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Predictive models have been developed to simulate cancer cell populations under treatment with 
cytotoxic drugs, with both direct-acting and cell cycle specific drugs being considered. Models 
of cell growth kinetics have been combined with simple pharmacokinetic models to complete the 
cell-drug interaction system. The models depend on knowing the distribution of generation time 
in the cell population, the ceil-drug interaction, and the local concentration of the drug at the 
effective site. All of the quantities can be obtained, in principle, from separate experiments and 
combined to form a model describing several aspects of the cell-drug response system. 
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INTRODUCTION 

Models for drug distribution (pharmacokinetics) have been developed 
for several drugs employed in cancer chemotherapy. Their utility can be 
further improved by the development of models that describe the effect 
of the drug on the cancerous growth. In this paper, several models of overall 
cancer-drug relations are developed which include drug-host  pharmaco- 
kinetics, cancer cell population kinetics, and drug-cell interactions. This 
work is a beginning attempt at synthesizing these various areas, and this 
paper provides mathematical  results, subject to certain clearly stated 
assumptions, that can be tested against experimental data. A subsequent 
paper does this for the mouse L1210 ARA-C (cytosine arabinoside) system 
and serves to justify the models for at least this case. However, much more 

1University of Maryland, College Park, Maryland. 
2Cornell University, Ithaca, New York. 
3present address: Dow Chemical Company, Midland, Michigan. 

51 

�9 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1001 I. 



52 Himmelstein and Bischoff 

study will be required to really validate the possible models. (Also see the 
addendum to this paper.) 

Several cell population kinetic models are available to describe cell 
kinetics--they are summarized by Fredrickson et al. (1) and by Weiss (2). 
For many of the drugs used in cancer chemotherapy, the drug effectiveness 
depends on the cell mitotic cycle. Thus a "structured" model described by 
Tsuchiya et al, (3) must be employed. This indicates that most simple gross 
descriptions, such as Michaelis-Menten-Monod models, are not sufficient. 
It is assumed here that some simple representation of the cell cycle, or 
maturity of the cell, is sufficient to describe the necessary cell cycle specifica- 
tion. A quantitative description of the detailed biochemical events would, 
of course, be more desirable but is not available at present; Werkheiser (4) 
has made a start in this direction. 

Many investigators have studied von Foerster type models (5,6). 
These models belong to the group of models known as population balances, 
and Trucco (7,8) describes several mathematical solutions to these models. 
We will employ the model of Rubinow (9) for reasons discussed below. 

Rubinow's model is based on time and a variable, here called the 
maturity, that describes the phase of the mitotic cell cycle. The maturity 
is defined such that all cells are born with a maturity of 0 and divide to form 
two cells at a maturity of 1. The maturity is assumed to be related to biological 
events and is operationally defined in terms of measured cell generation times. 
Rubinow assumes that the individual cells of any population inherit the 
cell characteristics such as the cell generation time from their parent cells. 
The observed variability in cell generation times in the cell population 
is included by assuming that there is a distribution of cell generation times 
among the cells in the population. That each cell's characteristics are 
determined by the parent cell allows the problem of randomness to be 
considered by adding the results of the model over all "groups" of cells 
found in the population. This approach leads to simpler mathematical 
description than is available with other approaches, such as that of Trucco 
(7,8). 

Rubinow's population balance is, then, 

On {~ [ l n l  

where n(#, t) is the cell density function, z(/~, t) is the population generation 
time, and 2(/2, t) is the death or loss rate of cells. The initial condition of the 
system is 

n(~, o) = gog(~ )  (2) 

where g(/~) is the distribution of maturities among the N O cells present at 
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time zero. The boundary condition is given by binary mitosis : 

1 
2 ( @ ,  t0n(1, t) (3) r(0, t) n(0' t) = 

This boundary condition allows the separation of the effects of mitosis 
from other additions or losses such as migration or cell death which are 
included in the loss rate function. For cells with given generation times, 
the total number of cells in the population is given by 

N~(t) = n~(#, t) d# (4) 

and for a total population of cells containing a distribution of generation 
times, the total number of density and total number of cells are given by 

f0 n(#, t) = W(~)n~(#, t) dr 

(5) 

fo N(t) = W(z)g~(t) dr 

This model is used here to describe cancer cell kinetics, due to the simpler 
mathematical treatment possible and the separation of mitosis from other 
cell additions and losses. 

It is possible that drugs affect growth rates, kill cells, or render them 
impotent. Depending on the exact biochemical mechanism involved, 
one could argue for several possibilities. As one possible general case, only 
drugs that kill or render impotent are considered ; this is the most obvious 
basis to try and also leads to reasonably simple (mathematical) results, 
which seems to be appropriate at the present state of knowledge. It would 
be entirely possible that different classes of drugs would have different 
representations. This means, then, that the generation time of a cell is taken 
constant and all cell losses are described by means of the loss function. 
Thus equation 1 becomes 

On 1 ~?n 
- -  + - 2 n  (6 )  
Ot r @ 

and equation 3 reduces to 

n(0, t) = 2n(1, t) (7) 

In the sections below, equation 6 will be solved for several cases and the 
meaning of the loss function will be discussed. 
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DIRECT ACTION MODELS 

If a cytotoxic drug kills a cell without respect to the cell cycle, then 
particularly simple representation of this phenomenon is possible as a 
solution of equation 6, 2 = 2(t) only. Such drugs are here termed direct 
action drugs. Small numbers of cells are probably not accurately described 
by equation 6, and a stochastic model would be required. Many large 
populations of cells are observed to be approximately in exponential growth: 

N = No 2~/~ (8) 

It is assumed here that this is the way the cell growth would appear, except 
for the action of drugs. If some other representation were needed, then 
suitable solutions could be obtained in a manner similar to below. 

The number density function yielding the proper exponential growth 
without drug and having the proper time-dependent loss function is found 
to be 

n(#, t) = No(2 in 2) exp [(t /z- #) in 2] exp [ -  A(t)] (9) 

where the integrated fractional loss is 

exp [-A(t)] = exp [ -  f i  2(t') dt' 1 (10) 

and the total cell population is given by 

N(t) = No 2~/~ exp [ -  A(t)] (11) 

The details of this solution are given in the appendix to this paper. Thus, 
for a given loss function, the total number of cells in a population being 
treated by a direct action cytotoxic drug can be computed from expression 11. 

CELL CYCLE SPECIFIC MODELS 

The previous discussion of population drug effect models has been 
restricted to no dependence on the cell cycle. There are some drugs, however, 
that act during only portions of the cell cycle, and for this reason models 
including cell cycle specific characteristics will now be considered. 

When the cell cycle specific problem is considered, it becomes 
immediately apparent that some model of the growth kinetics including 
an expression of the state of the maturity of the cells is needed. Rubinow's 
assumptions mentioned above concerning the inheritance properties of 
cell characteristics and the cyclical boundary conditions are again employed 
here. These assumptions provide a representation of the maturity level of 
the cells of the population. As an initial condition, synchronous birth is 
used. Any other suitable condition could also be assumed with a similar 
analysis. An expression similar to equation 6 was solved by Trucco (7) 
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for the case of time and maturity variable loss functions by integrating the 
characteristics of the equation in maturity. As it is intuitively less complex 
to trace the time loss function, equation 6 is solved here by integrating its 
characteristics in time. 

Consider now the form that the loss function representing a cell cycle 
specific drug could take : 

2(#, t) = 0 # < a 

= 2(0 a < I~ -< b 

= 0 # > b (12) 

That is, it is assumed that the drug is effective only during the interval (a, b) 
representing some fraction of the cell mitotic cycle. If there is more than 
one such effective interval, 

,t(p, t) = ~ ~,i(t)CU(~ - ai) - U(~, - b,)] (13) 
i=1 

where a~ and b~ are the limits of the ith vulnerable phase of the cell cycle 
and U( ) is the unit step function. The limits of the vulnerable phases may 
be themselves functions of the generation times or other cell properties. 
While the case of only .one vulnerable phase is treated here, the analysis 
could be expanded to include m vulnerable phases by the use of equation 13. 

The initial condition is 

n(p, O) = Nog(#) = Noc3(/~ ) (14) 

where c~(/l) is the unit impulse function. That is, at time zero N O cells are 
present, each with a maturity of # = 0. 

The details of the mathematics leading to the solution are again con- 
tained in the appendix. The final result for the total number of cells is 

N(t)=Noft~176 [ - { U ( ! - a ) -  U ( ~ - b ) }  f:'2(t')dt' 

+ No 2 j -  1 W(r) exp - U - j + 1 - a 
j = 2 ,J t/j 

- U  - j +  1 - b 2(t')dt' 
j-- 1 + a)v 

(~ ) ~(j-- 1 + b ) ~  j - l ( i - l + b ) ~  ~ 1 
- U  - j +  1 - b  2( t ' )dt ' -  E , 2(t')dt' dr 

(j-l+a)v i=1 ~l(i-- I +a)~ 
(15) 
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It can be noted that although both variation in generation times among 
the cells and the drug effectiveness depend on the cell mitotic cycle, the only 
independent variable in equation 15 is time. Thus, with suitable representa- 
tions of the distribution function and the time-varying dependency of the 
loss function, the total population number can be calculated. 

DRUG DEPENDENCY OF T H E  LOSS FUNCTIONS 

In the above development, the loss functions were considered only 
generally. In this section, more complete descriptions of these functions are 
made so that the models presented above can be used to predict the kinetics 
of populations being treated by cytotoxic drugs. It is assumed here that a 
drug destroys cells by physically killing them or renders them nonprolifera- 
rive and that this can be represented by the loss function included in the 
analyses above. 

In the absence of a drug, a constant loss function would represent the 
normal death of cells due to natural causes. The integrated fractional loss 
becomes 

e x p [ - A ( t ) ]  = exp 2 d t  = e --xt (16) 

While the assumed form does not consider the possibilities of the suscepta- 
bility of cells to death as a function of maturity, as a function of the number 
of neighbors, or as a function of a changing environment, this loss function 
may adequately represent the observed decay of a population when com- 
bined with a suitable kinetic model of the population. 

The overall effect of a drug on a cell population must include the various 
possible factors that may influence the action of the drug, such as drug 
concentration, drug uptake, exposure time, and the biochemical mechanism 
of action. Here the drug effects are considered to be a function of some 
nominal drug concentration such as the plasma (or other local) concentra- 
tion in the host organism. 

A simple model of the drug action can be developed by assuming a 
first-order relationship where the instantaneous loss function is directly 
proportional to some power of the drug concentration. Thus 

exp [ -  A] = exp - K {C(t')} p dr '  (17) 

This model is the simplest possible to still contain the time variable effect 
of drugs. A model that may be more widely applicable is one that has the 
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form 

2 = KxC( t ) / [K 2 + C(t)] (18) 

At values of C(t) much less than K2, the relationship between the drug and 
loss function is approximately proportional. When C(t) is much greater 
than K 2, the loss function is approximately constant. Thus this model 
accommodates saturable interaction behavior. 

The loss function of a drug may, in fact, follow the form proposed by 
either of the drug-dependent functions hypothesized above except that 
below some threshold concentration the drug is ineffective. In this case, 
the integrated fractional loss function can be given by 

e x p [ - A ]  = F(C(t)) C >_ C* 

= 1 C < C* (19) 

where C* is the threshold concentration. 
Combinations of loss functions may be useful when, for instance, a 

population is growing in a rather hostile yet constant environment and is 
also subjected to some sort of drug. In this case, the loss function could then 
be given by 

,~ = ;~ + K C ( C ( t ) )  (20) 

and the integrated fractional loss is 

[fo ] exp [ - A ]  = exp [ -2c t  ] exp K G(C(t')) dt' (21) 

Extending this result, if the various loss functions of a population are addi- 
tive, then the various loss functions can be superimposed to present a more 
comprehensive model of the total fractional loss of a population. 

The effect of a drug may not be constant on a given population. It 
has been assumed to this point that the independent variables time and 
maturity are sufficient to describe the population. However, the population 
may well be nonhomogeneous with respect to drug action. In that case, 
it would be expected that the more susceptible cells would be killed more 
rapidly and the hardier ones at a slower rate, if at all. If some cells are in- 
herently less susceptible than others, then one could hypothesize that there 
is a distribution of susceptibilities similar to the generation time distribu- 
tion assumed in the development of two-population models above. One 
possible representation is by a distribution of interaction constants K 
such that 

! exp [ -  AK] = co(K) exp - K G(C(t')) dr' (22) 
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Then 

fo [ L ]  exp I -A]  = co(K) exp - K  G(C(t')) dt' dK (23) 

Alternatively, if cells became less susceptible due to exposure to the 
drug, then it might be expected that the interaction constant itself is a 
function of time or drug contact. Some of these complications may be next 
to impossible to include, however, because of the difficulty of ever obtaining 
the requisite experimental data. 

P H A R M A C O K I N E T I C  D R U G  M O D E L S  

To complete the modeling of cell population-drug interactions, the local 
drug concentration that is in contact with the cell population must be deter- 
mined. This concentration is often a complex function of time, since the 
drug is dispersed in the host organism and may have complex binding and 
uptake properties. The book of Wagner (10) gives a summary of classical 
pharmacokinetic methods. Specific comprehensive models for cancer 
chemotherapeutic agents have been developed by Bischoff et al. (11). Several 
simple models will be used here, but more complex models may have to be 
used to completely describe some situations. 

For a cell population exposed to a constant drug concentration, the 
pharmacokinetic model is simply 

C(t) = Co (24) 

This expression is also useful in the case where constant perfusion of a host 
organism creates a constant concentration in the cell population. 

If the disappearance of a drug from a system can be assumed to be first 
order after an initial injection, then the pharmacokinetics can be approxi- 
mated by 

C(t)= Coexp[  (t --tdto!]u(t - t~ ) (25) 

where Co is the concentration at the time of the injection (to). This type of 
approximation can be useful in the case of leukemia therapy where the plasma 
concentration is effectively the concentration that the cancer is exposed to. 

For more complex systems, the drug concentration may not be easily 
expressed analytically. In such cases, numerically evaluated models or actual 
data may be required to allow the evaluation of the integrated loss function 
by a numerical method. Several simple models may be combined to predict 
the concentration-time relationship of multiple treatment dosage schedules. 
If the pharmacokinetics of a system can be approximated by the sum of the 
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concentrations due to the total number of doses, then a series of m doses of 
a drug produces a concentration given by 

C(t) = L Ci(t) (26) 
i = l  

For m equally sized and equally spaced (6) injections that can each be given 
by equation 25, equation 26 becomes 

[ (t-(i-1)G-tO)lu(t-(i 1)ts - to) (27) C(t) = (Co) i exp  - - - 
i=  1 td 

where m is the most recent injection given. 

TOTAL REPRESENTATIONS OF CANCER-DRUG SYSTEMS 

In this paper, models to simulate the behavior of cell populations 
exposed to cytotoxic drugs have been developed. A comprehensive model for 
a given system is composed of suitable growth kinetic, drug-cell interaction, 
and pharmacokinetic models. The selection of each component part depends 
on the particular system under consideration. Methods of evaluation of the 
parameters in the component models must be available to apply the models 
to a given system; however, each of the component models can often be 
separately evaluated. The parameters in the kinetics and drug-cell inter- 
action models might, for instance, be estimated with the use of in vitro 
cultures. 

Several models can be combined to simulate a complex many-compart- 
ment system, each with its own growth kinetics and drug-cell interactions, 
using a pharmacokinetic model of the host organism to predict drug 
concentration in the various compartments. As a simplification, consider a 
two-compartment organism with different growth kinetics and drug-cell 
interactions. Such a system can represent a cancer cell population and normal 
but drug-sensitive tissue. The two populations can be modeled under given 
dosage regimens to develop useful dosage schedules that maximize cancer 
cell deaths and minimize toxicity effects in normal tissue. 

EXAMPLES 

Consider a hypothetical cytotoxic drug cell system with the cell growth 
characteristics of the Tetrahymena geleii HS cells studied by Prescott (12). 
This system is employed only to provide reasonable cell kinetics and cell 
maturity distribution kinetics. Rather than use the 7 distribution employed 
by Rubinow to fit the generation time distribution, Rahn's (simpler) equation 



60 Himmeistein and Bisehoff 

can be used for the same purpose: 

W(r) = e7 exp [ -  7(~ - ~o)] {1 - exp [ -  7(z - to)I} ~- ~ (28) 

where e = 6.7, 7 = 8.84, 7to = 88.4 min. 
Here it is assumed that the cells are in exponential growth in a host 

organism when treated by a cytotoxic drug that may be either direct acting 
or cell cycle specific. That is, in the absence of drug effects, the cells are grow- 
ing in a manner that is approximated by equation 8. In the computations 
when using the cell cycle specific model derived above, this is accomplished 
by allowing several generations of cells (more than ten) to "grow" before 
they are exposed to the drug. A single injection is given to the host-cell 
system; the drug concentration is given by equation 25 and the drug-cell 
interaction by equation 18. The constants chosen are t d = 0.25z o, K 2 = 1.0, 
C o = 15K z, and K 1 = 0.5 to 2.0 hr-1. These constants are of the order of 
magnitude found for several cytotoxic drugs being used presently. The 
generation time used for the direct action model is found by 

f o o = zW(z) d W('c) dr (29) 

or approximated by r0, the minimum generation time. 
The direct action model is found by substituting equations 21 and 18 

into expression 11 : 

N(t) 2'J [ K -2_ CoV(t - 1 -'i'd 
No - -[K 2 + CoU(t - to)exp [ _  '(t -ta to/~lj J (30) 

The number function for a single-injection cell cycle specific system is 
found by substituting the loss function described above into the cell cycle 
specific number function (equation 15) and integrating the terms in the loss 
function : 

' l n {  K 2 +  C~176176 -+--C~ = ~ :  

+ No 2 ~-1 W(z) exp U - ( a + j -  1) 
j = 2 ,a t / j  
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+ ) U - - ( b + j - 1 )  Kit  e 
T 

K 2 + C o U ( ( b  + j - 1 ) - c - t o ) e x p  I - ( ( b  + J - 1)'r - t~  
In ta 

K2 + CoU((b + j -  1 ) z -  to)F j 

where 

+ 
j - 1  

Kite 
i = 1  

K2CoU((b + i -  1)z - to)ex p - ( ( b  + i -  1)z - to) 

In K 2 + CoU((b + i - 1)~ - to)F ~ 

+ j_  exp + 1t - 1 
+ U(t o -  (a + j -  1)z) 

l d~ 

J 
(31) 

Equation 31 looks rather complicated but can be easily evaluated (e.g., with 
a computer) taking due account of the meaning of the various step functions. 
For (a, b) = (0, 1), the cell cycle specific model reduces to the direct action 
model, and equations 30 and 31 should give the same results for a desyn- 
chronized culture. Computations with equation 31 after several generation 
times, t o > ~ 10%, agree with the results of equation 30. The formal reduc- 
tion of equation 31 to equation 30 could not be accomplished, however, nor 
was an asymptotic exponential solution for the celt cycle specific model 
found. The latter is not too surprising, since under some conditions a certain 
amount of resynchronizing could be expected to occur. For a double injec- 
tion experiment, the result (equation 31) can be modified by assuming that 
the drug half-life is short compared to the time between injections so that 
there are comparatively small amounts of drug present at the time of the 
second injection. Thus the loss function exp [ -  A(#, t)] in equation 31 can be 
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l x l 0  3 I 1 
1/] 2.0 3.0 

t - -  t o 

7 0 

Fig. l .  Single injection with cell cycle specific d rug  model.  
Var ious  active cell cycle limits (a, b): curve 1 (0.5, 0.5); curve 
2 (0.4,0.6); curve 3 (0.3,0.7); curve 4 (0.2,0.8); curve 5 
(0.1,0.9); curve 6 (0,1). O the r  pa rame te r s :  K I = I . 0 ,  
K 2 = 1.0, Q = 0 .25z  o, t o ~ 1 0 % ,  Co = 15K2. 

replaced with 

exp [ -  A(#, to2) ] exp E- A(/,, t - to2)] (32) 

where to: is the time of the second injection. 
The above expressions (equations 28, 30, 31, and 32) can now be used 

to demonstrate some of the characteristics of the models proposed. The 
expressions are evaluated numerically to demonstrate the effects of the 
magnitudes of cell cycle effectiveness limits (a, b), the interaction constant 
K 1 , and the effect of the spacing of multiple injections. 

Figure 1 shows the dependence of the number function on the active 
limits of the cell cycle for a single injection. With a drug active during the 
entire cell cycle, the result reduces to that predicted by the direct action 
model. When the cell cycle limits are set equal (a = b), the model naturally 
shows no drug effect. As the fraction of active portion of the cell cycle is 
increased, the fraction of cells killed varies directly. This result depends on 
the cells being in exponential growth during the treatment time, as the model 
depends on equal fractions of cells with any given maturity being available. 
If the cells were synchronized in any degree, then the above result could not 
be expected. 

To further demonstrate the effect of the cell cycle specificity of a drug 
Fig. 2 shows the effect of a single injection with various values of K1. As the 
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I I 

]04 o 

lx10 3 - 

I I 

0 1.0 2.0 3.0 
t-- to 
zo 

Fig. 2. Single injection with cell cycle specific drug model 
for various interaction constants (KI). Other parameters are 
as in Fig. 1, and (a, b) = (0.45, 0.55). 

N 3x]0 3 
No 

ability of the drug to kill cells increases, fewer cells are available with values 
of maturity in the susceptible range. The smooth curves found in Fig. 1 are 
replaced by curves 1hat are much more irregular, indicating that many cells 
continue to grow despite the presence of a highly lethal but highly specific 
drug. This also indicates that the model can have some value in regions where 
the nominal cell growth kinetics are not exponential. 

After an initial treatment of a population by a cell cycle specific drug, 
the number of vulnerable cells susceptible to a second treatment is dependent 
on the time of the second dose. This is demonstrated by Fig. 3. In this case, 
the drug time constant is set at t a = 0.025% so that the two injections are 
certainly far enough apart in time and equation 32 is valid. The second 
injection is given at various times after the initial injection. While the dif- 
ference in population numbers is small, a definite dependence on the timing 
of the second injection is shown. The injection given 0.5% after the first 
injection is more effective than the one given at 1.0% since the void in the 
cells with susceptible maturities has not had time enough to be filled with 
cells from other generations, and the injection given at 0.5z o is working on 
cells unaffected by the first injection. 
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Fig. 3. Double injection with cell cycle specific drug model 
and various second injection times. Other parameters are 
as in Fig. 2, and K 1 = 0.5. 

SUMMARY 

The purpose of this study has been to develop predictive models to 
simulate cancer cell populations under treatment with cytotoxic drugs. The 
utility of such models is to aid the clinician in the screening and optimiza- 
tion of drug dosage schedules for the treatment of cancers in in vivo systems. 
Models have been developed that consider both direct-acting and cell cycle 
specific drugs. Several models of cell growth kinetics have been included 
and have been combined with simple pharmacokinetic models to complete 
the cell-drug interaction system. The models depend on knowing the distri- 
bution of generation times found in a cell population, the cell-drug inter- 
action, and the local concentration of the drug at the effective site. All of 
the quantities can be obtained, in principle, from separate experiments and 
combined to form a model describing several aspects of the cell-drug response 
system. In a succeeding paper, some of these models will be applied to a real 
drug-cancer system to investigate their utility. 



Mathematical Representations of Cancer Chemotherapy Effects 65 

A D D E N D U M  

After this work was completed, Jusko (14) published models for pharma- 
cokinetic-cancer chemotherapeutic drug effect interrelationships. The model 
utilizes classical compartmental analysis techniques wherein the peripheral 
drug concentrations from a two-compartment analysis directly act on the 
cells, which are assumed to have first-order growth and death kinetics. Good 
agreement for survival curves with osteosarcoma cells and non cell cycle 
specific drugs was obtained. Extensions to the cell cycle specific case 
utilizing the same compartmental techniques have also been done (15). 
Finally, Shackney (16) has utilized a very involved numerical stochastic 
model to study cancer cell kinetics and some chemotherapeutic drug effects. 

APPENDIX:  DETAILED S O L U T I O N  OF CELL-DRUG M O D E L S  

Direct  Action Model  

An asymptotic solution can be found of the following form (3) : 

n = N o exp [ -  A(t)~h(#) e p~ (33) 

Substituting this assumed form into equation 6 and taking the derivatives, 

1 dh  
f lh(~)  + - 0 (34) 

The solution of equation 34 is 

h(~) = h(0) e -~"  (35) 

Expression 35 must hold over all times, so that at time zero it must satisfy 
equation 4 and thus 

~h(u)  d# = (361 1 

Substituting equation 35 into equation 36 and integrating, the value of h(0) 
is found, and 

fir e -/~,u 
(37) h (p)=  1 - e  -'~ 

Finally, the boundary condition (equation 7) applies, so that fl can be found, 
and 

The total cell number is found by substituting equation 38 into equation 4: 

N ( t )  = N o exp [ -  A(t)]U n (39) 
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Solution of  Cel l  Cycle Specific Model  

The solution of equation 6 is found by LaGrange's method (13) to be 

n(~,t) = W(U-~) expl- fi ,~(~,t') c dt' 1 (40) 

where ~? is any arbitrary function and 

/~ - t/~ = C 1 - a constant (41) 

Combining equation 13 with m = 1 (equation 40) and the initial condi- 
tion for synchronous birth (equation 14), the number density for the first 
generation is 

nl(l~,t) = Nog)( t~ - ~) exp [ -  fto 2(t')[U(l~ ~ a}- U(l~ - b)~ c df l (42) 

Due to the initial condition, equation 41 becomes 

C 1 = 0 - 0 / ~ = 0  (43) 

and the maturity and time are directly related: 

= t/~ (44) 

Substituting equation 44 into the integral term of equation 42, 

exp[-A(#, t )]:exp[- f]  2( t ' )[U(~-a)-  U(f~-b);dt '  1 (45) 

The integral in equation 45 can be evaluated: 

exp [ -A(# ,  t)] = 1 az > t 

= e x p  - Z(t') dt' at< ~ < bz 

= exp - 2(t') dr' t >_ bz (46) 

= e x p f - { E U ( { - a ) -  U({-b) l f ' z ( t ' )d f  

+U({ -b )  LbL(t')dt'}l (47) 

where the last expression, and many succeeding ones, are found by careful 
use of unit step functions. 
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Applying the boundary condition between the first and second genera- 
tions, 

= ~ ( O - ~ } e x p f - f l z ( t ' ) [ U ( - a ) -  U ( - b ) ] d t '  1 (48) 

Therefore, the second generation is given by 

n2(~,t ) = 2No3 1 + ~l - exp - 2(t')[U(~ - a) 

' ] F f /  t - U(/~ b)] c d (  exp - -  2 L - -  ~ 2 ( t ' )  dt ( 4 9 )  

In a similar fashion as equation 46 was evaluated, the integral term in equa- 
tion 49 can be simplified by noting that 

C2[ # = t/'F - 1 (50) 

for the second generation. The number density function for the second 
generation is 

C(~ b 1 ) 3~((;++11)) f ~_. b.r d~ I (51) -- - - ;.(t')dt' - 3.~ 2(t') 

The result can be extended to the jth generation by noting that during the 
jth generation the maturity and time are related by 

t~ = t/v - (j - 1) (52) 

The number density function for the jth generation is 

nj(It, t ) - - N o 2 J - 1 3 ( j - 1  + 1 ~ - - ~ ) e x p  a) 
,~( () dt' 

1 + a)z 

- - - 2 ( t ' )  dt' 

j- 1 r(i_ 1 +b)~: 1 - ~ 2(t') dr' j >_ 2 
i=I 'J(i- 1 +a)v (53) 
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The  tota l  n u m b e r  dens i ty  func t i on  for all g en e ra t i ons  is f ound  f rom 

n(/z, t) : ~ n j(#, t) (54) 
j = l  

The  to ta l  n u m b e r  of cells is f o u n d  by  s u b s t i t u t i n g  e q u a t i o n s  47 a n d  53 in to  

e q u a t i o n  54, u s ing  this in e q u a t i o n  4, a n d  f inal ly  s u b s t i t u t i n g  the resul t  in to  

e q u a t i o n  5; this resul ts  in  e q u a t i o n  15. 
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