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The procedure of deconvolution to evaluate the rate and the extent of input from absorption data 
and data from intravenous administration is the most fundamental and least assumptive method 
of accurately evaluating drug absorption in linear pharmacokinetics. It is shown for linear systems 
that i f  the absorption response and the response from an intravenous infusion or bolus adminis- 
tration are both well approximated by" a polyexponential function, then the rate of absorption can be 
expressed as a sum of exponentials. An  algorithm and computer program are presented whereby 
the absorption function is uniquely defined from the model-independent parameters of the 
polyexponential expressions fitted to the absorption data and data from intravenous adminis- 
tration. Fitting a sum of exponentials to data has become a routine procedure in pharmacokinetics. 
The method presented therefore makes the previously complex task of deconvolution a simple 
procedure. The deconvolution approach is discussed in relation to conventional methods of 
evaluating drug absorption and appears to have some distinct advantages over these methods. The 
method is tested using simulated data and demonstrated using pentobarbital and cimetidine data 
from human subjects. 

KEY WORDS: bioavailability; absorption; deconvolution; computer program for decon- 
volution; algorithm for deconvolution; drug input evaluation; input response in linear phar- 
macokinetic systems; pentobarbital absorption; cimetidine absorption. 

The various approaches for evaluating drug absorption have been 
previously discussed (1,2). An earlier paper  presented the mathematical  
solution to the deconvolution problem of determining the rate of input when 
the unit impulse response function is approximated  by a polyexponential  
expression, and the absorption response is approximated  by any arbitrary 
function (1). The solution led to the subsequent  development  of a method 
using an adaptive least squares cubic spline function approximation of the 
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absorption response (2). Although the method was tested favorably and 
appears to have optimal numerical and theoretical properties, it has the 
same disadvantage as other numerical deconvolution methods (3-6), 
namely, being somewhat computationally complex. 

The method presented here has been developed in response to the need 
for a simpler approach that is easier to implement. It is based on a 
polyexponential approximation of the absorption response and the response 
from an intravenous bolus or infusion administration. Fitting a sum of 
exponentials to data has become a routine procedure in pharmacokinetics. 
The method presented therefore makes the previously complex task of 
deconvolution a simple procedure. 

THEORY 
The concentration of a drug in the blood after an intravenous (i.v.) bolus 

dose, Dzv, can often be well approximated by a (poly)exponential expres- 
sion: 

Ctv(t)  = ~ ai e -~'t ai > 0 (1) 
i=1 

If the system is linear with respect to drug input and response, as previously 
discussed (1,2), then the unit impulse response ("the characteristic 
response") is given by 

1 n 
Cs(t) = ~ i~=1 aie -a'' (2) 

and a response, C(t), is the convolution between the unit impulse response, 
Cs(t), and the rate of input, F(t), of drug into the blood: 

t I/ * F(t)  = fJ0 Cs(t - u )F(u)  du = G ( u ) F ( t  - u) du (3) C(t) G(t) 

The analytical deconvolution of Eq. (3) has been previously derived (1). The 
rate of input is given by 2 

F(t)  = D~v[K1C'(t) + K2C(t)  + q~(t) * C(t)] (4) 

and the percent of the dose, D, absorbed at time t is 

[ f PCT(t) = K 4 L K I C ( t ) + K 3  Jo C(u)  du +r  * C(t) (5) 

2The notation used in the present paper has been changed slightly to simplify the mathematical 
presentation. 
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where 

K2=K~ ~ aiot, (7) 
i=l 

n - 1  

K3=K2-  E g,/~,, (8) 
i = 1  

K4 = IOOD,v/D (9) 

n--1 

~p(t)= E g,e ~'' (10) 
i = 1  

n-1 gi 
~( t )=  E --e~" (11) 

i=1 Yi 

The parameters {gi, yi}~-i of the auxiliary functions ~p(t) and •(t) are 
obtained from the parameters {ai, ai}~. The y parameters are the (n - 1) 
roots of the (n - 1 ) t h  degree'polynomial, 

o(x)= a, fi ( . ,+x) 
i = 1  1=1 

(12) 

The g parameters are subsequently obtained from 

= - -  (13) gi 
j 1 ~/iq-Olj k = l  ~i~-OZk" 

k#] 

The summation to i = n - 1 in Eqs. (8), (10), and (11) is defined as zero for 
n --- 1. Therefore, the convolution terms in Eqs. (4) and (5) vanish for n = 1. 

The above results are valid for, whatever analytical empirical function is 
chosen to approximate the input response, C(t). It has become a routine 
procedure in pharmacokinetics to fit a sum of exponentials to absorption 
data. Several programs exist for automatically fitting such a function or for 
obtaining suitable initial parameter estimates for a subsequent curve fitting 
(7-16). It is therefore of interest to consider the following input response 
approximation: 

C(t) = ~ bi e -~'i~-~'ap§ Bi > 0 (14) 
i = 1  
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where  t~g is the  absorp t ion  lag t ime,  p rov ided  tha t  the  b; 's satisfy the  
condi t ion 3 

bi = 0 (15) 
i = l  

and 

(t - hag)+ = 0 t -< h.g (16) 

( t -  hag)+ = t - t].g t > tl.g (17) 

App ly ing  Eq.  (14), the  fol lowing equa t ions  are  n e e d e d  for  subst i tut ion in 
Eqs.  (4) and  (5): 

C ' ( t )  = - ~ bi~i e -t~'~t-'"p+ (18) 
i = 1  

n--1 
q~(t) * C( t )= 2 gi ~ bi [e vi(t-q~g)§ - e  -13i(t-t'a~)+] (19) 

i = 1  j = l  Tiq-fli 

fo C(u) du : i=1 ~ �9 [1--e -13i(t-tlag)+ ] (20) 

n--1 
~b(t) * C ( t ) =  E g~ ~ bj [e v'~'-t'"p§ - e  - t3/t- 'ap+] (21) 

i = 1 ~/i i= 1 Ti + f l j  
It  is recognized  f r o m  Eqs.  (4), (5), (14) and  (18)-(21)  that  bo th  the ra te  

of input,  F ( t ) ,  and the ex ten t  of input,  PCT(t ) ,  can be expressed  s imply as a 
sum of exponent ia ls :  

L 

PCT( t )  = Uo+ ~ u~ e -~ (22) 
i = 1  

D ~ Ui(__!.)i ) e_V,(,_,,.~)+ V ( t )  = 1--~ ;=a (23) 

where  

L = m + n - 1 (24) 

v i = / 3 i  i =  1, 2 , . . . ,  m (25) 

vl = - y i - , ,  i = (m + 1), (m + 2) . . . .  , L (26) 

ui = K4bi  K1 - - gJ �9 s= Vi(3~+t3,) i = 1, 2 . . . . .  rn (27) 

3Equation (15) is not a requirement, but only a practical definition that simplifies the calculation 
of the lag time. 
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ui=K4gl-m ~ bj i = ( m + l ) , ( m + 2 )  . . . . .  L (28) 
3,~-,, j=l 3~-m +13: 

L 
Uo = -  Y. ui (29) 

i=l  

The 3' parameters ,  the roots of the polynomial  O(x),  Eq. (12), can be 
found by conventional numerical methods (11). However ,  the following 
remarkable  relationship provides a basis for a more  suitable method of 
numerically determining the roots. 

Theorem 1 . / f  the ai are ordered such that 

ai < ai+l i = 1, 2 . . . . .  n - 1 (30) 

Proof. Since 

then 

- a i + l  < 3'i < -a~  i = 1, 2 , . . . ,  n - 1 (31) 

O ( - o z i )  = ai f i  (ozj.-- ozi) (32) 
j= l  
jgi 

Q(-ai+l)=ai+l  f i  ( ~ j - a i + l )  (33) 
j= l  

j # i + l  

and the ai are arranged in monotone  order,  and sign (a~) = sign (ai+l), then 

sign (O(-a~+~)) = - s ign  (O(-a~) )  (34) 

Thus there is at least one root of E)(x) between -a~+~ and -a~. However ,  
since this is the case for i = 1, 2 . . . . .  n - 1, and since O(x) has n - 1 roots, 
there is one and only one root between - a i + l  and -o~. 

In summary,  the above t rea tment  presents a suitable algorithm by 
which the rate of input, F(t),  and the extent of input, PCT(t),  are expressed 
in a simple functional form as a sum of exponentials (Eqs. 22 and 23). The 
parameters  of the exponential  functions are obtained f rom a poly- 
exponential  approximation of the impulse response and the absorption 
response (Eqs. 1 and 14). 

EXPERIMENTAL 

Numerical Analysis 

A routine was written (see Appendix) to carry out the deconvolution 
according to the algorithm presented.  The  pa ramete r  list of the routine 
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follows the mathematical notation used. The routine initially sorts the 
parameter  pairs {ai, a~}~ in order  of ascending ae values. A root-finding 
algorithm proposed by Wilkinson (17) and later improved by Brent  (18) was 
coded in line with due regard to Eq. (22) to determine the yi's. The 
algorithm is considered one of the best algorithms available for finding a 
zero of a function. The algorithm was further amended by the author to 
automatically adapt to whatever computer  is used (the EPS parameter),  so 
that the y~'s are determined to machine precision. The parameters of the 
functions describing the rate of input, F(t), and the extent of input PCT(t), 
are finally calculated according to the algorithm presented. 

The routine is written in a portable subset of ANSI (1966) F O R T R A N  
IV (19), so that it may be used without alterations on any computer  with a 
F O R T R A N  compiler. The routine can be readily translated to the BASIC 
language to be executed on a microcomputer.  A test program was written 
and the code (see Appendix) extensively tested with the number  of 
exponential terms ranging from 1 to 20 (n and m = 1-20),  which is more 
than the capacity needed for practical use. The test was performed success- 
fully on two different computers using four different compilers. 4 

Pharmacokinetic Analysis 

The deconvolution technique was applied to two different drugs, 
cimetidine (20) and pentobarbital  (21), to demonstrate cases where de- 
convolution can (Fig. 1) and cannot (Fig. 2) be used to estimate the drug 
input. The curve fittings and parameter  estimation (Tables I, VI, and VII) 
were done using the interactive nonlinear regression program FUNFIT  (22). 
The drawings (Figs. 1 and 2) were done using a computer  plotting package 
written by the author. 
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Fig. 1. Deconvolution of cimetidine data. The 
absorption curve is calculated according to 
Eq. (22). The parameters used are given in 
Table VI. The data from' intravenous 
administration and the fitted curve are stag- 
gered one unit for clarity. 

4PDP 11/70, UNIX FC compiler, and DEC FORTRAN IV PLUS. IBM 370/145, G and H 
compilers. 
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Fig. 2. Deconvolution of pentobarbital data. The 
absorption curve is calculated according to Eq. 
(22). The parameters used are given in Table VII. 
The strong disagreement between the terminal 
phases of the oral and intravenous data results in 
an unrealistic absorption profile. 

RESULTS AND DISCUSSION 

The parameters of the unit impulse response function, Eq. (2), required 
for the deconvolution are readily obtained directly from a bolus intravenous 
injection or a rapid infusion. However,  several drugs are administered by a 
prolonged zero-order infusion due to a low solubility or due to toxicological- 
pharmacological reasons. Applying the fundamental convolution relation- 
ship, Eq. (3), to a zero-order infusion, the zero-order input response is 
obtained by a Laplace transformation: 

r -s~ KzL-~ , [1-e----] l  C~(t)=L-I{(LCs(t))(Io e Kz d 0 }  = 1 Ls ; s t  

c,(t) = K~[Io'G(u)dU-lo 0-~~+ C,(u)du] 

(35) 

(36) 

so that 

Cz(t) = Kz i ai[e-~'u-r)+ - e  -~'t] (37) 
i=1 ~i 

where Dlv arbitrarily has been chosen equal to unity, and where Kz is the 
zero-order rate of infusion that takes place from t = 0 to * = T. Thus the 
parameters necessary for deconvolution {ai, al}~ are readily obtained by 
fitting Eq. (37) to zero-order infusion data, treating Kz and T as constants. 
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Equation (37) can be readily extended to consider any number of infusion 
schedules. 5 

The parameters can also be obtained from data from multiple bolus 
input by fitting the following regression function: 

J 
Cb(t)= Y~ DiC~((t-T/)+) (38) 

/=1 

where Ca (x) is given by Eq. (2), Tj is the time when the fth bolus dose, D i, is 
given, and J is the highest value of / for which t --- Tj is satisfied. Due to the 
superposition principle of linear systems, Eq. (37) (or its extended form) and 
Eq. (38) can be combined so the required parameters can be obtained from 
data from a combination of bolus and zero-order infusion data. This may be 
of value in a clinical pharmacokinetic setting, where the therapeutical 
treatment takes priority over experimental design considerations. 

Numerical Results 

The present method was tested identically to other deconvolution 
methods recently proposed, using the same simulated data (2). The de- 
convolution of these data was done using the computer program in the 
appendix (Table I). The presentation of the test results in Tables II-V 
corresponds to the results in Tables II-V of ref. (2). 

Data Set i (Noise Level 1%) 

The method appears more accurate on this data set than the other 
methods (2,3), although the difference does not seem pronounced. The 
average percent relative error is of the same order of magnitude as the 
percent noise added to the data. As in the other methods, the method 
appears least accurate in the initial stage of the input (Table II). 

Data Set 2 (Noise Level 10%) 

The method determines the input to the same accuracy as the other 
methods (2,3). The pattern of the errors is also similar, and the average 
percent error is of the same order of magnitude as the noise added to the 
data (Table III). 

Data Set 3 (Noise Level ! %) 
The input is determined to the same accuracy as the other method 

proposed by the author (2) and is significantly better than the Cutler method 

5For this purpose,  it may be illustrative to write the expression in the brackets in Eq. (37) as 
[exp ( -ai( t -T2i)+)-exp (-~i(t-Tli)+)], where the infusion takes place from t =  7"1 i to 
t =  T2i. 



Table I. Parameters Used for Deconvolution of Simulated Data 

Mathe- 
matical Program Data a Data a Data a 
symbol symbol set 1 set 2 set 3 

Data a 
set 4 

INPUT 
al A(1) 1.0427 b 1.3377 b 1.0308 b 1.3377 b 
a 2 A(2) 0.97617 b 0.52381 b 1.0487 b 0.5281 b 
~1 ALPHA( l )  5.0526 b 3.1851 b 5.9131 b 3.1851 b 
a2 ALPHA(2) 0.97567 b 0.61065 b 1.0262 b 0.61065 b 
n N 2 b 2 b 2 b 2 b 

Dxv DIV 1. 1. 1. 1. 

bl B(1) -0 .80547 b -2 .2637 b -1 .6103 b -5 .5440 b 
b2 B(2) 0.80547 ~ 2.2637 ~ 1.6103 b 5,5440 ~ 
81 BETA(l )  3.6373 b 2.0800 ~ 3.3563 b 2.2488 b 
/~2 BETA(2) 0.83033 ~ 1.2513 ~ 1.3917 ~ 1.7521 ~ 
m M 2 ~ 2 b 2 ~ 2 ~ 
D DOSE 0.6 0.6 0.6 0.6 
L L 3 3 3 3 

RESULTS 
Uo UZ 103.38 94.012 94.363 
ul U(1) 99.757 212.40 -1704.8  
u2 U(2) -23.218 2395.3 73.013 
u3 U(3) -179.92 -2701.7  1537.4 
vl V(1) 3.6373 2.0800 3.3563 
v2 V(2) 0.83033 1.2513 1.3917 
v3 V(3) 2.9470 1.3351 3.4907 

91.159 
370.52 

-1111.2  
649.51 

2.2488 
1.7521 
1.3351 

aSee ref. (2) for details. 
bValues obtained using FUNFIT (22). 

Table II. Input Rates Calculated from Data Set 1 

Calculated Percent 
Time Exact rates rates a difference b 

0.1 0.9825 0.9625 -1 .66  
0.2 0.8044 0.8107 0.53 
0.3 0.6586 0.6732 1.22 
0.4 0.5392 0.5535 1.20 
0.6 0.3614 0.3676 0.52 
0.8 0.2423 0.2420 -0 .02  
1.0 0. i624 0.1601 -0 .19  
1.2 0.1089 0.1077 -0.1O 
1.4 0.0730 0.0742 0.10 
1.6 0.0489 0.0527 0.31 
2.0 0.0220 0.0292 0.61 

Meant 0.59 
SDC 0.54 

aCalculated according to Eq. (23) from the parameters given in Table I. 
bCalculated as 100. (calculated r a t e -exac t  rate)/1.2, where 1.2 is the initial 
exact input rate. 

CThe mean and the standard deviation of the absolute values of the percent 
difference. 
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Table III. Input Rates Calculated from Data Set 2 

Calculated Percent 
Time Exact rates rates" difference b 

0.1 0.9825 0.9159 -5 .55 
0.2 0.8044 0.8199 1.29 
0.3 0.6586 0.7242 5.47 
0.4 0.5392 0.6319 7.73 
0.6 0.3614 0.4651 8.64 
0.8 0.2423 0.3269 7.05 
1.0 0.1624 0.2180 4.63 
1.2 0.1089 0.1355 2.22 
1.4 0.0730 0.0750 0.17 
1.6 0.0489 0.0324 -1 .38  
2.0 0.0220 -0 .0152 -3 .10  

Mean c 4.29 
SD c 2.86 

~Calculated according to Eq. (23) from the parameters given in Table I. 
bCalculated as 100 �9 (calculated ra te -exac t  rate)/1.2, where 1.2 is the initial 
exact input rate. 

CThe mean and the standard deviation of the absolute values of the percent 
difference. 

Table IV. Input Rates Calculated from Data Set 3 

Calculated Percent 
Time Exact rates rates ~ difference b 

0.1 1.3048 1.3002 -0 .30  
0.2 1.0681 1.0639 -0 .27  
0.3 0.8551 0.8418 -0.85 
0.4 0.6657 0.6473 -1 .18  
0.6 0.3580 0.3529 -0 .33 
0.8 0.1450 0.1690 1.54 
1.0 0.0266 0.0639 2.38 
1.2 0 0.0086 0.55 
1.4 0 -0 .0172 -1 .10  
1.6 0 -0.0269 -1 .72  
2.0 0 -0 .0259 -1.65 

Mean c 1.08 
SD c 0.69 

Calculated according to Eq. (23) from the parameters given in Table I. 
bCalculated as 100 �9 (calculated ra te -exac t  rate)/(1.8/1.75), where 1.8/1.15 is 
the exact initial input rate. 

CThe mean and standard deviation of the absolute values of the percent 
difference. 
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(3). Contrary to the other methods, the input is best approximated in the 
initial phase. The errors are of the same magnitude as the noise added to the 
simulated data (Table IV). 

Data Set 4 (Noise Level 10%) 

The method shows the same accuracy as the other methods. The input 
appears to be determined best at the later sampling times (Table V). 

It is not possible to differentiate between the accuracy of the present 
method and the other methods investigated on the basis of the above test 
data. The method appears to perform well considering that the average 
relative error in all estimations is of the same magnitude as the noise added 
to the simulated data. 

Since the method appears as accurate as the other methods but is 
simpler to use, it seems to be a good first choice for deconvolution. A 
satisfactory performance is expected in the majority of the cases in phar- 
macokinetics where the drug concentration profiles are fairly regular, and a 
good polyexponential approximation can be provided. However, in the 
more irregular cases, it may be more appropriate to use a more flexible 
approximation, such as the adaptive least squares cubic spline approach 
proposed by the author (2). 

Table V. Input Rates Calculated from Data Set 4 

Calculated Percent 
Time Exact rates rates ~ difference b 

0.1 1.3048 1.2589 -2.94 
0.2 1.0681 1.0562 -0.76 
0.3 0.8551 0.8738 1.19 
0.4 0.6657 0.7123 2.98 
0.6 0.3580 0.4503 5.90 
0.8 0.1450 0.2605 7.38 
1.0 0.266 0.1290 6.54 
1.2 0 0.0422 2:69 
1.4 0 -0.0121 -0.77 
1.6 0 -0.0434 -2.77 
2.0 0 -0.0647 -4.13 

Mean c 3.46 
SD c 2.29 

~Calculated according to Eq. (23) from the parameters given in Table I. 
bCalculated as 100. (calculated rate-exact rate)/(1.8/1.15), where 1.8/1.15 is 
the exact initial input rate. 

CThe mean and standard deviation of the absolute values of the percent 
difference. 
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Table VI. Parameters Used for Deconvolution of Cimetidine Data 

Mathematical symbol Program symbol Value Units 

INPUT 
i.v. administration 

al A(1) 10.01 ~ /zg/ml 
a2 A(2) 2.464 a tzg/ml 
al  ALPHA(l) 3.553 a h- 
a2 ALPHA(2) 0.4037 a h -~ 
n N 2 
Dtv DIV 3.105 /zg 

Oral administration 
bl B(1) 2.964 a /xg/ml 
b2 B(2) -2.964 a /xg/ml 
31 BETA(l) 0.5798 a h -1 
/32 BETA(2) 7.541 a h -1 
m M 2 
D DOSE 3.105 /zg 

L L 3 

RESULTS 
u0 UZ 52.90 
ul U(1) 48.11 
u2 U(2) -13.77 
u3 U(3) -87.25 
vt V(1) 0.5798 h -1 
v2 V(2) 7.541 h -1 
v3 V(3) 1.026 h -1 

"Values obtained using FUNFIT (22). 

Response Approximation Versus Parameter Estimation 

The  d e c o n v o l u t i o n  is ca l cu la t ed  f rom p a r a m e t e r s  o b t a i n e d  by  fit t ing the  
sum of exponen t i a l s  to  a b s o r p t i o n  d a t a  and  d a t a  f rom in t r avenous  admin i s -  
t r a t i on  in the  s ame  subjec t .  H o w e v e r ,  it is i m p o r t a n t  no t  to i n t e r p r e t  this  as a 
s t a n d a r d  p a r a m e t e r  e s t ima t ion  p r o b l e m ,  since the  ind iv idua l  va lues  of the  
p a r a m e t e r s  a re  i r re levant .  I t  is no t  necessa ry  and  wou ld  be  d is t rac t ing  to 
assoc ia te  any  k ine t ic  s ignif icance to the  p a r a m e t e r s .  

Of  i m p o r t a n c e  is how well  the  e s t ima ted  p a r a m e t e r s  c o m b i n e d  in the  
func t iona l  fo rm a p p r o x i m a t e  the  r e sponse  m e a s u r e d .  The  p a r a m e t e r s  a re  
s imply  used  m a t h e m a t i c a l l y  as a way  of un ique ly  def in ing a curve tha t  
a p p r o x i m a t e s  a m e a s u r e d  response .  This  is in con t ras t  to the  classical  m o d e l  
d e p e n d e n t  p h a r m a c o k i n e t i c  a p p r o a c h e s ,  w h e r e  p a r a m e t e r s  such as " t h e  
f i r s t -o rde r  a b s o r p t i o n  ra te  cons t an t , "  " t he  f i r s t -o rder  e l imina t ion  ra te  
cons t an t , "  etc. ,  a re  d e t e r m i n e d .  

T h e  advan t ages  of the  " r e s p o n s e  t e c h n i q u e "  ove r  the  " p a r a m e t r i c  
t e c h n i q u e "  can ha rd ly  be  o v e r e m p h a s i z e d .  Fi rs t ,  the  p h a r m a c o k i n e t i c  
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Table VII. Parameters Used for Deconvolution of Pentobarbitai Data 

Mathematical symbol Program symbol Value Units 

INPUT 
i.v. administration 

a~ A(1) 0.7910 ~ ~zg/ml 
a2 A(2) 0.5052 ~ txg/ml 
a 1 A L P H A ( l )  1,405 ~ h - i  

*~2 ALPHA(2)  1.648 h - I  
x !0  -2a 

n N 2 ~ 
Div DIV 5 • 104 ~g 

Oral administration 
b~ B(1) 0.8898 ~ tzg/ml 
b2 B(2) - 0 . 8898  a /xg/ml 
/31 B E T A ( l )  0.2304 a h - I  
/32 BETA(2)  21.08 a h -1 
m M 2 ~ 
D DOSE 5.104 ~,g 

L L 3 

RESULTS 
u0 U Z  12.24 
ul U(1) 228.8 
u2 U(2) - 6 5 . 7 6  
U 3 U(3) -175 .2  
v1 V(1) 0.2304 h -1 
va V(2) 21.08 h -1 
v3 V(3) 0.5577 h -1 

aValues obtained using FUNFIT (22). 

model equations are nonlinear in some of the parameters, so the parameters 
may not be uniquely determined. Simulation studies have shown that even 
with excellent data several different sets of parameters may be obtained 
(22). The sets may differ substantially and yet give rise to nearly identical 
curves that fit the data well and are statistically indistinguishable (22). 
Furthermore, the parameters are often poorly determined, with wide 
confidence limits. Thus there is reason to have reservation about the 
significance of such parameters. This nonuniqueness and poor accuracy of 
the estimated parameters is not a problem in the "response technique" 
approach, since the only aim is a good fit to get a satisfactory approximation 
of the response measured. Second, if the system is linear it distracts from the 
fundamental properties of such a system to assume a specific phar- 
macokinetic model  to evaluate drug absorption. Third, the graphical 
representation in the deconvolution approach is more meaningful than in 
the model  dependent approach. Does  a good fit to blood data alone justify 
the significance of the parameters of a pharmacokinetic model with intricate 
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assumptions such as first-order absorption, distribution, and elimination 
processes, etc.? Of what significance is a good fit when undoubtedly many 
other intricate models can be constructed that may produce just as good a fit 
or a better fit? However, the fit in the case of deconvolution is highly 
significant. Its quality directly determines the accuracy by which the input is 
evaluated. 

The deconvolution method is an objective and "honest" method by 
clearly revealing its own limitation when presented graphically (Fig. 2). If 
PCT(t) in the postabsorptive phase deviates significantly from an asymptotic 
behavior, then the assumptions of a "noninteracting input" or a time 
invariant linear input-response relationship may be violated (1). The results 
would then be unreliable. However, this would also be the case if the same 
data were analyzed by classical linear pharmacokinetic techniques. The 
superimposed graphical representation of the estimated absorption and i.v. 
administration responses and the calculated input provided by the method 
(Figs. 1 and 2) is of substantial conceptual value. It enables the user to 
visually evaluate whether discrepancies or peculiarities found in a calculated 
input are due to an improper data representation, judged from the fitted 
curves, or whether they are due to the inherent nature of the estimated 
responses. For example, the pentobarbital data (Fig. 2) show an unrealistic 
input profile that is easily identified as being due to a substantial dis- 
agreement between the i.v. and oral curves in the postabsorpt~ve phase. The 
method is therefore not used as a "black box," but enables the user to be 
objective and critical about the results obtained and the pharmacokinetic 
assumptions involved. 

The deconvolution of the pentobarbital data is extremely difficult 
because apparently only two data points are available in the absorptive 
phase and because of the large errors in the data (21). Due to the low 
information density in the absorption phase, it is therefore not surprising 
that the present method (Fig. 2) and the cubic spline approach (Fig. 6 of ref. 
2) differ substantially with respect to the calculation of the absorption lag 
time and the initial rate of input. However, the difference is not so 
pronounced with respect to the percent absorbed maximum and the general 
trend in the postabsorptive phase. 

Calculation of "the first-order absorption rate constant" by model 
dependent approaches may seem appealing. Most pharmacokinetic text- 
books deal in detail with the evaluation of ka and its use in dosage regimen 
calculations and the calculation of the steady state from multiple dosing. 
However, the assumption of a first-order absorption may be a gross over- 
simplification that may lead to unrealistic calculations. The same cal- 
culations can just as well be done in a "model independent" way using "the 
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input function" obtained from the present method. This should lead to safer, 
more objective calculations. 

Deconvolut ion Versus the A U C  Approach 

The use of "the area under the curve," AUC, for comparisons of the 
extent of drug absorption is based on the same assumptions of linearity as in 
deconvolution. However, the deconvolution method has some distinct 
advantages over the AUC approach when data from an intravenous 
administration are available. The difference is best explained by the follow- 
ing theorem deduced directly from Eq. (3). 

Theorem 2, The deconvolution calculation of the rate and the extent of 
input at any time (t = to) does not depend on Ca(t) or C(t) beyond that time 
(t > to). 

Thus if the absorption is virtually completed at t = to, then it is not 
necessary to sample beyond that time. In fact it is not necessary to know the 
characteristic response beyond that time. Also, a poor fit to the data in the 
postabsorptive phase does not affect the calculation of the input. Sampling 
beyond the absorption phase only serves the purpose of checking the 
assumptions of the method. 

This is in strong contrast to the AUC, where a substantial number of 
samples must be placed in the postabsorptive phase to better estimate AUC, 
and in particular to get an estimate of the terminal slope for extrapolation. 
The extrapolation to t--co is also very problematic and makes the AUC 
method in essence "model dependent." Blood sampling in human subjects is 
quite constrained by the number of samples that can be drawn. The 
experimental design aimed at the evaluation of both the rate and the extent 
of absorption by the quantities Cm~, t,,,x, and AUC is complicated by 
conflicting demands with respect to the choice of sampling times. 
Compromise all too often leads to a situation where neither the rate nor the 
extent of absorption is appropriately determined. The deconvolution 
method is not faced with this dilemma. It allows a more rational sampling 
design. The sampling times can be concentrated in the absorption phase, 
where the real information about the input is present. They need not be 
"wasted" in the postabsorptive phase in order to estimate AUC and 
extrapolate to t = oo. 

In fact, since the method so well defines the absorption phase, it 
encourages a more rational sampling design in future'studies. For example, 
if the oral cimetidine study were to be repeated for subject 4 (Fig. 1), it would 
be appropriate to concentrate the sampling in the first three hours with one 
or two "check points" in the tail region. The valuable quantities C ~ ,  and 
tmax are naturally available as a "byproduct" of the deconvolution method in 
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addition to the time for absorption. The method also provides a more 
detailed analysis of the absorption process than the Cmax, t . . . .  and AUC 
quantities. 

The method discussed appears to be a valuable tool for the evaluation 
of drug input and bioavailability. The easy computational implementation of 
the method presented should facilitate the promotion of deconvolution in 
pharmacokinetics. Hopefully, this may lead to a less assumptive and more 
critical and objective approach in drug absorption studies. 

APPENDIX 
SUBROUTINE DECONV (A,ALPHA,N,DIV, B,BETA,M,DOSE,UZ,U,V,L) 
DIMENSION A(N),ALPHA(N),B(M) ,BETA(M) ,U(L),V(L),G(20),GAMMA(20) 
IF (N -EQ- i) GO TO 90 
NMI = N - 1 
DO 5 I = I,NMI 
IPI = I + 1 
DO 5 J = IPI,N 
IF (ALPHA(I) .LE. ALPHA(J)) GO TO 5 
TEMP = ALPHA(I) 
ALPHA(I) = ALPHA(J) 
ALPHA(J) = TEMP 
TEMP = A(I) 
A(I) = A(J) 
A (J) = TEMP 

5 CONTINUE 
EPS = 1.0 

10 EPS = EPS/2.0 
S =1.0 + EPS 
IF (S .GT. 1.0) GO TO 10 
DO 85 II = I,NMI 
X1 = - ALPHA(II) 
X2 = - ALPHA(II + i) 
QXI = Z. 0 
QX2 = 0.0 
DO 20 I = I,N 
Sl =1.0 
$2= 1.0 
DO 15 J = I,N 
IF (J .EQ. I) GO TO 15 
S1 = SI*(ALPHA(J) + XI) 
$2 = S2*(ALPHA(J) + X2) 

15 CONTINUE 
QXI = QXI + A(I)*Sl 

20 QX2 = QX2 + A(I)*S2 
25 X3 = X1 

QX3 = QXI 
D = X2 -Xl 
E = D 

30 IF (ABS(QX3) .GE. ABS(QX2)) GO TO 35 

X1 = X2 
X2 = X3 
X3 = Xl 
QXI = QX2 
QX2 = QX3 
QX3 = QXI 
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35 TOL = 4.0*EPS*ABS(X2) 
XM = 0.5"(X3 - X2) 
IF (ABS(XM) .LE. TOL .OR. QX2 .EQ. 0.0) GO TO 70 
IF (ABS(E) .LT. TOL .OR. ABS(QXI) .LE. ABS(QX2)) GO TO 50 
IF (Xl .NE. X3j GO TO 40 
S = QX2/QXI 
P = 2.0*XM*S 
Q = 1.0 - S 
GO TO 45 

40 Q = QXI/QX3 
R = QX2/QX3 
S = QX2/QXI 
P = S*(2.0*XM*Q*(Q-R) - (X2-XI)*(R-I.0)) 
Q = (Q-I.0)*(R-I.0)*(S-I.0) 

45 IF (P .GT. 0.0) Q = -Q 

P = ABS (P) 
IF ((2.0"P) .GE. (3.0*XM*Q -ABS(TOL*Q))) GO TO 50 
IF (P .GE. ABS(Z.5*E*Q)) GO TO 50 

E = D 
D = P/Q 
GO TO 55 

50 D = XM 
E = D 

55 X1 = X2 
QXI = QX2 
X2 = X2 + D 
IF (ABS(D) .LE. TOL) X2 = X2 - D + SIGN(TOL,XM) 

QX2 = 0.0 
DO 65 I = I,N 

$2 =1.0 
DO 60 J = I,N 

60 IF (J .NE. I) $2 = S2*(ALPHA(J) + X2) 
65 QX2 = QX2 + A(I)*S2 

IF ((QX2*(QX3/ABS(QX3))) .GT. 0'.0) GO TO 25 

GO TO 30 
70 GAMMA(II) = X2 

S2 =0.0 
DO 80 J = I,N 

S1 = 0.0 
DO 75 K = I,N 
IF (K .EQ. J) GO TO 75 
S1 = S1 + 1.0/(GAMMA(II) + ALPHA(K)) 

75 CONTINUE 
80 $2 = $2 + A(J)*SI/(GAMMA(II) + ALPHA(J)) 
85 G(II) = 1.0/$2 
90 AKI = 0.0 

AK2 = 0.0 
AK3 = 0.0 
DO 95 I = I,N 
AKI = AKI + A(I) 
AK2 = AK2 + A(I)*ALPHA(I) 

95 IF (N .GT. 1 .AND. I .NE. N) AK3 = AK3 + G(I)/GAMMA(I) 
AKI = i. 0/AKI 

AK2 = AKI*AKI*AK2 
AK3 = AK2 - AK3 
AK4 = 100.0*DIV/DOSE 
UZ =0.0 
DO 115 I = I~L 
S = 0 . 0  



480 Veng-Pedersen 

IF (I .GT. M) GO TO 105 
V(I) = BETA(I) 
U(I) = AK4*B(I)*(AKI - AK3/BETA(I)) 
IF (N .EQ. i) GO TO 115 

DO 100 J = I,NMI 
100 S = S + G(J)/(GAMMA(J)*(GAMMA(J) + BETA(I))) 

U(I) = U(I) - AK4*B(I)*S 

GO TO 115 
105 V(I) = - GAMMA(I-M) 

DO 110 J = I,M 
110 S = S + B(J)/(GAMMA(I-M) + BETA(J)) 

U(I) = AK4*G (I-M)*S/GAMMA(I-M) 

115 UZ --- UZ - U(I) 
RETURN 
END 
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