows: suppose that player I picks p E P (the other case is symmetric), then for every n 
there exists qn E Q such that up ,,~,~ vq~. As Q is finite, there is q E Q such that up ~"n vq 
for every n; player II answers this q, etc... 
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2. PROPOSITION ~F L is the free interior algebra generated by the finite 
Boolean algebra 7)(L) (tL is the canonical embedding). In particular, if 
L = 7)(X), then f L  is the free interior algebra generated by the finite set 
X .  

PROOF. To unders tand  properly the s t a tement  of the Proposi t ion,  we 
recall t ha t  for general reasons (left adjoint  theorem,  see [6]) the forgetful 
functor  f rom interior algebras into Boolean algebras does have a left adjoint:  
the  value of such left adjoint at a Boolean algebra B is called the free in- 
terior algebra generated by B. This means in part icular  tha t  for our P ( L ) ,  
there exists an interior algebra F and a Boolean morph i sm ~ : 7)(L) ~ F 
such tha t  for any other interior algebra I and any other  Boolean morph i sm 
:P(L) ) I ,  there exists a unique interior algebras morphism F ~ I such 
t ha t  the triangle 

:P(L) 

, /  
F - I  

commutes .  In particular,  as -~'L is an interior algebra and ~g a Boolean 
morphism,  we have a commuta t ive  triangle: 

, /  
F ~ ~J:L 

We only have to show tha t  ~ is an isomorphism. The  morph i sm ~ is surjective 
because the  image of tL generates ~L as an interior algebra: in fact,  sets of 
index 0 are precisely those which are in the  image of LL and sets S of index 
n T 1 admits  the following representat ion in terms of sets of index n: 

s =  U([ ]0n N ,[up] no U [up]n)), 
ueS pedom(u) pEdom(u) 

where we used notat ions like [v]n for {v 'Jv~n v'} (<> is defined as usual  as 
~["1-~).6 

6Notice tha t  all unions and intersection involved are finite, because our preordered 
sets are finite and because of proposition l(ii); in particular,  observe tha t  saying tha t  
u ",~+1 u '  is the same as saying that  In]0 N Nvedom(~,) <>[Uv]'~ Cl D Upedom(u)[up],~ is equal 
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We have to prove that  c is also injective. The completeness theorem 
with respect  to finite Kripke models [5] for the modal  system $4  ensures 
tha t  free interior algebras can be embedded into a product  of finite interior 
algebras. The same result can be extended to finitely presented interior 
algebras, because finitely presented interior algebras can be all described as 
finitely generated free interior algebras divided by a principal filter. Our F 
is finitely presented,  7 hence there is an embedding (hi)i : F ~" I'Ii pa (p~)  
where the Pi are finite preordered sets. The claim is proved if we show that  
for every i there is an interior algebras morphism h} : .TL ~ ~PD(Pi) such 

that  hi o ~l = h} o t L. 

7~(L) ~? • F 

1 zL po(e,) 

In fact in this case, (hi}~o~ = (h})iOtL = (h}}iotoT/which implies (by unicity) 
{hi}~ = (h}}i o L and now ~ is injective because it is the first component  of an 
injection. We only have to find the h}. Notice that ,  by the duality theorem 
between finite Boolean algebras and finite sets, the Boolean morphism hi oy : 
P ( L )  ~ P ( P i )  is the inverse image morphism u -1 for a map u : P~ : ~" L, so 
we can simply put  h}(S)  - {p E P i Iup  E £} for every S E 9rL • Preservation 
of operat ions and commuta t iv i ty  of the triangle 

P(L) 

f L  , p(P ) 

are easy. [] 

According to the definition of free algebra, for every function f : L 
M be tween finite sets L, M,  there is a unique interior algebras morphism 
5rS : ~ M  ~ ~'L such that  the square 

ZThis is easily seen, but there is also a direct conceptual way of seeing it: an algebra 
F is finitely presented iff the representable functor Horn(F,-) preserves filtered colim- 
its and in our case by adjointness the functor Horn(F,-) is isomorphic to the functor 
Hom(7~(L), U(-)), where U is the forgetful functor from interior algebras into Boolean 
algebras (notice that U preserves filtered colimits and that finite Boolean algebras are 
finitely presented). 
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P ( M )  f-l,_ :P(L) 

tM [ tL 
J:L 

commutes. It is easily seen that: 

3. PROPOSITION .T'I(S) is the inverse image along the composition with f ,  

that is ~1 (S)  = {u I f o u e S ). 

PROOF. It is sufficient to check that  the inverse image along composition 
with f is indeed an interior algebras morphism making the above square to 
commute.  • 

We can show now that the cilindrification morphisms ~-(X) ) .T(X,p) 
mentioned in the introduction (where X is a finite set and p is an additional 
free generator) are the morphisms F f ,  where f :  P ( X )  × 2 ) 7) (X) is  the 
first projection and 2 is the two-element set {0, 1) (notice that  ~'p(x) and 
5vp(X,p) -~ ~'p(x)×2 are the free interior algebras on X and on X tJ {p) free 
generators, respectively). In fact P ( P ( X ) )  is the free Boolean algebra on X 
generators, T~(TP(X,p)) ~ :P(:P(X) × 2) is the free Boolean algebra on one 
more generator and f -1  : P ( P ( X ) )  ~o~) PCP(X)  × 2) is the unique Boolean 
morphism extending the inclusion from X into X t3 {p), so according to 
Proposition 3, ~1 is the unique interior algebra morphism extending such 
inclusion among the free generators. 

2. U n d e f i n a b i l i t y  o f  p r o p o s i t i o n a l  q u a n t i f i e r s  

From the results of the previous section and from the remarks in the intro- 
duction, we can reduce the problem of the existence of a translation from 
$4 2 into $4 to the question whether morphisms of the kind .T/ do have 
adjoints, in the case in which f : L .... ; M is a first projection function 
from L = P ( X )  × 2 into M = P ( X ) ,  where X is a finite set and 2 is the 
two-element set {0, 1). We fix an f of the above spedfied kind from now 
on, for our arguments we need only that  L has at least 2 distinct elements, 
consequently any X of cardinality at least 1 is good. 

We begin with a lemma on L-evaluations that  will ensure us that  certain 
sets of evaluations have index: 

1. LEMMA For all evaluation u : P ~ L there exists N such that for all 
evaluation v : Q ) L (u "~N v ~ u , , ~  v). 



Undet inabi l i ty  o f  propos i t ional  . . .  267 

PROOF. We prove the lemma by taking N = 2n, where n is the height 
of the ant i symmetr ic  quotient of P.  We argue by induction on n. 

Suppose tha t  n = 1: this means that  _<p is total  in P; we suppose that  
u ~2 v. We shall produce a s trategy that  always gives positions of the kind 
(p, q), where Up ""o vq. Suppose such a position is reached (or that  p = pp 
and tha t  q = PO, if we are at the first move). If player I plays in Q, then we 
have an ~nswer producing a position of the same kind because <:p is total  
and from u "~1 v it follows that  the images of u and v ~re equal. If player I 
plays p' E P ,  then there must  be q' <_ q such that  u(p')  = v(q') .  Otherwise 
there wouldn' t  be a 2-strategy: player I would start  with q and would play 
p~ in the second move (he is allowed to do that  independently of the answer 
of player II, because <~p is total).  

Suppose now that  n > 1 and let us assume the s ta tement  for evalua- 
tions on preordered sets having antisymmetric  quotient of lower height. For 

Pl, P2 E P ,  let us write Pl "~ P2 iff Pl _< P2 and P2 _~ Pl. Clearly, if Pl ~ P2 
and Up~ ~0  Up~, then we also have up~ ~oo up2- We define a strategy that  pro- 
duces positions (p, q), where either Up , , ~  vq or (p ,.~ pp and up "~2~-1 vq). 
Suppose (p, q} is such a position: the interesting case is when p ,.~ p p  and 
Up '~2~-1 vq (otherwise we already know how to go on). 

Case 1: player I plays q' < q in Q; then there is p' E P such that  Up, ~'~2n-1 

Vq,, as we assumed tha t  u "~2n v and as p ,.~ pp .  Player II is allowed 
to answer such p' and (p', q') is a position of the claimed kind (by 
induction hypothesis, in case p' 7~ pp) .  

Case 2: player I plays p~ < p in P. Then, there is qt < q such that  
up, "~2(~-1) vq, as Up ~2~-1 Vq. In case p~ ~ tip, induction hypothesis 
shows that  up, , . ,~ vq,, so player II can answer p~. If pl ~ pp ,  we 
argue as follows: from the assumption u ~2n v, it follows that  there is 
pll ~ pp  ~ pl such that  Up,, ~2n--1 Vq,. 

Subcase 2.1: Suppose that  p" ~ pp.  Then, by induction, Up,, , . ~  vq,. 
Moreover, from Up,, woo vq, ~ ( ~ - 1 )  up, and the transitivity of "~2(n-1), 
we get up,, "~2(~-1) Up,. Applying induction hypothesis, this yields 
Up,, ~o~ Up,. By transit ivity of ~ ,  from v¢ "~o~ up,, "~oo Up,, we get 
v¢ "~oo up,, so q~ is a good answer for player II. 

Subcase 2.2: Suppose tha t  p" ,.~ pp .  In this case u(p")  = v(q')  = u(p ' )  
and p" ,.~ p p  ,,~ pl, so Up,, , . ~  Up,. This, combined with up,, "~2n-1 vq,, 
shows that  the position (p~, ql/ is again of the desired kind, so that  
player II answers qt. • 
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2. COROLLARY, For every L-evaluation u, the set [u]oo = {v l v ~ oo u} (as 
well as its complement) has an index. • 

We transform the problem of the existence of the left adjoint  to ~'1 into 
a combinatorial  s ta tement  about  our games and afterwards we show tha t  
such s t a tement  is false. 

3. PROPOSITION .Ty has a left adjoint iff the following statement is true 
(let's write f(u) for / o u): 

(1) Vn 3N Vu W, ( / (~ )  ~ ~  v ~ 3u' (~' ~~ ~ ~ / ( ¢ )  ~ ~  v)) 

(here u, u ~ are supposed to be L-evaluations and v an M-evaluation). 

PROOF. The  existence of a left adjoint  means tha t  for every X E ~L we 
can define 31(X)  E J~'M SO that  the relation 

(2) as(x)  c s ~ .  x c .rAs ) 

holds for every S E -~M. We show tha t  we faust have 

(3) as(x) = { v l 3 u e X  (f(u) ~o~ v)} 

(notice tha t ,  conversely, if we are allowed to define 3 I ( X )  in this way, i.e. if 
31(X)  as defined in (3) has an index, then (2) holds too).  In  fact,  if we fix 
v and take S to be -~[v]oo (we can take into consideration such S because of 
the previous Corollary), we have, as a special case of (2), tha t  

~s(x) c ~[v]~ x c ~(~[v]~o) 

But  3 f ( X )  C_ -~[v]oo is equivalent to v ~ 3 f ( X )  and X C_ 
equivalent to Vu ( f (u )  "~oo v ~ u ~. X ) .  So we get 

v ¢ 3 i (x )  ~, '~ w (f(u) ~oo v ~ ~ ¢ x ) ,  

7s(-[v]oo) is 

t ha t  is the relation (3) as claimed. 
So the  left adjoint  exists ifffor every set X of L-evaluations the  set 3 ] ( X )  

as defined in (3) has an index, provided X has. As there are only finitely 
m a n y  distinct Sets X having as index a fixed n (see proposi t ion 1.1(ii)), we 
can suppose tha t  the index of 31(X)  is given uniformly in dependence on n. 
Finally, it is easily seen tha t  for every fixed n, the s t a t emen t  

"for every X having index n, 3 / ( X )  has index N"  

is equivalent to the s ta tement  

"VuVv ( f (u )  " N  v =~ 3u' (u' ~n u & f (u ' )  "%0 v))" 
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(the up direction is immediate,  for the other one take [u]n as X) .  This 
completes the proof of the lemma. [] 

Now we can build a counterexample to (1). For every natural  number  
n, n i s  the linear poset 1 _< 2_< . . ._< n. We introduce for a n y k  > 0, an 
M-evaluat ion v k : Qk ) M and an L-evaluation u k : Qk _._. L. Here 
L, M, f must  be as explained at the beginning of the section. We recall that  
L = M x 2 and f is the first projection. We indicate the elements of M 
as a, b , . . .  and we abbreviate (a, 1) as a + and (a, 0) as a - .  Thus, f simply 
'removes the  sign'. Q~: is 2k + 2 and vk(i) = b if i is odd and vk(i) = a if k 
is even. Pk is 2_kk+ {p,q}; we have for x , y  E pk ,  x <_pk y iff (y = p or y = q 
or (x, y E 2__kk and x _< y)). If x E 2k, uk(x) is equal to a -  if vk(x) = a and 
is equal to b- if vk(x) = b; finally we put uk(p) = a +, uk(q) = b +. p is the 
specified root  of pk (of course, 2k + 2 is the specified root of Qk). 

! I a+ 
b b+ 
a a 

b b- 

a t t a- b b- 

4. LEMMA f ( u  k) ~2k+l v k. 

PROOF. ~re collect some simple facts. 

(i) I f  i <_ 2k, then @ , , ~  f ( @ ) :  this is trivial. 

(ii) I f  i <_ j <_ 2k and i , j  are both odd or even, then v k ~i-1 f(u~):  this 
is shown by induction on i. For i = 1, the claim is trivial; for i > 1, 
the only relevant case is when player I chooses s E pk such that  s > i 
(otherwise the obvious answer is suggested by (i)). In this case, player 
II answers i or i - 1, depending on the fact that  s is even or odd, and 
wins by induction hypothesis. 

(iii) For every i e Qk and for x = p, q, v# No f (u~)  implies v# ~i-1  f (u~) :  
this is d e a r  for i = 1,2. Suppose that  i > 2. If player I plays in pk,  by 
(i), we can examine only the case in which he plays s E pk for s > i or 
8 = p, q. In the la t ter  case, the answer is i or i - 1: player II wins by 
induction hypothesis. In the former case, the answer is again i or i -  1, 
depending if s is even or odd. Player II wins by (ii). Finally, if player 
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I plays i ~ _< i in Qk, then if i t _< 2k, the answer is suggested by (i) and 
if i t = 2k + 1,2k + 2, the answers are q,p,  respectively (in the former 

case, we can apply induction, the lat ter  case is irrelevant because it is 
an identical move). 

The s ta tement  of the lemma is the particular case i = 2k + 2 of (iii). [] 

5. TrlEOREM .Tf does not have a left adjoint. 

PROOF. We show that  (1) fails for n = 3. For reductio, suppose N 
exists so that  (1) is satisfied. Take k such that  2k % 1 > N ,  u = u k, v = v k. 
Now f ( u  k) ~ N  v k holds by the previous 1emma. We show tha t  there cannot 
be any L-evaluation u t : p t  ........ ; L such that  u ~ "~3 u and f ( u  ~) . . ~  v. We 
claim that  otherwise there must be pl ,p2  E P~ such that  pl _< p2, p2 < Pl, 
u'(pl)  = a +, u(p2) = b+: this is in contradiction to f ( u  ~) ~ v k, because in 
Qk player II cannot play points labelled a, b, a, b , . . .  for ever. To prove our 
claim, we use the fact that  u t "~3 u. In particular, there must  be some point 
Pl in P~ whose ut-value is a + (certainly, for instance, the specified root) .  
As our preordered sets are finite, we can pick a minimal such p],  minimal 
with respect to the partial order relation in the ant isymmetric  quotient  of 

pt .  In other words, Pl must  be such that  ut(pl) = a + and such that  for 
every pt <_ pl  (if ut(p t) = a +, then pl _< P~). Player II has a 3-strategy, so 
he must  be able to answer successfully to the following moves: first, player 
I plays pl E P~, then (as the forced answer is the root  p of pk ) ,  he plays 

q C pk  and finally p E pk.  If p2,p t are the answers of player II, we have 

P~ <_ P2 ~_ Pl,  u~(p2) = b+, u'(P t) = a+ and also Pl _< pt by the minimali ty 
of pl .  In conclusion, we have Pl _< P2 and P2 _< Pl with ut(pl)  = a + and 
ut(p2) = b +, as claimed. [] 
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