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Simulating Thermohydrodynamics with 
Lattice BGK Models 
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In this paper, we propose new lattice BGK models for one-, two- and three- 
dimensional thermohydrodynamics. A proper internal energy is introduced and 
the energy equation is obtained. The derivation of the thermohydrodynamic 
equations is systematic and numerical simulations are carried out to verify the 
theoretical values of the sound speed, the shear viscosity and the conductivity. 
One-dimensional shock-tube problem and two-dimensional Rayleigh-B6nard 
convection are simulated. Good performance and satisfactory results are 
obtained. These models can be applied to many interesting cases, in particular, 
the transonic regimes where the compressibility can not be neglected. 

KEY WORDS:  Kinetic theory; thermohydrodynamics; computational 
technique; lattice gas; BGK model. 

1. I N T R O D U C T I O N  

Recently, there has been an increasing interest in modeling complicated 
physical phenomena by simple methods. One example is the lattice gas 
method which was initially introduced by Frisch et  al., (1986) to solve the 
two-dimensional Navier-Stokes equation. Different variants of the first 
FHP model have been proposed and used for many applications (see 
more details by Doolen (1991)). The first three-dimensional lattice gas 
model was introduced by d'Humi6res et  al., (1986). A variety of physical 
phenomena have been studied. Examples include the Burgers dynamics 
[-Boghosian and Levermore (1987)], flows in porous media [Rothman 
(1990)], MHD [Chen and Matthaeus (1989)] and phase separation 
I-Zaleski (1989)]. The ingredients of all lattice gas models are the following: 
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on each node of a well-chosen lattice, a set of variables {hi}, (i~ 1 ..... b) 
describes the state of occupation of the particles with given velocities ei's. 
The time evolution of the system consists of a collision step and a propaga- 
tion step. During the collision step, particles are redistributed locally 
according to conservation laws while in the propagation step the particles 
move from node to node according to their velocities. The use of such 
simplified models for complicated phenomena impose some constraints to 
be satisfied [Frisch etal . ,  (1987); Qian (1990); and Rivet (1988)]. The 
symmetry of the underlying lattice, the conservation laws and the existence 
of scale-separation are some of such constraints. The recent intensive 
theoretical and numerical investigations have led to a better understanding 
of the advantages of lattice gas models and their drawbacks. More details 
of both the advantages and disadvantages of the lattice gas models can be 
found in Qian etal .  (1990). The main strengths can be summarized as: 
(1) absolute numerical stability; (2)easy treatment of boundary condi- 
tions; (3)simple programming and high parallelism. These strengths are 
accompanied with some shortcomings. One fundamental weakness is that 
the lattice gas dynamics is intrinsically noisy, thus requiring the use of 
spatial or temporal averaging to obtain hydrodynamic information. Orszag 
and Yakhot (1986) discussed some consequences of the statistical noise, 
and Dahlburg et al., (1987) showed the numerical weakness in low Mach 
number and low density simulations. Coupled with the intrinsic non- 
linearity, this statistical noise leads to the divergence of transport 
coefficients in one-dimensional case [d'Humi6res et aL, (1989)] (by RNG 
method) and in two-dimensional case [Kadanoff et al., (1989)] (by mode- 
mode coupling theory). A second weakness is that the lattice gas dynamics 
is not Galilean invariant because of the presence of a factor g(p)  in the 
nonlinear advection term and the pressure depends on velocity [Frisch 
et al., (1987); Qian (1990); and Rivet (1988)]. 

Several modifications have been proposed however to overcome some 
of these drawbacks. The lattice Boltzmann equation (LBE) [McNamara 
and Zanetti (1988)] is the simplest one for two-dimensional models of the 
FHP family (FHP-I, -II, -III and -IV). A simplification is due to Higuera 
etal . ,  (1988), in which they introduced the enhanced collision matrix 
regardless of detailed collisions. As a result, three-dimensional application is 
straightforward. Qian (1990) and Qian e t aL, (1991) proposed to consider 
directly the Maxwellian gas instead of Fermions or Bosons. They obtained 
some models which are Galilean invariant with a velocity-independent 
pressure. All these different versions of LBE however have numerical 
instability problems when the viscosity is very close to zero. In order 
to achieve better numerical stability, a lattice version of BGK model 
[Bhatnagar et al., (1954)1 was recently proposed in Qian et al., (1992), and 
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Chen et aL, (1992). A nonlinear deviation from the Navier-Stokes equation 
was also studied in Chapman and Cowling (1970). The organization of 
the paper is the following: We shall give the description of the kinetics and 
the thermohydrodynamical equations in the Section 2. Section 3 wii1 be 
devoted to the choice of the equilibrium state for different models, and 
numerical simulations will be reported in the Section 4. The last section will 
consist of a discussion and conclusion. 

i 

2. KINETICS AND MACROSCOPICAL EQUATIONS 

Let us first define the kinetic variables and thermohydrodynamic 
quantities. N i ( x  , t) is the particle density related to the given velocity ci. 
The finite set of discrete velocities {ei} determines completely the under- 
lying lattice structure. All the thermohydrodynamic quantities are defined 
by the moments of N/, 

p = ~ U~ (2.1) 
i 

pu = ~ ciU~ (2.2) 
i 

where p, u and e are density, velocity and internal energy. Other quantities 
include the momentum flux tensor P~,(11~/3) and the heat flux q~(Q~), 

(ci~ - u~)(ci, - u,)  Ni (2.4) 

H ~  = ~ c~ci~N: ( = P~r + pu~u~) (2.5) 
i 

1 
q~ = ~i ~ (ci~ - u~)(cia - u~) 2 Ni (2.6) 

Following Qian et al., (1992), we use the same kinetic equation as the 
starting point, 

Ni(x+ci 'c ,  t + z ) = N i ( x , t ) + o g [ N ~ i ( x ,  t ) - N i ( x  , t)] (2.8) 

where 09 is the collision frequency (or the relaxation parameter) and r is 
time step unit (r = 1). Assuming that a scale-separation exists, we apply the 
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classic Chapman-Enskog expansion [Qian and Orszag (1993)] to 
Eq. (2.8), and thus the first-order approximation leads to the following 
Euler equations [Harris (1971)], 

a,p + O=(pu=) = 0 (2.9) 

a,(pu~) + a~(pu= uB) = -~= p (2.10) 

a ,(pe) + O ~( peue) = -pO ~u~ (2.11) 

where p is the pressure which is related to the density by the equation of 
state, 

2 
p= ~ pe (2.12) 

D is the space dimension. We can obtain easily an expression for the sound 
speed as, 

D + 2  (2.13) a==x/77' 7= D 

where 7 is the ratio of specific heat. 
The Navier-Stokes equations are the second-order approximation for 

which the space gradient effect is accounted [Frisch etaI., (1987); Qian 
(1990); Rivet (1988); Chen etal., (1992); Qian and Orszag (1993); and 
Harris (1971)]. The continuity equation is the same as Eq. (2.9) while the 
momentum and energy equations include diffusive terms, 

~,(pu~)+O~(pu=u~)= --~p+~[vOB(pu=)+fO=(pu~)] (2.14) 

~,(pe) + ~(peu~) = --pO~u~ + ~(~pO~e) + ~=[u~(vO~(pu~) + f~(pu~))] 

(2.15) 

(2.16) 
D + 2 ( 2 _  ) 

~=  2D \co ~ e 

where a is a parameter which will be described in the next section. 

3. CHOICE OF THE E Q U I L I B R I U M  STATE N e 
FOR D I F F E R E N T  M O D E L S  

The thermohydrodynamic equations presented in the last section are 
obtained by a proper choice of the local equilibrium state in Eq. (2.8) 
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which is a key point [Qian et al., (1992); Chen et al., (1992); and Chapman 
and Cowling (1970)]. Now we shall discuss more details regarding the 
choice and give some concrete models. The models are still based on the 
lattice structures described in detail in Bhatnagar et al., (1954). Here we 
recall some basic elements. The finite set of velocities et consists of different 
sub-lattices depending on the number of nonzero components of velocities 
and velocity moduli. We denote p as the sub-lattice index and e as velocity 
unit (The index p should not be confused with the pressure p). The rest 
particles mean p = 0 while p = 1 describes the particles on the sub-lattice 
along the principal axis. Now we make the choice for N e as the truncated 
Maxwellian distribution as follows: 

tp 
N~ = App + Bpci~pu ~ + 2c~ (ci~ciB - c26~)  pu~u~ + Dpci~u~pu 2 (3.1) 

where c, is a constant which will be given next. The requirements of 
isotropy of a 4th-order tensor of velocity [Friseh etal., (1987); Qian 
(1990); and Rivet (1988)] and that of Galilean invariance impose some 
constraints on the weights tp, which are model-dependent. We simply give 
some values in Table I for the DdQb models in d space dimensions and 
with b particles from [Qian (1990); Qian et al. (1992); and Chapman and 
Cowling (1970)] (These models will be explained later in this section). 

The point is to determine the different c o n s t a n t s  Ap, Bp and Dp in 
Eq. (2.16). The physical conservation laws of mass, momentum and energy 
lead to the following constraints, 

bpAp = 1 (3.2) 
P 

E ce2 = e  (3.3 t 2 bpAp 
P 

Z c2pbpBp = D (3.4) 
P 

2 bpDp = 0 (3.5) 
P 

Table I. Values for DdQb Models 

2 Model t o t ~ t 2 t 3 t 4 C s 

D1Q5 1/2 1/6 0 0 1/12 1 
D2Q13 4/9 1/9 1/36 0 0 1/3 
D3Q21 2/9 1/9 0 1/72 0 1/3 
D3Q25 1/3 1/18 1/36 0 0 1/3 
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where bp is the number of particles residing on the sub-lattice p (with 
2= ci~ci~). Three additional constraints come from the consideration of Cp 

the energy dependence of transport coefficients and the isotropy of the 
viscous term. These additional constraints can be written as, 

Z c4bpAp = 2(D + 2) ae 2 (3.6) 
p 

Z c4pbpBp = D(D + 2) ae (3.7) 
p 

4 

S" c_~ b B = 3Dae (3.8) ~.a p p 
pP 

where a is a nondimensional parameter. The system is still undetermined 
since we have more unknowns than the number of constraints. Therefore, 
we have certain degrees of freedom to choose the parameters and concrete 
models in one, two and three dimensions are presented next. 

(1) One-dimensional D1Q5 Model. 
This purely one-dimensional model has no spurious invariants 

d'Humi+res etaI., (1989) and can be used to test new ideas. A suitable 
choice of Ap, Op and Dp a r e  the following, 

5e 3e 2 4e 2e 2 e e 2 
A o = l - ~ c 2 +  c a , A 1 - 3 c 2  c 4, A 4 = - 1 - ~ c 2 + ~ c  4 (3.9) 

4c 2 - 3ae 3ae - c 2 
B 1 -  6e 4 , B 4 -  24c4 (3.10) 

1 1 
DI = 6c 4, D 4 - -  24C4 (3.11) 

we choose a = 2 for this model. 

(2) Two-dimensional D2Q13 Model. 
The two-dimensional D2Q9 model [Qian (1990) and Qian etal., 

(1992)] is modified by adding 4 more velocities along the x and y 
directions with velocity modulus 2c. So we have 13 different velocities of 
particles on each node of lattice. 

We take the following values for .,'tp, Bp and Dp, 

5e 9e 2 2e 5 e  2 

A o = 1 - ~ - ~  4c 4, A 1 - 3 c  2 6c 4, 
(3.12) 

e 2 e 7e 2 

A2 - 8c 4, A 4  = - -  24c 2 + 4 8 C 4  
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2C 2 --  3ae ae 3(re - -  C 2 

B 1 - 3c 4 , B2=~ac4, B 4 =  24c4 (3.13) 

1 1 1 

D1 - 18c4, D 2 - 12c4 , D 4 = 18c4 (3.14) 

a is set to I for this model .  

(3) Three -d imens iona l  D3Q21 Model .  
W e  add  6 faster part icles  with speed modu lus  equal  to 2c a long the x, 

y and  z axis to the D3Q15 mode l  [ Q i a n  (1990) and  Qian  et al., (1992)].  
The  fol lowing values for Ap, Bp and  Dp are sui tably  chosen, 

5e l l e  2 4e 23e 2 
A o = l - ~ c 2 +  4c 4 ,  A1 %2 36c 4, 

e 2 e 7e 2 

A 3 - 16c 4, A4 - 36c~+ 72c 4 

(3.15) 

2 C  2 - -  3(re (re 3ae - c 2 
BI 3c 4 , 93 = 8c--~, B 4 -  24c4 (3.16) 

1 5 1 

D1 - 36c4, D 3 - 36c4 , D 4 = 18c4 (3.17) 

(r is also set to 1 for this model .  

(4) Three -d imens iona l  D3Q25 Model .  
This is the D3Q19 mode l  with 6 faster part icles  with speed modu lus  

equal  to 2c a long the x, y, and  z axis [ Q i a n  (1990) and Qian  etal., 
(1992)] .  

We  use the fol lowing values for Ap, Bp and Dp, 

5e 3e 2 4e 7e 2 
A o =  1 - ~ c 2 - f  C4' A1-9c2 9 C  4 '  

e 2 e e 2 

A2 = 12c4, A4 - 36c2 ~- 9c 4 

(3.18) 

4c 2 - 9(re ae 3(re - c 2 
B1 - 6 c  4 , B2 - -  4 C  4 , B 4  24c4 (3.19) 

1 1 
D1 = 0, D2 - 16c4, D 4 = 16c4 (3.20) 

and  (r = 1 is used for this model.  
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4. N U M E R I C A L  S I M U L A T I O N S  

Several numerical simulations are carried out for verifying the 
theoretical results. Good  agreements are obtained for the sound speed a, 
which depends on the internal energy e, for the viscosity v and for the 
conductivity ~r With the D2Q13 model either the relaxation or the forced 
Poiseuille flows are used to measure the viscosity while the conductivity is 
obtained by keeping a constant heat flux and comparing with the Fourier 
law. Figure 1 for the sound speed a,, Fig. 2 for v and Fig. 3 for ~. Solid 
lines are theoretical results while the points (squares or crosses) are 
numerical measurements. Good  agreements are thus achieved. The second 
test is the shock-tube problem. This is a classic benchmark problem for 
testing different numerical schemes. Here we use the D1Q5 model to mimic 
the flow. The initial conditions are uniform energy with zero velocity 
everywhere. A step function of density is used in the middle of the tube. 
Figure 4 shows the density and energy profiles for different times. A right- 
running shock and a left-running rarefaction wave are clearly generated. 
Detailed comparison with high-order method is to be done. A third 
numerical simulation concerns the Rayleigh-B6nard convection in two 
dimensions on a lattice of 64 x 32 at Rayleigh number Ra = 8666 by using 

1 .3  ' ' ' ' I . . . .  ~ -  ' ' ' ' I . . . .  I ' ' ' ' 
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Fig. 1. The sound speed a~ in function of the internal energy e; solid line is the formula 
a.~ = (Te) 1/2 and points are numerical results. 
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c 0 - - r e l a x a t i o n  p a r a m e t e r  (e = 0.5, 0.6) 

Fig. 2. Shear  viscosity v in funct ion of the pa rame te r  o) for different e; solid line is the 

fo rmula  v = e/2(2/o) - 1 ) and  points  are numer ica l  results. Squares  for e = 0.5 and  circles for 
e = 0 . 6  
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Fig. 3. Hea t  conduc t iv i ty  K in function of the pa rame te r  co for different e; solid line is the 

fo rmula  • = e ( 2 / a ~ - 1 )  and  points  are numer ica l  results. Tr iangles  for e = 0.4, squares  for 
e = 0.5 and  circles for e = 0.6. 
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triangle, open square and solid square; Bottom: the same but for the internal energy e. 
R = 1.125, o~ = 1.0, and e =0.25.  
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D2Q13 model. Higher Rayleigh numbers can be achieved with large 
systems. The gravity is incorporated into the simulation by the method 
described in Qian (1990). More detailed results with experimental 
comparison Tilgner et al., will be presented elsewhere. 

5. CONCLUSION 

In this paper we have proposed new lattice BGK models for thermo- 
hydrodynamics which have yet to be studied either by lattice gas or by 
lattice Boltzmann equation. Different models for one, two and three 
dimensions are investigated and numerical simulations confirm well the 
theoretical results concerning the second speed, the shear viscosity and the 
conductivity. Two other simulations for shock-tube in one dimension 
and Rayleigh-B~nard convection in two dimensions are carried out. The 
comparison with real experiments remains to be done in the near future. 
As a flexible and efficient numerical method, the lattice BGK method can 
be used in fundamental studies since it provides a connection between 
microdynamics and macrodynamics, examples include the dynamical phase 
transition, pattern formation [Qian and Orszag, to be published] and 
turbulence study, it can be applied as well to many industry-interested 
problems, like flows in porous media. One shortcoming of the actual lattice 
BGK method is that we can not change the Prandtl number. It is a fixed 
constant. This can be understood in the following way since we have only 
one relaxation parameter co, therefore the dynamical and thermal relaxa- 
tions take the same order. This shortcoming may be overcome by using 
multi-relaxation parameters c9 i instead of a single one. In the lattice 
Boltzmann equation, this may not be a problem by using the enhanced 
collision matrix [Higuera et al., (1989)]. An important problem which is 
worth paying more attention to is a rigorous analysis of the stability. 
Personal experience shows that the D2Q9 model is more stable than the 
triangular FHP model of the lattice BGK version [Qian]. Another slightly 
different approach is the moment method which is studied recently by 
McNamara and Alder (preprint). 
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