ON THE EXPONENTIAL DICHOTOMY OF PULSE EVOLUTION SYSTEMS

V.I. **Tkachenko** UDC 517.9

The equivalence of regularity and exponential dichotomy is established for linear pulse differential equations with unbounded operators in a Banach space. The separatrix manifolds of a linear pulse system exponentially dichotomous on a semiaxis are studied in a finite-dimensional space. The conditions of weak regularity of this system are given.

1. Equation in a Banach Space

Consider an equation with pulse influence

$$
dx/dt = A(t)x + f(t),
$$

$$
\Delta x|_{t=t_i} = x(t_i) - x(t_i - 0) = B_i x(t_i - 0) + g_i,
$$
 (1)

where $x \in B$, B is a Banach space with a norm $|| \, ||$, $A(t)$ and B_i , $i \in \mathbb{Z}$, $t \in \mathbb{R}$, are linear (generally speaking, unbounded) operators in the space B , $\{t_i\}$ is a strictly increasing sequence of real numbers satisfying the condition

$$
\limsup_{T \to \infty} i(t, t+T)/T = p < \infty,\tag{2}
$$

where $i(t, t+T)$ is the number of pulses on the interval $(t, t+T)$, $C'(B)$ is the space of functions $\mathbb{R} \to B$ strongly continuous on $\mathbb{R} \setminus \{t_i\}$, discontinuous but right-continuous at the points t_i , and $l(\mathcal{B})$ is the space of functions $g(t_i) = g_i$ defined on $\{t_i\}$ with values in \mathbf{B} and the norm $||g|| = \sup ||g_i||$.

We assume the following:

(i) The right-solvability condition for Eq. (1) is satisfied, i.e., for any initial value $u(\tau_0) \in B$, the homogeneous equation corresponding to Eq. (1)

$$
du/dt = A(t)u,
$$

\n
$$
\Delta u|_{t=t_i} = u(t_i) - u(t_i - 0) = B_i u(t_i - 0)
$$
\n(3)

has a unique solution $u(t)$, $t \ge \tau_0$, strongly continuous for $t \ne t_i$ and $u(t_i) = (I + B_i)u(t_i - 0)$;

(ii) The solution operators $U(t, \tau_0)$ are strongly continuous in t for $t \neq t_i$ and satisfy the estimate

$$
||U(t, \tau_0)|| \le l_0 \exp(c_0(t - \tau_0)), \quad t \ge \tau_0. \tag{4}
$$

Sufficient conditions of this are presented in [1, 2].

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhumal, Vol. 46, No. 4, pp. 418--424, April, 1994. Original article submitted January 28, 1993.

The inhomogeneous equation (1) has the solution

$$
x(t) = U(t, \tau_0) x_0 + \int_{\tau_0}^t U(t, s) f(s) ds + \sum_{\tau_0 \leq t_i \leq t} U(t, t_i) g_i.
$$

The operator L is defined as an unbounded operator in the space $C'(B)$ with values in $C'(B) \oplus l(B)$,

$$
Lu = (T_1u, T_2u) = (du/dt - A(t)u, u(t_i) - (I + B_i)u(t_i - 0)).
$$

As in [3], we give the following definition.

Definition 1. The operator L is called exponentially dichotomous on an axis if there exists a variable decomposition $\mathbf{B} = \mathbb{R}_1(\tau) \oplus \mathbb{R}_2(\tau)$ *of the space* \mathbf{B} ($P_1(\tau)$ *and* $P_2(\tau)$ *are the corresponding projectors) such that the solution u (t) of the homogeneous equation (3) satisfies the following conditions:*

- *(i)* $U(t, \tau_0)$ $\mathcal{R}_i(\tau_0) \subseteq \mathcal{R}_i(t), t \geq \tau_0, i = 1, 2;$
- (ii) sup $||P_i(\tau_0)|| < \infty$, $i = 1, 2;$
- *(iii) The inequality*

$$
||u(t)|| \le l_1 ||u(\tau_0)|| \exp(-c_1(t-\tau_0)), \quad t \ge \tau_0
$$
 (5)

holds for $u(\tau_0) \in \mathcal{R}_1(\tau_0);$

(iv) For every initial value $u(\tau_0) \in \mathcal{R}_2(\tau_0)$, *there exists a unique extension to the whole axis such that*

$$
||u(t)|| \le l_1 ||u(\tau_0)|| \exp(c_1(t - \tau_0)), \quad t \le \tau_0. \tag{6}
$$

Definition 2. The operator L is called regular on R if, for an arbitrary function $f(t) \in C'(B)$ *and any sequence* $\{g_i\} \in l(\mathbf{B})$, the linear inhomogeneous equation (1) has a unique solution $x(t)$ bounded on R *and the following estimate holds:*

$$
||x(t)||_{C'} \le K(||L_1x||_{C'} + ||lx||_l). \tag{7}
$$

The relationship between regularity and exponential dichotomy for bounded operators $A(t)$ and B_i , $i \in \mathbb{Z}$, was considered earlier in [4-7]. In [4-6], there was an additional requirement of existence of uniformly bounded operators $(I + B_i)^{-1}$. In the present paper, this is not required.

Theorem 1. *The regularity of the operator L is equivalent to its exponential dichotomy.*

Proof. Let the operator L be exponentially dichotomous on an axis. Let us construct its Green's function. It follows from condition (iv) that there exists a bounded operator $\Omega(t, \tau_0) = U(t, \tau_0)P_2(\tau_0)$ for any $\tau_0 \in \mathbb{R}$. Green's function has the form

$$
G(t,s) = \begin{cases} U(t,s)P_1(s), & t \geq s, \\ -\Omega(t,s), & t \leq s. \end{cases}
$$

Conditions (i) - (iv) yield the estimate

$$
|| G(t, s) || \leq l \exp(c_1 | t - s|). \tag{8}
$$

The function

$$
x(t) = \int_{-\infty}^{\infty} G(t,s)f(s)ds + \sum_{i=-\infty}^{\infty} G(t,t_i)g_i
$$

is a bounded solution of Eq. (1), provided that condition (2) is satisfied. This can be checked by analogy with [8, Sec. 26].

Let the operator L be regular. Consider the manifolds

$$
\mathfrak{N}_1(\tau_0) = \{ x(\tau_0) \in \mathbf{B}, \ Lx = 0, \sup_{t \ge \tau_0} ||x(t)|| < \infty \},\tag{9}
$$

$$
\mathfrak{N}_2(\tau_0) = \{x(\tau_0) \in \mathfrak{B}, \ Lx = 0, \sup_{t \le \tau_0} ||x(t)|| < \infty\}.\tag{10}
$$

Note that relation (7) implies that $x(t)$ in (10) can be uniquely extended to $(-\infty, t_0)$.

As in [3], one can prove the following inequalities:

$$
||x(t)|| \le l ||x(\tau_0)||, \quad t \ge \tau_0, \quad x(\tau_0) \in \mathcal{R}_1(\tau_0), \tag{11}
$$

$$
||x(t)|| \le l ||x(\tau_0)||, \quad t \le \tau_0, \quad x(\tau_0) \in \mathfrak{N}_2(\tau_0). \tag{12}
$$

Inequalities (11) and (12) imply estimate (5) for $x(\tau_0) \in \mathcal{R}_i(\tau_0)$ and (6) for $x(\tau_0) \in \mathcal{R}_2(\tau_0)$. The manifolds $\mathfrak{N}_1(\tau_0)$ and $\mathfrak{N}_2(\tau_0)$ complement each other.

2. Equation (1) in Finite-Dimensional Space $\mathbf{B} = \mathbb{R}^m$

Assume that $||A(t)|| \leq K$, $\forall t \in \mathbb{R}$, $f(t) \in C'(\mathbb{R})$, $||g_i|| \leq K$, $\forall i \in \mathbb{Z}$, $||B_i|| \leq K$, $\forall i \in \mathbb{Z}$, $||\cdot||$ is the norm of a matrix or of a vector. The pulses may degenerate $(\det (I + B_i) = 0)$ for some (or all) $i \in \mathbb{Z}$; therefore, solutions of Eq. (1) are not extendable to the negative semiaxis or are ambiguously extendable.

Definition 3. Equation (3) for $\mathbf{B} = \mathbb{R}^m$ *is called exponentially dichotomous for* $t \ge \tau_0$ *if the space* \mathbb{R}^m can be represented as the direct sum $\mathbb{R}^m = U_\tau \oplus S_\tau$ for any $\tau \geq \tau_0$ so that the following conditions are sat*isfied:*

(i) A solution $u(t)$ of Eq. (3), $u(\tau) \in S_{\tau}$, satisfies the estimate

$$
\|u(t)\| \le K \|u(\tau)\| \exp(-v(t-\tau)), \quad t \ge \tau; \tag{13}
$$

(ii) The estimate

$$
||u(t)|| \ge K||u(\tau)||\exp(v(t-\tau)), \quad t \ge \tau
$$
\n(14)

holds for $u(\tau) \in U_{\tau}$.

The manifold U_{τ} in condition (ii) is selected ambiguously, it is one of the dual spaces to S_{τ} . In condition (i), the solution $u(t)$ can degenerate into zero. The dimensionalities of the manifolds S_{τ} and U_{τ} can vary together with τ . These variations are determined by the following lemma:

Lemma 1. *For the dimensionalities of the stable and unstable manifolds, we have*

$$
\dim S_t \ge \dim S_{\tau} \quad \text{for } t \le \tau,
$$
\n
$$
\dim U_t \ge \dim U_{\tau} \quad \text{for } t \le \tau.
$$
\n
$$
(15)
$$

Proof. Obviously, if there are no pulse points between t and τ in the condition of the lemma, then the inequalities turn into equalities. The strict inequalities may appear for $t = t_i - 0$ and $\tau = t_i$. Let us consider this case. The image of the space S_{t_i-0} under the mapping $(I + B_i)$ is contained in S_{t_i} . Its dimensionality is dim $(I + B_i)$ B_i) S_{i-0} = dim S_{i-0} - dim ker $(I + B_i)$. In S_{i} , we construct a complement to $(I + B_i)S_{i-0}$. This subspace has the dimensionality dim S_{t_i} - dim S_{t_i-0} + dim ker(I+ B_i) and belongs to the set $\mathbb{R}^m \setminus (I + B_i)\mathbb{R}^m$. Therefore, the inequality

$$
\dim S_{t_i} - \dim S_{t_i-0} + \dim \ker (I + B_i) \le \dim \ker (I + B_i),
$$

or dim $S_{t_i} \le \dim S_{t_i-0}$, is valid. The second inequality in (15) can be proved by using the fact that S_{τ} and U_{τ} complement each other in \mathbb{R}^m . The lemma is proved.

Lemma 2. Let system (3) be defined for $t \ge 0$ and exponentially dichotomous on the semiaxis $t \ge \tau_1 > 0$. *Then it is exponentially dichotomous on the semiaxis* $t \geq s$ *for all* $s \in [0, \tau_1]$ *.*

Proof. Let $\tau_1 \in [t_j, t_{j+1})$. Then solutions can be uniquely extended to the left of the point $t = \tau_1$ to the segment $[t_i, \tau_1]$ as solutions of a linear differential system with a bounded matrix. With regard to estimate (4), one can easily conclude that Eq. (3) is dichotomous on $[t_j, \infty)$ because this is so on $[\tau_1, \infty)$. In this procedure, the constants in inequalities (15) and (16) may change. Since the matrix $(I + B_i)$ is degenerate, not all solutions on $[t_j, \infty)$ have preimages at the point $t_j - 0$. Let S_{t_j} and U_{t_j} be stable and unstable manifolds of the system at the points t_j , respectively. The manifold S_{t_j-0} is the sum of preimages of vectors from S_{t_j} and elements of ker $(I + B_j)$. Taking into account that the matrix on the right-hand side of system (3) is bounded, one can easily see that inequality (15) holds for S_{t_i-0} .

The elements of the manifold U_{t_i} that have preimages under the action of the matrix $(I + B_j)$ form a vector space. Let v_1, \ldots, v_l be its basis. Consider the algebraic system

$$
(I+Bi)y = vk, k = \overline{1,l}.
$$
 (16)

For each v_k , among solutions of system (16), we choose a solution y_k with the least norm. By reducing $(I + B_j)$ to the Jordan form, we can show that the inequality

$$
||v_k|| \ge M ||y_k||, \quad k = \overline{1, l}, \tag{17}
$$

is valid with the constant independent of v_k . A span of the vectors y_k forms a manifold U_{t-0} . By using (17), we obtain inequality (14) for vectors from U_{t_j-0} ; furthermore, $S_{t_j-0} \oplus U_{t_j-0} = \mathbb{R}^m$ by construction. Thus, we proved that system (3) is exponentially dichotomous for $t_i - 0$. The points $t < t_j - 0$ can be considered similarly. The lemma is proved.

Definition 4. The operator L is called weakly regular on the semiaxis $t \geq \tau_0$ *if, for arbitrary* $f(t) \in C'[\tau_0, \infty)$ and $\{g_i\} \in l[\tau_0, \infty)$, the linear inhomogeneous equation (1) has at least one solution $u(t)$ *bounded for* $t \geq \tau_0$.

Theorem 2. *In order that system (1) be weakly regular, it is necessary and sufficient that the system be exponentially dichotomous on a semiaxis and the dimensionalities of the stable subspace* S_z *and the unstable subspace* U_{τ} *be independent of* $\tau \geq \tau_0$ *.*

Proof. Sufficiency. Let dim $S_{\tau} = r$ and dim $U_{\tau} = m - r$ for any $\tau \ge \tau_0$. The manifold S_{τ} is uniquely determined (unlike its complement U_τ) and invariant. We introduce a basis $u_1(t), \ldots, u_r(t)$ in S_τ and complement it to a basis in \mathbb{R}^m by vector functions $u_{r+1}, \ldots, u_m(t)$. We construct a matrix $Q(t)$ so that its *i*th column is $u_i(t)$ det $Q(t) \ge a > 0$. Let us change the variables $x = Q(t)y$ in system (1). In terms of the variables (y_1, y_2) , the manifold S_{τ} has the form $(y_1(t), 0)$. In the new variables (y_1, y_2) , we obtain the following triangular system:

$$
dy_1/dt = A_1(t)y_1 + A_{12}(t)y_2 + f_1(t),
$$

\n
$$
\Delta y_1|_{t=t_i} = B_i^1 y_1 + B_i^{12} y_2 + g_i^1;
$$

\n
$$
dy_2/dt = A_2(t)y_2 + f_2(t),
$$

\n
$$
\Delta y_2|_{t=t_i} = B_i^2 y_2 + g_i^2.
$$

\n(19)

The homogeneous system (19) (for $f_2(t) = 0$ and $g_i^2 = 0$, $i \in \mathbb{Z}$) has no nontrivial bounded solutions; all its solutions increase exponentially. In this case, det $(I + B_i^2) \neq 0$ for any $i \in \mathbb{Z}$ and the solutions can be uniquely extended to the semiaxis $t \ge \tau_0$. A unique bounded solution of the inhomogeneous system (19) is given by the relation

$$
y_2(t) = \int\limits_t^{\infty} Y_2(t,s)f_2(s)ds + \sum\limits_{t \le t_i < \infty} Y_2(t,t_i)g_i^2,
$$

where $Y_2(t, s)$ is the evolution matrix of the homogeneous system (19).

The homogeneous system (18) is exponentially stable for $f_1 = 0$, $g_i^2 = 0$, and $y_2(t) = 0$. Thus, all solutions of the inhomogeneous system are bounded and can be expressed as

$$
y_1(t) = \int_{t_0}^t Y_1(t,s) (A_{12}(s) y_{20}(s) + f_1(s)) ds + \sum_{t_0 \le t_i \le t} Y_1(t,t_i) (B_i^{12} y_{20}(t_i) + g_i^1),
$$

where $Y_1(t, s)$ is the evolution matrix of the homogeneous system (18) (for $y_2 = 0$), $y_{20}(t)$ is a bounded solution of system (19).

Necessity. As in [5], we prove that solutions of the homogeneous system (3) bounded for $t \ge \tau_0$ satisfy estimate (13) while solutions from some complement to the space of bounded solutions satisfy estimate (14). Note that the fact that the matrix $(I + B_i)$ must be nondegenerate is, actually, not used in the proof in [5].

Let us show it is necessary that the dimensionalities of S_{τ} and U_{τ} be constant. Suppose that, for $t = t_i$, this condition is violated, i.e., in view of Lemma 1, dim S_t < dim S_{t-0} . Let dimker $(I + B_i) = k$, dim $S_t = s$, and $\dim S_{t_i-0} = s + s_1$. Under the action of $(I + B_i)$, the subspace S_{t_i-0} is decomposed into a sum of a k-dimensional subspace, which turns to zero, and an $(s + s_1 - k)$ -dimensional subspace, which has a nonzero image in S_{t_i} . The space S_{t_i} is decomposed into a direct sum of an ($s + s_1 - k$)-dimensional subspace $S_{t_i}^1$, which has a preimage in S_{t_i-0} , and a $(k - s_1)$ -dimensional subspace $S_{t_i}^2$, which has no preimage.

A solution of system (1) has the form

$$
x(t) = U(t, t_i)x_i + \int_{t_i}^{t} U(t, s)f(s)ds + \sum_{t_i < t_j < t} U(t, t_j)g_j
$$

\n
$$
= U(t, t_i - 0)x_{i-0} + \int_{t_i-0}^{t} U(t, s)f(s)ds + \sum_{t_i \le t_j < t} U(t, t_j)g
$$

\n
$$
= U(t, t_i)(I + B_i)x_{i-0} + \int_{t_i-0}^{t} U(t, s)f(s)ds + \sum_{t_i \le t_j < t} U(t, t_j)g_j.
$$

Therefore,

$$
(I + B_i)x_{i-0} = x_i + g_i.
$$
 (20)

Let $g_i = 0$ and $f(t) = 0$ for $t > t_i$. For $t > t_i$, system (1) has a set of bounded solutions that start from S_{t_i} . Since system (1) is weakly regular, the algebraic system (20) has a solution for arbitrary g_i and $x_i \in S_{t_i}$. Let us select $g_i \notin \text{Im}(I + B_i)$. Then $(g_i + S_{t_i}^1)$ has no preimage under the action of $(I + B_i)$. The dimensionality of the hyperplane $(g_i + S_{t_i}^2)$ is $m - s_1$. The dimensionality of Im $(I + B_i)$ is $m - k$ and, thus, it is always possible to choose g_i so that $(g_i + S_{t_i}^2)$ and Im $(I + B_i)$ do not intersect, i.e., it is possible to find inhomogeneities $f(t)$ and g_i such that system (1) has no bounded solutions. This contradicts the assumption of weak regularity. The theorem is proved.

3. Exponential Dichotomy of a Perturbed System

Parallel with system (3), we consider the perturbed system

$$
dy/dt = (A(t) + \tilde{A}(t))y, \quad t \neq t_i,
$$

$$
\Delta y|_{t=t_i} = (B_i + \tilde{B}_i)y.
$$
 (21)

Theorem 2. Let system (3) be exponentially dichotomous for $u \in \mathbb{R}^m$ and $t \ge 0$. Then system (21) is *also exponentially dichotomous for* $\|\tilde{A}(t)\|_{C} \le \delta$ *and* $\|\tilde{B}_i\|_{L} \le \delta$ *with sufficiently small* $\delta > 0$.

Proof. As follows from Lemma 1, the dimensionality of the stable manifold S_{τ} of the exponentially dichotomous system (3) does not increase with τ . Since the dimensionality of the space is finite, it is stabilized beginning from certain τ_0 and the dimensionalities of S_τ and U_τ are constant for $\tau \ge \tau_0$ (it is possible that $S_\tau = 0$ or $S_{\tau} = \mathbb{R}^{m}$). By Theorem 2, system (3) is weakly regular on the semiaxis $\tau \ge \tau_0$ and has Green's function $G(t, s)$ satisfying estimate (8). If $t \ge \tau_0$ and δ are small, a direct decomposition $\mathbb{R}^m = \tilde{U}_\tau \oplus \tilde{S}_\tau$ exists for system (3), which determines the exponential dichotomy. The subspace \tilde{S}_{τ} consists of initial values $y(\tau)$ of solutions of Eq. (21) tending to zero as $t \to +\infty$. These solutions can be obtained from the integral equation

$$
y(t) = U(t, \tau)u(\tau) + \int_{\tau}^{\infty} G(t, s) \tilde{A}(s) y(s) ds + \sum_{\tau < t_i < \infty} G(t, t_i) \tilde{B}_i y(t_i), \qquad (22)
$$

where $u(\tau) \in S_{\tau}$. It can be shown that the right-hand side of (22) is a contraction operator for sufficiently small δ , provided that conditions (2) and (8) are satisfied. Therefore, for each $u(\tau) \in S_{\tau}$, Eq. (22) has a unique solution $y(t)$ that satisfies estimate (13). Thus, \tilde{S}_τ is constructed.

All solutions from a complement to \tilde{S}_τ grow exponentially. These solutions are determined by the equation

$$
y(t) = U(t, \tau)y(\tau) + \int_{\tau}^{t} U(t, s) \tilde{A}(s) y(s) ds + \sum_{\tau < t_i < t} U(t, t_i) \tilde{B}_i y(t_i).
$$

It can be shown by analogy with [9, p. 259] that estimate (14) holds for these solutions. The theorem is proved.

Example. Consider the equation

 $\sigma_{\rm eff}$ and $\sigma_{\rm eff}$

$$
dy/dt = 0, \quad t \neq n \in \mathbb{Z}, \quad \Delta y|_{t=n} = b_n y + g_n. \tag{23}
$$

Assume that $b_n = 2$ for $n \ge 1$ and $b_n = 0$ for $n \le 0$, $g_n = 0$, $n \ne 1$, and $g_1 = 2$. Equation (23) is exponentially dichotomous on the semiaxis $t \ge \tau_0$ for all τ_0 . Clearly, $U_t = 0$ for $t < 1$ and dim $U_t = 1$ for $t \ge 1$. On the semiaxis $t \ge 1$, the equation has a unique bounded solution $y(t) = -1$, $1 \le t < 2$, which is zero for $t \ge 2$. There are no bounded solutions on the semiaxis $t \ge 0$. Indeed, for $t = 1$, all solutions pass through the point $y(1) = 2$, but a solution with this initial condition is unbounded.

This work was supported by Ukrainian State Committee for Science and Technology (the Foundation for Fundamental Studies).

REFERENCES

- 1. Yu. V. Rogovchenko and S. I. Trofimchuk, *Periodic Solutions of Weakly Nonlinear Partial Differential Equations of Parabolic Type with Pulse Influence and Their Stability* [in Russian], Preprint No. 86.65, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1986).
- 2. A.M. Samoilenko and M. Ilolov, "On the theory of evolution equations with pulse influence," *DokL Akad. Nauk SSSR,* 316, No. 4, 821-825 (1991).
- 3. B.M. Levitan and V. V. Zhikov, *Almost Periodic Functions and Differential Equations* [in Russian], Moscow University, Moscow (1978).
- 4. N.A. Perestyuk and M. U. Akhmetov, "On almost periodic solutions of pulse systems," *Ukr. Mat. Zh.,* 39, No. 1, 74-80 (1987).
- 5. V.I. Gutsu, "The weak regularity of linear pulse differential equations," in: *Geometrical Methods in the Theory of Differential Equations. Mathematical Studies* [in Russian], Issue 112, Stiinca, Kishinev (1990), pp. 72-82.
- 6. D.D. Bainov, S. I. Kostadinov, and P. P. Zabreiko, "Exponential dichotomy of linear impulsive differential equations in a Banach space," *Int. J. Theor. Phys.,* 28, No. 7,797-814 (1989).
- 7. V.E. Slyusarchuk, "On the exponential dichotomy of solutions of pulse systems," *Ukr. Mat. Zh.,* 41, No. 6, 779-783 (1989).
- 8. A.M. Samoilenko and N. A. Perestyuk, *Differential Equations with Pulse Influence* [in Russian], Vyshcha Shkola, Kiev (1987).
- 9. Yu. L. Daletskii and M. G. Krein, *Stability of Solutions of Differential Equations in a Banach Space* [in Russian], Nauka, Moscow (1970).