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A normal mode analysis is presented and numerical tests are performed to 
assess the effectiveness of a new time-splitting algorithm proposed recently in 
Karniadakis etal. (1990) for solving the incompressible Navier-Stokes 
equations. This new algorithm employs high-order explicit pressure boundary 
conditions and mixed explicit/implicit stiffly stable time-integration schemes, 
which can lead to arbitrarily high-order accuracy in time. In the current article 
we investigate both the time accuracy of the new scheme as well as the 
corresponding reduction in boundary-divergence errors for two model flow 
problems involving solid boundaries. The main finding is that time discretiza- 
tion errors, induced by the nondivergent splitting mode, scale with the order of 
the accuracy of the integration rule employed if a proper rotational form of the 
pressure boundary condition is used; otherwise a first-order accuracy in time 
similar to the classical splitting methods is achieved. In the former case the 
corresponding errors in divergence can be completely eliminated, while in the 
latter case they scale as (9(vAt) 1/2. 
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1. I N T R O D U C T I O N  

The  n u m e r i c a l  so lu t i on  of u n s t e a d y  incompressible  N a v i e r - S t o k e s  equa-  
t ions  tha t  gove rn  viscous  flows requires  a very different a p p r o a c h  t h a n  the 

so lu t i on  of  the compress ib le  e q u a t i o n s  as in  the fo rmer  case the c o n s t r a i n t  

of  a so l eno ida l  veloci ty field i n t roduces  cer ta in  ext ra  difficulties. The  i n c o m -  
press ibi l i ty  c o n s t r a i n t  is u l t ima te ly  t ied to the pressure  field, the role of 
which  is to pro jec t  the veloci ty  f rom a space c o n t a i n i n g  all so lu t ions  
sat isfying the m o m e n t u m  e q u a t i o n  a n d  a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  to 
a res t r ic ted divergence-free  space. The  t i m e - a d v a n c e m e n t  of the i n c o m -  
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pressible Navier-Stokes equations is therefore a key step in the discretiza- 
tion as it dictates the accuracy of the scheme. In addition, it determines 
the form of the system of equations to be solved and thus the degree of 
coupling between pressure and velocity fields. This coupling, in its turn, is 
indicative of the computational complexity involved in solving numerically 
the Navier-Stokes equations. 

In the classical splitting method (Yanenko, 1971) the pressure satisfies 
a Poisson equation, separate from the velocity, and compatible Neumann 
boundary condition (BC). The exact form of this boundary condition is 
very important not only because it affects directly the overall accuracy of 
the scheme, but also because it determines the efficiency of the time-step- 
ping algorithm. This is particularly true in simulations of unsteady flows in 
complex geometries, where a separately solvable second-order pressure 
equation is yet the only affordable approach. Splitting methods in conjunc- 
tion with spectral and spectral element methods have been used with 
success in simulating highly unsteady flows in nonperiodic and very 
complex geometries (Orszag and Kells, 1980; Karniadakis etal . ,  1988; 
Karniadakis and Triantafyllou, 1989). In these studies, splitting led to first- 
order accuracy, so that very small time steps were required in order to 
prevent significant time-differencing and splitting errors. 

There have been a number of attempts in the last decade to modify the 
classical splitting method, so that high-order time accuracy could be 
obtained (Orszag et al., 1986; Marcus, 1984; Kim and Moin, 1985; Zang 
and Hussaini, 1986).In the first article, a more systematic analysis is given, 
and various approaches are suggested to circumvent the spurious effects of 
splitting errors without any significant loss in efficiency or ease in 
implementation. An extension of that work was developed more recently in 
Karniadakis e ta l .  (1990), where explicit high-order Neumann pressure 
boundary condition in conjunction with mixed explicit/implicit stiffly stable 
schemes were shown to lead to arbitrarily high-order time accuracy and 
good stability properties. Our work here is inspired primarily by the work 
in Karniadakis et al. (1990); our objective is to investigate how the splitting 
errors are induced in the splitting method and how they can be controlled 
or eliminated by using high-order time-accurate schemes. 

The paper is organized as follows: In Section 2, we present a general 
normal mode analysis and compare the split semidiscrete equations with 
their continuous counterpart; we then apply the analysis to a two-dimen- 
sional problem with one periodic direction. In Section 3 we perform high- 
resolution numerical simulations to determine the overall time-accuracy 
and boundary-divergence errors in simple and complex geometries. Finally, 
in Section 4 we draw some conclusions based on the theoretical predictions 
and the numerical results. 
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2. N O R M A L  M O D E  ANALYSIS 

2.1. Continuous Problem 

We consider here Newtonian, incompressible flows with constant 
properties, which are governed by the Navier-Stokes equations written in 
the form 

~V 
- -  = -Vp + vL(v) + N(v) in s (2.1a) 
Ct 

subject to the incompressibility constraint 

Q = V . v = 0  in f2 (2.1b) 

where v(-- u2 + @ + w2) is the velocity vector, p is the static pressure, and 
v is the kinematic viscosity. Here L and N represent the linear and non- 
linear operators, respectively, and are defined as 

L(v) - V2v = V(V- v) - V x (V x v) (2.1c) 

N(v) - -�89 + V(v-v)] (2.1d) 

Taking the divergence of Eq. (2.1a) and dropping the nonlinear terms 
we obtain an equation for the pressure, given by 

VZp : 0 (2.2a) 

while taking the V x V of (2.1a) and using the incompressibility constraint 
[Eq. (2.1b)] we obtain 

( ~ - v V  2) V2v=0 (2.2b) 

To proceed we assume the existence of normal mode expansions in the 
form 

v(x, t )=  ~ e'~tvi(x) (2.2c) 
i=1 

p(x, t )=  ~ e~ ) (2.2d) 
i = l  

where vi(x) are the velocity normal modes known to have decay rates o- i 
with nonpositive real parts, and pi(x) are the pressure modes. Substituting 

854/4/3-5 
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above in Eqs. (2.2a) and (2.2b) we obtain the equations that the modes 
satisfy: 

V 2p~ = 0 (2.2e) 

( ~ ! _  V 2) V2v~ = 0 (2.2f) 

It follows from the above relations that the modes pi(x) are harmonic 
and satisfy a maximum principle theorem, and that the modes v~ have a 
harmonic part and an oscillatory part since Re[ai] ~< 0. 

2.2. S e m i d i s c r e t e  P r o b l e m  

Using an implicit integration multistep scheme we can write the Stokes 
equation in a semidiscrete form as follows: 

~ 0 v n +  1 ~'~ Ji--  J. J i - - 1  - -  / ' q = 0 0 ~ q  v n - q  - -  
At - - V / ) n + l + v  ~ /~qVZ(vn+l-q) (2.3a) 

q = 0  

where to, %, and flq are appropriate weight coefficients associated with the 
order J~ and the specific integration scheme employed. Assuming an 
amplification factor ~ for the normal modes we can write that 
(v~, p~) = ~cn(~i,/~i) and thus we obtain 

At j vi = -~cVfii + vR(~c) V2~i 

where we define the linear operators P, R as follows: 

(2.3b) 

Following a similar approach as before for the continuous problem we 
now obtain 

V2Pi=0 (2.3d) 

~o ~ - P(~c) 
(2.3f) 

a ' -  AtR(K) 

This expression is general and is valid for any mulistep method; for 
example (see Karniadakis et al., 1990), for a Crank-Nicolson scheme the 

J i -  1 J i -  1 

P(~c)= ~ C~q~C q and R(~c)= ~ f lq t s  1 q (2.3c) 
q = 0  q = 0  
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appropriate coefficients are 70 = 1, P = I ,  and R=(~c+1) /2 ,  and for a 
second-order stiffly stable scheme are 7o = 3/2, P = 2 - 1/(2~c), and R = ~c. 

We find therefore by comparing with the results of the continuous case 
that the same modes and same growth rates ai are appropriate for the time 
discretized problem, and furthermore that negative ai implies ~c less than 
unity which corresponds to stable time-stepping. 

2.3. Splitting Formulation 

Uncoupling of the governing equations (2.1) can be obtained by 
introducing a nondivergent intermediate velocity projection v* and corre- 
sponding eigenmode ~*. Assuming again a modal decomposition with 
amplification factor if, we obtain 

(2.4a) 

V. i* -= 0 (2.4b) 

7ot?i - ~* = vAtR(K)  V2V (2.4c) 

Elimination of ~ followed by an operation with V x V  and using (2.4b) 
leads to 

[yot~ -- P(~) 
v,atR(,~) v2]v2~*=(~ -v2 )v2~*=~  (2.5) 

where here we can again define a decay rate 5 equal to the first term in the 
square brackets above as before. The final velocity ~, however, satisfies a 
different equation [obtained from (2.4c)] of the form 

Lva-~ )  - v2] v = 0 (2.6) 

Equation (2.5) suggests that v* satisfies an equation similar to the con- 
tinuous problem equation and thus has two nondivergent modes (the 
pressure and the time-stepping mode corresponding to the Laplacian and 
time-dependent operator in the equation, respectively). However, the final 
velocity ~ has an extra mode, due to the last operator in (2.6), producing 
a numerical boundary layer of thickness l oc (vzJt) 1/2. This mode is respon- 
sible for what is typically referred to as splitting error. In the following, we 
analyze the effect of such a splitting error on the accuracy and stability of 
the overall scheme. 
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2.4. Analysis of a Two-Dimensional Flow with One Periodic Direction 

As a model problem we consider here a time-dependent Stokes flow 
problem between parallel plates which has been studied before both 
analytically and numerically (Orszag etal . ,  1986; Deville, 1984). This 
problem, although linear, embodies all the essential features of the incom- 
pressible Navier-Stokes equations and can serve as a prototype to assess 
the effect of the treatment of the pressure boundary condition on the over- 
all time-accuracy of the scheme. The choice of the initial conditions is very 
important  as pointed out in Deville (1984) for a unique pressure solution; 
a compatible initial field is given by 

= [cos # sinh(ky) + t~/k cosh k sin(/~y)] i (2.7a) 

= [-cos # cosh(ky) - cosh k cos(/~y)] (2.7b) 

where i is the imaginary unit, and k is the streamwise (x-direction) wave 
number. Here we consider the case v = 1 and k = 1. All eigenvalues of ~r for 
this system are real and negative, indicating stability. 

The x-direction is periodic and we therefore can write the equation for 
the modes corresponding to wave number k as follows: 

v(x, y) = (fi(y), ~(y)) e ikx (2.8) 

From Orszag et al. (1986) we get the (symmetric) eigenvalue equation for 
a nonsplit formulation as follows: 

k tanh k = - #  tan #, where [A 2 = - k  2 - a/v  (2.9) 

For  the current problem the general operators appearing in (2.4a)-(2.4c) 
can be rewritten as 

V2 = D 2 - k  2, V2 - -~  = D2 q-/~ 2, g 2 7~ - D 2 -  ). 2 (2.10a) 
v v A t R  

where we have used above the following definitions: 

fi2 = _ k  2 _ ~ 22 = k 2 + 7 o ~  (2.10b) 
v'  v d t R  

P = P(~), /~ = R(k) (2.10e) 

d 
D = - -  (2.10d) ay 
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The general form of the solution ~, g* that is symmetric about 
y = 0  is 

v*=7oA* co sh ky+7 o B*  cosily (2.11a) 

~ = A c o s h k y + B c o s f i y + C c o s h 2 y  (2.11b) 

We now consider each of the modes (k, #, 2) separately; the first two 
are nondivergent as was mentioned earlier. Considering, for example, first 
the mode k as 

g~ =70 A* coshky, 

and subsituting in (2.4c) we obtain 

~k=A coshky (2.12a) 

=-~-~ (2.12b) 

The corresponding velocity in the x-direction is obtained from the 
divergence-free condition 

D ~  A * 
~k - ik- - i sinh ky - -  (2.12c) 

/s 

Similarly, we obtain for the second mode the relations 

=v~ and u~= ifi 
/3 - k- ~ sin fly (2.13) 

Finally, for the nondivergent third mode for which v* = 0 we obtain 
again from (2.4a) 

-Pv; .  = -Y~Vp At (2.14a) 

and therefore the field v~ is irrotational, i.e., V x v;~ = 0; this implies that the 
following relation holds: 

Dfia = ik~. (2.14b) 

To summarize, we can now express the modes (fi, ~) as follows (setting 
~=C*) :  

A* B 
= coshky+70  * - -  cos fly + C* cosh 2y 

p 
(2.15a) 

iA* sinh ky iT~ k 
= T k----~ sin fly + iC* ~ sinh 2y (2.15b) 
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At this point we can find C* in terms of A* by employing the 
boundary condition at y = 1 (fi = ~ = 0), i.e., 

A* cosh k(/~ tan/~ + k tanh k) 
C* = - (2.16) 

cosh )~[/~ tan/~ + (k2/,~.) tanh 2] 

Using the exact eigenvalue relation [Eq. (2.9)] and the definition equation 
(2.10b) we also obtain 

/~ t an /3 - /~  tan # = (9 ( ~ )  (2.17) 

where we define Aa = 6 - a .  Substituting this last equation in (2.16) and 
normalizing appropriately with cosh 2 we see that the amplitude C* of the 
boundary layer error term is proportional to Aa/v, i.e., 

Aa 
C* oc - -  (2.18) 

This last equation suggests that the error in growth rate that characterizes 
the time-accuracy of the scheme is directly proportional to the amplitude 
of the divergent mode. 

2.5. Pressure Boundary Condition 

A separate substep in solving the Navie~Stokes equations using a 
splitting formulation is a Poisson-type equation derived from (2.4). The 
corresponding boundary condition for the pressure can also be found from 
(2.4) applied at the boundary. This is an exact equation and has the form 

@ 
g-s = h . v R ( ~ )  V2v (2.19) 

where we assumed here v = 0 at the boundary; here ri denotes the unit vec- 
tor normal to the boundary. However, this relation results in a coupled 
system since VZv is not known at the pressure step. Progress can be made 
only if an explicit in time treatment is sought for the velocity involved in 
(2.19). For  example, first-order time-accurate relations can be used, which 
lead to 

ep 
~n = ~" vV2v (2.20a) 

@ 
~ n  = - ~ - v V x V x ~  (2.20b) 
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where in the latter equation we also incorporated the incompressibility 
constraint, i.e., V-v=0 .  It follows therefore from (2.4a)-(2.4c) with 
v (y=  1)=0,  that the above equations take the following forms (respec- 
tively): 

v* + vAtD2f  = 0 (2.21a) 

v* - ivkAtDfi = 0 (2.21b) 

Substitution of v*, ~, g in (2.21a) and (2.21b), respectively, gives 

A * ( 7 o + V ~ k 2 )  c o s h k + B * 7 o ( 1  v;/~2) cos/~ 

+ C'v22 At cosh 2 = 0  

A * ( V o + V ~ k 2 ) c o s h k + B * 7 o ( 1  v;/~2-) cos/2 

+ C*vk 2 At  cosh 2 = 0  

(2.22a) 

(2.22b) 

To satisfy the boundary conditions ~ = ~ = 0, therefore, the following 
determinant [obtained by substitution in (2.21a)] should vanish: 

yo~ + v At2k 2 P -  ~t2v zJt ~2v d t  

1 1 1 

k t a n h k  - f i tan/~  kztanh2 
2 

(2.23) 

The determinant for the second case (2.21b) has a similar form with the 
term 22v At  above replaced by the term k2v At. 

We solve the above determinental equation for the particular case of 
a second-order stiffly stable-scheme (Karniadakis et al., 1990). The eigen- 
value ff corresponding to (2.23) agrees with the analytical expansion for ~c 
of the nonsplit scheme up to first-order terms, which implies a reduction of 
the accuracy order of the overall scheme to order one, despite the second- 
order time-stepping scheme employed; however, the eigenvalue due to 
(2.21b) agrees with that of ~c to second order. The expansion for the 
amplification factor, ~, of the splitting scheme is 

= [1 + cr At + a 2 A t2 /2+ a 3 At3~3 + C(At4)] 

+ [K1 At  2 + t% At  s/2 + ~c 3 At  3 + tr 4 At 7/2 + (9(At4)] (2.24) 
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where we find that/s ~--- / s  ~-- 0 and that the next two coefficients x 3, /s are 
given by 

4/~2va 2 sin 2/~ 
/s - -  (2.25a) 

+ 3 sin 2/~ 

8 ~ ~tv3/2k2r 2 c o s  2 / ~  
/s - -  - -  (2.25b) 

3 xf3 2/~ + sin 2/~ 

We also note that the error in growth rate Aa which determines the 
numarical boundary layer amplitude is given by 

Aa =/s At2 +/s AtS/2 + (9(At3) (2.26) 

It is seen therefore that the decay rate 6 computed using the stiffly 
stable splitting scheme is accurate to second order in At if the rotational 
boundary condition [Eq. (2.21b)] is employed for the pressure. We also 
see using (2.26) that the error in the numerical boundary layer is of second 
order. 

In the next section we present numerical results for this simple 
geometry problem, as well as results for a complex geometry problem that 
support the theoretical prediction regarding the accuracy of the scheme, 
and in particular we investigate the effect of the nondivergent mode (mode 
2 above). 

3. NUMERICAL RESULTS 

3.1. Simple Geometry Problem 

As a first test case we consider the two-dimensional problem with one 
periodic direction as defined in Section 2.2. The semidiscrete governing 
equations are discretized further in space by employing a simple second- 
order center finite-difference scheme with 400 points along the y direction 
to eliminate spatial errors. We only consider the least stable mode as this 
is the mode resolved by the direct simulation. 

In the following tests the accuracy of the various schemes is examined 
by computing a decay-rate if, which is defined as follows (similarly as in 
Deville et aL, 1984): 

1 , v ( y = 0 ,  t +  T) (3.1) 
 G=0, t) 

where the time period T is taken to be T =  0.3; with the above parameters 
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the energy of the initial field has been reduced by almost five orders of 
magnitude after the period T. 

In Fig. 1 we plot the error in the decay rate ff for several schemes 
corresponding to different integration orders and different type of pressure 
boundary condition. In general, the improved pressure BC as derived 
directly from the momentum equation (see Section 2) lead to smaller errors 
in 6. The larger errors correspond to the classical splitting scheme with the 
pressure boundary condition of the form @/~n = 0. This difference in 
accuracy has a direct effect on the values of the divergence of the velocity 
field, as is demonstrated in Fig. 2, where we plot the divergence across the 
channel (y-direction). The numerical boundary layers induced by the non- 
divergent (splitting))~-mode are shown clearly for the zero Neumann 
pressure BC; however, these errors are eliminated almost entirely if a rota- 
tional form of the pressure BC is employed. 

To validate the results of the normal mode analysis presented earlier 
regarding the particular form of the pressure BC [i.e., Eqs. (2.20)] we pre- 
sent in Fig. 3 the divergence profile across the channel at At = 10 .2 for two 
types of pressure BC [curve A: Eq. (2.20a); curve B: Eq. (2.20b)]. Indeed, 
we verified that a higher-order accuracy associated with the latter BC leads 

.8 

.6 

.4 

.2 

z~ 

0 

r~ 

m 

o 

0 ,g 

o 

OP = O; J i  = 3; Jp .=  1,2,3 

OP _ uV = 7)~ - --  ~ w; J i  2; Jp = I 

OP 
~ = - u V ~ w ;  J i = 3 ]  J p = 3  

k l l l 4 ~ l l  

o 

o 

0 

, , , [ ,  i , i I 
.01 .02 

, ,  I , I , t i , t  i , , ,  I 
.03 .04 .05 

A t  

Fig. 1. Error on decay rate ff versus time step At for different pressure boundary condition 
and different integration schemes. Here Ji, Jp denote the integration order of the viscous and 
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Fig. 4. Effect of the explicit integration order in the pressure boundary condition upon the 
accuracy of the solution. High-order integration results in negligible errors in velocity 
divergence. 

to almost zero divergence error at the two solid boundaries. This 
divergence error in its turn varies with the order of the intergration scheme 
employed as we show in Fig. 4, where we plot the divergence for first-, 
second-, and third-order schemes. Finally, the direct effect of the time- 
accuracy on the efficient removal of the boundary divergence errors is 
shown in Fig. 5, where we present divergence errors versus different time 
steps. We see that a typical time step A t  = 10 .2 results in divergence errors 
comparable to the overall spatial discretization errors which are close to 
machine accuracy for our single-precision computations. 

3.2. Complex Geometry Problem 

As a second test problem we consider a two-dimensional Stokes flow 
past a circular cylinder placed next to a moving wall. The available exact 
solution due to Wannier (1950) for this complex-geometry flow allows for 
reliable evaluation of the time-differencing error. This problem and its 
variants have been recently used for code verification purposes (Beris et  al., 
1984; Korczak and Patera, 1986; Maslanik et  al., 1989). The exact solution 
and the particular parameters we use in the present test are given by 
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Fig. 6. Steady-state streamlines for the Stokes flow. The discretization is based on spectral 
element methods. 
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Fig. 7. L2-error history at a fixed point in the computat ional  domain indicating a three- 
orders-of-magnitude increase in accuracy for the improved pressure boundary condition. 
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splitting scheme. (b) High-order splitting scheme. 
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Here, we denote by R=0.25 the cylinder radius, by d=0.5 the dis- 
tance of the cylinder center from the wall, and by U = 1 the velocity of the 
moving wall; the cylinder is also spinning in the direction of the moving 
wall at velocity u = 0.5. The discretization employed for this simulation is 
based on the spectral element methodology, which provides high spatial 
accuracy for complex geometry flows and smooth solutions (Karniadakis, 
1989). Dirichlet BC were used at the boundaries of the truncated domain 
computed from the exact solution. The computed steady-state solution is 
shown in Fig. 6 in the form of streamlines, and is indistinquishable from 
the exact solution. In Fig. 7 we plot the convergence history to the final 
steady state presented as the L2-error at At = 10 2 versus time for two dif- 
ferent schemes: (A) the classical splitting scheme using the inviscid-type 
pressure BC; and the new stiffly stable schemes corresponding to (B) third- 
order. The superiority of the new pressure boundary condition is reflected 
in the difference between curves (A) and (B). 

To test how accurately the incompressibility constraint is honored in 
this simulation we plot in Figs. 8a and 8b the divergence profile across a 
line very close to no-slip boundaries (see Fig. 6), where the divergence 
achieves its maximum value. The first plot corresponds again to the classi- 
cal splitting scheme and is characterized by the relatively large divergence 
value (9(10 -3 ) as well as two pronounced boundary layers at the two ends 
of the domain. In Fig. 8b, however, which corresponds to a simulation with 
the improved rotational pressure BC the divergence is smaller by two 
orders of magnitude, while the numerical boundary layers have been 
eliminated completely. These results therefore agree with the results of the 
simple geometry simulation and are consistent with the findings of the nor- 
mal modes analysis presented in Section 1. 

4. CONCLUSIONS 

Our findings in this work validate the new splitting method proposed 
in Karniadakis etal. (1990) for the solution of the incompressible 
Navier-Stokes equations; in particular, a time accuracy of a specified 
high order is readily achieved without introducing any extra coupling 
between pressure and velocity equations (Rcnquist, 1988), which would 
result in prohibitively expensive calculations. In addition, the boundary- 
divergence errors that are present in the classical splitting method are 
completely eliminated using the improved, rotational Neumann boundary 
conditions for the pressure. 
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