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ON THE EXPONENTIAL DICHOTOMY OF PULSE EVOLUTION SYSTEMS 

V.I .  Tkachenko UDC 517.9 

The equivalence of regularity and exponential dichotomy is established for linear pulse differential 
equations with unbounded operators in a Banach space. The separatrix manifolds of a linear pulse sys- 
tem exponentially dichotomous on a semiaxis are studied in a finite2dimensional space. The conditions 
of weak regularity of this system are given. 

1. Equation in a Banach Space 

Consider an equation with pulse influence 

where x e JB, 

unbounded) operators in the space 

dition 

d x / d t  = A ( t ) x  + f ( t ) ,  

Ax~=ti = x(t i )  - x ( t i - O )  = B i x ( t i - O )  + gi, (1) 

is a Banach space with a norm II II, A ( t )  and Bi, i ~ ~ ,  t ~ IR, are linear (generally speaking, 

~ ,  { t i} is a strictly increasing sequence of real numbers satisfying the con- 

lira sup i (t, t + T) / T = p < o% (2) 
T -.-> ~ 

is the number of pulses on the interval (t, t + T), C'(]B) where i(t,  t + T)  

strongly continuous on ]R \ { t i}, discontinuous but right-continuous at the points ti, and l ( ~ )  

functions g(ti)  = gi defined on { t i} with values in ~ and the norm IIg II = sup II gi II. 

We assume the following: 

(i) 

is the space of  functions IR ---> JB 

is the space of 

The right-solvability condition for Eq. (1) is satisfied, i.e., for any initial value u("c0) e ~ ,  the homo- 
geneous equation corresponding to Eq. (1) 

d u / d t  = A( t )u ,  

Au]t=ti= u ( t i ) -  u ( t i - O  ) = B i u ( t i - O  ) 

has a unique solution u(t) ,  t > Zo, strongly continuous for t ~ t i and u(t i )  = ( I +  B i ) u ( t  i -  0); 

(ii) 

I]V(t,~0)l[ < l oexp (co ( t - " co ) ) ,  t > "c o . 

Sufficient conditions of this are presented in [1, 2]. 

The solution operators U(t, z0) are strongly continuous in t for t ~ t i and satisfy the estimate 

(3) 

(4) 
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The inhomogeneous equation (1) has the solution 

t 

x(t)  = U(t,'co)X 0 + ~ U( t , s ) f ( s )ds  + 

"C O 

Z U(t, ti)g i. 
~0 <-ti < t 

The operator L is defined as an unbounded operator in the space C'(2B) with values in C'(B) @ l(JB), 

Lu = (TlU, T2u) = (duld t  - a(t)u, u ( t i ) -  ( l+Bi )u ( t i -O) ) .  

As in [3], we give the following definition. 

Definition 1. The operator L is called exponentially dichotomous on an axis if there exists a variable 

decomposition ~ = ~ l ( Z ) ~  ~2('c) of the space ~ (PI('C) and P2('C) are the corresponding projectors) 

such that the solution u ( t) of the homogeneous equation (3) satisfies the following conditions: 

(i) U(t, Zo)~i(T,O) ~ ~'[i(t), t > Z o, i = 1, 2; 

i =  1,2; (ii) sup II Pi ('co)II < ~,  

(iii) The inequality 

II u(t)l l  -< 11 II u('c0)II exp ( - c  1 (t-'Co)), t _> "c o (5) 

holds for u('co)~ ~1(~0); 

(iv) For every initial value u('Co) ~ ~I'12('c0), there exists a unique extension to the whole axis such that 

Ilu(t)ll <-- 1111u(*0)ll exp(cl( t - 'c0)) ,  t < "c 0. (6) 

Definition 2. The operator L is called regular on IR if, for an arbitrary function f ( t) ~ C'(~) a n d  any 

sequence { gi } E l(~) ,  the linear inhomogeneous equation (1) has a unique solution x ( t ) bounded on IR 

and the following estimate holds: 

llx(t)llc  -< g ( l l Z l x l l c  + Illxll3. (7) 

The relationship between regularity and exponential dichotomy for bounded operators A (t) and B i, i ~ ~,  

was considered earlier in [4-7]. In [4-6], there was an additional requirement of existence of uniformly bounded 

operators ( I +  Bi) -I. In the present paper, this is not required. 

Theorem 1. The regularity of the operator L is equivalent to its exponential dichotomy. 

Proof. Let the operator L be exponentially dichotomous on an axis. Let us construct its Green's function. It 

follows from condition (iv) that there exists a bounded operator f~(t, %) = U(t, "Co)P2('c0) for any "% E IR. 
Green's function has the form 
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[U(t, s) P1 (s), 
G(t, s) = [_ f2(t, s), 

Conditions (i)-(iv) yield the estimate 

The function 

t > s ,  

t<_s.  

II a(t,s)ll <- l e x p ( q [ t - s l ) .  

x(t) = I G( t , s ) f ( s )ds  + ~ G(t, ti)g i 
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is a bounded solution of Eq. (1), provided that condition (2) is satisfied. This can be checked by analogy with [8, 
Sec. 26]. 

Let the operator L be regular. Consider the manifolds 

(8) 

~ 1 ( z 0 )  = {x( 'Co)e  ~, Lx = 0, sup l lx ( t ) l l  < oo}, (9) 
t >'~o 

~2(Zo)  = {X ( Zo)~  ~, Lx = 0, sup Ilx(t) l l  < ~ } .  (10) 
t< 'c  0 

Note that relation (7) implies that x(t) in (10) can be uniquely extended to (_oo, to). 
As in [3], one can prove the following inequalities: 

Ilx(t)ll -< lllx(x0)ll, t -> "I; 0, X('C0) E ~ I ( ' C 0 ) ,  (11) 

IIx(t)ll -< lllx(~0)ll, t < "c 0, X(~o) e ~2('c0)- (12) 

Inequalities (11) and (12) imply estimate (5) for x('Co) ~ ~i('Co) and (6) for X(Zo) e ~2('c0). The manifolds 

~1 ('Co) and ~2('~0) complement each other. 

2. Equation (1) in Finite-Dimensional Space ]B = R m 

Assumethat  IlA(t)ll <- K, X/t~ ~ ,  f ( t ) e  C'(IR), Ilggll-< K, V i e  ~., IIBi[I- K, V i e  ~,  II'll i s the  

norm of a matrix or of a vector. The pulses may degenerate (det (I + Bi)  = 0) for some (or all) i ~ ~ ;  therefore, 

solutions of Eq. (1) are not extendable to the negative semiaxis or are ambiguously extendable. 

Definition 3. Equation (3) for  ~ = ]R m is called exponentially dichotomous for t >>- "c o i f  the space • m 

can be represented as the direct sum ~ m  = Uz (~ Sz for  any "c > "co so that the following conditions are sat- 

isfied: 

(i) A solution u(t) of  Eq. (3), u("c)~ S z, satisfies the estimate 

I lu(t ) l l  -< Kllu(z)llexp(-v(t-'c)), t _> "c; (13) 
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(ii) The estimate 

Ilu(t)ll -> K l l u ( ~ ) l l e x p ( v ( t - ~ ) ) ,  t >_ "c (14) 

holds for  u ( z ) ~  Uz. 

The manifold Uz in condition (ii) is selected ambiguously, it is one of the dual spaces to S r In condition (i), 

the solution u(t)  can degenerate into zero. The dimensionalities of the manifolds Sx and Uz can vary together 

with "c. These variations are determined by the following lemma: 

Lemma 1. For the dimensionalities o f  the stable and unstable manifolds, we have 

dim S t > dim Sz 

dim U t > dim Uz 

for  t < % 

for  t < z. 
(15) 

Proof. Obviously, if there are no pulse points between t and z in the condition of the lemma, then the in- 

equalities turn into equalities. The strict inequalities may appear for t = t i - 0 and x = t i. Let us consider this case. 

The image of the space Sti_o= under the mapping ( I  + Bi)  is contained in Stc Its dimensionality is dim ( I +  

Bi)St~_ 0 = dim Sti_ 0 - dim ker (I  + Bi). In Sti, we construct a complement to ( I  + Bi)Sti_ O. This subspace has the 

dimensionality dimSt~- dim Sti_ o + dimker ( I+  Bi) a n d  belongs to the se t  ~m\(I+ Bi)]R m. Therefore, the in- 

equality 

dimSti  - dim Str. 0 + d i m k e r ( I  + Bi )  < d i m k e r ( I  + Bi), 

or dimSti < dimSti_0, is valid. The second inequality in (15) can be proved by using the fact that Sz and U z 

complement each other in IR m. The lemma is proved. 

Lemma 2. Let system (3) be defined for  t > 0 and exponentially dichotomous on the semiaxis t > "~1 > O. 
Then it is exponentially dichotomous on the semiaxis t > s for  all s ~ [0, "c 1 ]. 

P r o o f  Let '~1 E [tj, tj+l). Then solutions can be uniquely extended to the left of the point t = z I to the 

segment [tj, Zl] as solutions of a linear differential system with a bounded matrix. With regard to estimate (4), one 

can easily conclude that Eq. (3) is dichotomous on [tj, oo) because this is so on ['c 1, ~ ) .  In this procedure, the 

constants in inequalities (15) and (16) may change. Since the matrix ( I +  Bi) is  degenerate, not all solutions on 

[ tj, ~ )  have preimages at the point tj - O. Let Stj and Utj be stable and unstable manifolds of the system at the 

points tj, respectively. The manifold Sty_ 0 is the sum of preimages of vectors from Stj and elements of 

ker ( I  + Bj ). Taking into account that the matrix on the right-hand side of system (3) is bounded, one can easily see 

that inequality (15) holds for $9_ 0. 

The elements of the manifold Utj that have preimages under the action of the matrix ( I  + Bj ) form a vector 

space. Let v 1 . . . . .  v 1 be its basis. Consider the algebraic system 

( I + B j ) y  = v k, k = 1,-"l. (16) 
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For each v k, among solutions of system (16), we choose a solution Yk with the least norm. By reducing (1+ Bj ) 

to the Jordan form, we can show that the inequality 

Ilva[I -> MllYkll ,  k = 1,--7, (17) 

is valid with the constant independent of v k. A span of the vectors Yk forms a manifold U~_ 0. By using (17), we 

IR m obtain inequality (14) for vectors from Utj_o; furthermore, Stj_ o ~ Utj_ o = by construction. Thus, we proved 

that system (3) is exponentially dichotomous fo r  tj - O. The points t < tj - 0 can be considered similarly. The 

lemma is proved. 

Defini t ion 4. The opera tor  L is called weakly regular on the semiaxis t > t o i f  f o r  arbi trary  

f ( t ) ~ C" ['c o, oo ) and { gi } ~ l [1: 0, o~), the linear inhomogeneous equation (1) has at least one solution u ( t )  

bounded for  t > "c o. 

Theorem 2. In order that system (1) be weakly regular, it is necessary and sufficient that the system be 
exponentially dichotomous on a semiaxis and the dimensionalities o f  the stable subspace S t and the unstable 

subspace U z be independent o f  "c >_ t o. 

Proof. Sufficiency. Let dim S~ = r and dim U~ = m - r for any "c > "c 0. The manifold Sz is uniquely de- 

termined (unlike its complement Uz) and invariant. We introduce a basis ul ( t  ) . . . . .  ur(t) in Sz and complement it 

to a basis in ]Rrn by vector functions Ur§ 1 . . . . .  Urn(t ) .  We construct a matrix Q(t) so that its ith column is 

ui(t)] det Q(t)[ > a > 0. Let us change the variables x = Q(t)y in system (1). In terms of the variables (Yl, Y2), 

the manifold S z has the form (y1(t), 0). In the new variables (Yl, Y2), we obtain the following triangular system: 

d Y l / d t  = A l ( t ) y  ~ + A12(t)y 2 + f l ( t ) ,  

AYllt=ti = B]y  1 + B]2y2 + g]; (18) 

dy2td t  = A2(t)y 2 + f2(t), 

AY2[t=ti = B2y2 + g2. (19) 

The homogeneous system (19) (for f2(t) = 0 and g~ = 0, i ~ 2 )  has no nontrivial bounded solutions; all 

its solutions increase exponentially. In this case, d e t ( I +  B/2) ~: 0 for any i e ~ and the solutions can be 

uniquely extended to the semiaxis t > "c o. A unique bounded solution of the inhomogeneous system (19) is given 

by the relation 

Y2 (t) = i Y2( t ' s ) f 2 ( s )d s  + ~ Y2(t' ti)gzi' 
t t< t i<~176  

where Y2(t, s) is the evolution matrix of the homogeneous system (19). 

The homogeneous system (18) is exponentially stable for f1 = 0, g/2 = 0, and y2(t) = 0. Thus, all solutions 

of the inhomogeneous system are bounded and can be expressed as 
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Yl(t)  
t 

f Y1(t's)(A12(s)Y20(s) + fl (s))ds + 
t o 

Z YI (t' ti)(B~2y20(ti ) + g~)' 
to < t i < t  

where Yl(t, s) is the evolution matrix of the homogeneous system (18) (for Y2 = 0), Y20 (t) is a bounded solution 
of system (19). 

Necessity. As in [5], we prove that solutions of the homogeneous system (3) bounded for t > z 0 satisfy es- 
timate (13) while solutions from some complement to the space of bounded solutions satisfy estimate (14). Note 

that the fact that the matrix ( I  + B i) must be nondegenerate is, actually, not used in the proof in [5]. 

Let us show it is necessary that the dimensionalities of Sz and U z be constant. Suppose that, for t = ti, this 

condition is violated, i.e., in view of Lemma 1, dimSt; < dimSt~_ 0. Let d imke r ( I+  Bi )  = k, dimSt~ = s, and 

dim Sty_ 0 = s + s 1 . Under the action of ( I  + Bi), the subspace Sty_ 0 is decompose-d into a sum of a k-dimensional 

subspace, which turns to zero, and an (s + s I - k)-dimensional subspace, which has a nonzero image in St; The 

space St~ is decomposed into a direct sum of an ( s + s 1 - k)-dimensional subspace S~., which has a preimage in 

Sti-o, and a (k - s 1 )-dimensional subspace S~, which has no preimage. 

A solution of  system (1) has the form 

x ( t )  = 

t 

U(t, ti)x i + ~ U(t, s) f (s)ds  + Z U(t, tj)gj 
t i t i < tj  < t 

= U ( l , t  i - O ) x  i _ O  + 

t 

I U(t ,s) f (s)ds  + Z U(t, tj)g 
t i - 0  ti < t j  < t 

U(t, ti)(I+ Bi)x i_  0 + 
t 

I U(t, s) f(s)ds + Z U(t, tj)gj. 
t i - O  ti <" t j  < t 

Therefore, 

( I+ Bi)xi_ 0 = x i + gi" (20) 

Let gi = 0 and f ( t )  = 0 for t > t i. For t > t i, system (1) has a set of bounded solutions that start from Sti. 
Since system (1) is weakly regular, the algebraic system (20) has a solution for arbitrary gi and x i ~ Sti. Let us 

select gi f~ Im (I  + Bi). Then (gi + slti ) has no preimage under the action of (1+ Bi). The dimensionality of the 

hyperplane (gi + S~) is m - s  1. The dimensionality of Im (I  + Bi) is m - k  and, thus, it is always possible to 

choose gi so that (gi  + $2) and Im ( I +  Bi )  d o  not intersect, i.e., it is possible to find inhomogeneities f ( t )  and 

gi such that system (1) has no bounded solutions. This contradicts the assumption of weak regularity. The theorem 
is proved. 
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3. Exponential Dichotomy of a Perturbed System 

Parallel with system (3), we consider the perturbed system 

dy/dt  = (A(t)  + A( t ) )y ,  t * t i, 

zXylt=t, = (Bi+ Bi)Y" 
(21) 

Theorem 2. Let system (3)be  exponentially dichotomous for  u ~ ]R m and t > O. Then system (21) is 

also exponentially dichotomous for  II A(t)ll  c" ~- 8 and II ni lit -< 8 with sufficiently small 8 > O. 

Proof. As follows from Lemma 1, the dimensionality of the stable manifold S t of the exponentially dichoto- 

mous system (3) does not increase with 'c. Since the dimensionality of the space is finite, it is stabilized beginning 

from certain "Co and the dimensionalities of S z and U t are constant for "~ > % (it is possible that S, = 0 or 

S t = lRm). By Theorem 2, system (3) is weakly regular on the semiaxis "c _> "c o and has Green's function G(t, s) 

satisfying estimate (8). If  t > "co and 8 are small, a direct decomposition ]R m = C/,~ (~ S. c exists for system (3), 

which determines the exponential dichotomy. The subspace S, consists of initial values y('c) of solutions of 

Eq. (21) tending to zero as t --+ + oo. These solutions can be obtained from the integral equation 

y(t) = U(t, "c)u('C) + I G(t, s )A(s)y(s)ds  + ~ s  G(t, ti)BiY(ti), 
,~ t < ti  < 0 0  

(22) 

where u('c) ~ S z. It can be shown that the right-hand side of (22) is a contraction operator for sufficiently small 8, 

provided that conditions (2) and(8)  are satisfied. Therefore, for each u("c) e S z, Eq. (22) has a-u-nique solution 

y(t) that satisfies estimate (13). Thus, St is constructed. 

All solutions from a complement to St grow exponentially. These solutions are determined by the equation 

t 

y(t)  = U(t,"c)y('c) + I U(t, s)~i(s)y(s)ds + s U(t, ti)BiY(ti). 
k t t < t  i < t  

It can be shown by analogy with [9, p. 259] that estimate (14) holds for these solutions. The theorem is proved. 

Example. Consider the equation 

dy /d t  = O, t ;~ n~  ~., AYlt=n =bnY+gn" (23) 

Assume that bn = 2 for n > 1 and b n = 0 for n < 0, gn = O, n ~" 1, and gl = 2. Equation (23) is exponent- 

ially dichotomous on the semiaxis t > "c o for all "co- Clearly, U t = 0 for t < 1 and dim U t = 1 for t > 1. On 

the semiaxis t > 1, the equation has a unique bounded solution y(t)  = -1 ,  1 < t < 2, which is zero for t > 2. 

There are no bounded solutions on the semiaxis t > 0. Indeed, for t = 1, all solutions pass through the point 

y(1) = 2, but a solution with this initial condition is unbounded. 
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