
ANDtt~ VI~I.IANO The Relative Complexity
of Analytic Tableaux
and SL-Resolution

Abstract. In this paper we describe an improvement of Smullyan's analytic tableau
method for the propositional calculus-Improved Parent Clash Restricted (IPCR) tableau-
and show that it is equivalent to SL-resolution in complexity.

1. I n t r o d u c t i o n

A proof method for a system of logic is more powerful than another to the
degree that it simplifies the task of producing derivations for theorems. One
measure of the relative complexity of proof systems is catered by the notion
polynomial s imulat ion [3]. Intuitively speaking, if any proof a of a tautology
T in proof system A can be transformed into a proof/5 of T in system B such
that the length of/5 is a polynomial function of the length of a then system
B p-simulates system A. Conversely, if one c0al show that proof system A
cannot p-simulate system B by showing that there are tautologies that are
hard-to-prove for A are but not hard-to-prove for B then B is strictly more
powerful than A.

The polynomial s imulat ion relation imposes a partial ordering among
proof systems for the propositional calculus, and, although several simulation
relations are known [4], there are still a number of gaps in the literature. In
tiffs paper we describe the clash restricted improved analytic tableau method
for the propositional calculus (section 3) and show (section 4) that it is
equivalent to (p- simulates and is p-simulated by) SL-resolution [7]. It has
also be shown elsewhere [9] that SL-resolution is equivalent in complexity
to the connection method [1]. We start, in section 2, by establishing some
preliminary definitions that will be used in subsequent sections.

2. Def in i t ions

Firstly we say that the symbols of the propositional calculus (PC) belong
either to the set of logical constants, comprising the unary operator ~ and the
binary connectives: {V, &, - , ~ } or to the infirdte set of atomic propositional
variables and their complements: {a, b, c, . . . ,,,~a,,.~b,,.~c, . . . }. A literal in PC

Studia Logica 52: 323-337, 1993.
© 1993 Kluwer Academic Publishers. Printed in the Netherlands.

324 A. Vellino

is either a propositional variable l or its complement ~l . The complement
of a literal ~ l (1) is l (,-4). A formula is either a literal or an expression of
the form at ® fl, where a and ~ are sub-formulas and ® is one of the binary
connectives.

A clause, denoted by upper case letters {A, B, C , . . . , A1, B1 , . . . } is either
a finite formula of the form aVfl, where a and fl are either literals or clauses,
or the formula containing no literals, O, referred to as the empty clause. A
clause with just a single literal is called a unit clause.

Since the literals contained in a clause are all related by the same con-
nective V, we will often represent the clause a V b either in the abbreviated
form ab. A set of clauses {A, B, C , . . . } is considered to be a conjunction of
clauses, or equivalently, a formula in conjunctive normal form (CNF).

The variables S contained in a clause C may be given a t ru th value
assignment (tva) by a map T : S ~ {true, false}. Let V be a tva to the
variables S in C. Then the t ru th value of C is a function (V) into the set
{true, false}. The total number of tvas to C is 2 n where n is the number of
variables in C, tlSl]. A complete listing of all the possible tvas to variables
of a clause C and their transformation by the t ruth-funct ional connectives
of C is the truth-table for C.

A clause C (or set of clauses E) is satisfied by a tva V to the variables
in C (E) iff ~(V) = true. C (~) is satisfiable if there is some tva that
satisfies C (~). If all the possible tvas for C (E) satisfy C (~), then C (~])
is a tautology. C (F~) is falsified by a tva Y to the variables S in C (E) iff
~(V) = false. If all the tvas falsify C (E), then C (E) is inconsistent or
unsatisfiable.

If E is an inconsistent set of clauses and .~(V) is a tva to the variables S
in ~ then ~(V) is critical for a clause C E E if ~ (V) satisfies all the clauses

in except C. E is minimally inconsistent if for every C E E there exists a
tva that is critical for C.

3. A n a l y t i c T a b l e a u x M e t h o d s

An analytic tableau 0 for a set of propositional clauses E, is a tree such that
all the nodes in 0 other than the root node are labelled by literals occurring
in ~ and for each interior node k in the tree, the set of literals l abe~ng the
children of k is a formula in E. The root node of any analytic tableau for
formulae will be designated by the special symbol ~.

A branch in a tableau is closed if it contains both a literal and its com-
plement. An analytic tableau is dosed if all its branches close but open if at
least one branch is not dosed and all the formulae in E have been decom-

The Relative Complexity... 325

posed in that branch. For example, Fig. 1 shows a closed analytic tableau
for the set of clauses ~o - {ab,,.~ab,~b,~ac, el}.

~ a b

X ~b

a b

f ,-~b

H a b

X
× ×

Fig. 1: Closed Tableau for ~0

It is easy to see that if ~ is a consistent set of formulae, an assignment
of t ru th values to the literals which makes ~ true can be read off an open
branch of its analytic tableau. Conversely, all the branches of an analytic
tableau for a set ~ of formulae are closed if and only if]E is inconsistent.

It is worth noting here that, with respect to worst case complexity, the
analytic tableau method and the truth table method are incomparable. As
D'Agostino points out in [5] there is indeed a class of problems that is more
difficult to prove with tableaux than with truth-tables. Specifically, the
class of 2 n clauses formed from the literals {Pl ,p2, . . . ,Pn} such that every
clause contains exactly one (positive or negative) occurence of each literal,
produces minimal tableaux proofs whose size is on the order of n!, whereas
the minimal t ruth tables for these example have only 22n entries (rows plus
columns). For example, for the literals {plp2p3,,.~plp2p3,pl~p2p3,pl~p3,
~pl'~P2P3,~plp2'~pa,pl ~p~"~pa,~pl ~p2~pa } and the minimal tableau proof
for them has 48 nodes. Conversely, there are classes of examples (such as
those illustrated in Fig. 4 below) that have exponentially shorter minimal
tableaux proofs compared to the size of their truth-tables. Thus the tableaux
method is neither stronger than nor weaker than nor equivalent to the truth-
table method.

326 A. Velfno

3.1. Clash Restricted Analytic Tableau

The search for the smallest tableau refutation (closed tableau), particularly
for sets of non-minimally inconsistent formulae (a set of formulae all of which
are necessary to prove inconsistency), can be quite inefficient if the tableau
method has no built-in heuristic. For instance, the tableau in Fig. 1 is
clearly not minimal since a clause (el) was chosen for decomposition which
is logically independent of the remaining clauses.

The general tableaux method can be restricted to reduce the number
of clauses from which to choose by imposing the rule that each formula
chosen for decomposition closes a branch in the tableau. This is equivalent
to the condition that the formula decomposed at each node k in the tableau
contain at least one literal that clashes with (i.e. is the complement of) a
literal labelling k or an ancestor of k. We will call such a tableau an ancestor
clash restricted (ACR) analytic tableau. For example, Fig. 2 shows a dash
restricted tableau for the same set of clauses as the unrestricted tableau in
Fig. 1.

a

X ~b

×

Fig. 2: Closed Tableau for }30

A more stringent dash restriction is to specify that some literal in every
decomposed formula clash with the literal labelling the parent node~ i.e. that
every non-leaf node k in the tableau is labelled with a literal that dashes
with a literal labelling a child of k. We say that such a tableau is parent

The Relative Complexity... 327

clash restricted (PCR). Both ACR and PCR analytic tableaux methods are
complete: a set ~ of formulae is inconsistent if and only if there exists both
an ACR and a PCR analytic tableau for 2. Fig. 3 shows PCR analytic
tableau for the set of clauses {ab,~.ab,~b,~ac, el}.

a

×

Fig. 3: Minimal Closed Tableau for ~0

Although it is not known whether either PCR or ACR tableaux p-
simulate unrestr ic ted analytic tableaux we do know that some minimal unre-
stricted tableau are smaUer than both the minimal PCR and ACR tableaux.
The examples that show this are constructed as follows. Consider a set S
of" 2(2 '~ - 1) distinct positive literals from which the set C of 2 n - 1 formu-
!ae containing exactly two distinct literals each, such that each literal in S
occurs only once in C. Then construct an open analytic tableau containing
only one decomposition of each formula in C. This tableau can be closed by
the set of 2 ~ formulae each containing n negative occurrences of literals in
S. The resulting tableau Tn has (n + 2)2 '~ - 2 nodes.

For instance, the tableau in Fig. 4 are minimal and all the PCR or ACR
tableaux for those sets of formulae are larger.

328 A. Vellino

/i\ /i\ /T\ /i\ / t \ / i \
X X X X X X X X X X X X

/ ' \
,,.~ ,,-e ,,.~ ,,.& ,-.e , ~ ,.,b , - , f , , -m , ,~ ,'-,,f , ' ~

X X X X X X X X X X X X

Fig. 4: Minimal Tableau for T3

Since each formula in these minimally inconsistent sets is decomposed
exactly once, by construction, the class of tableau Tn is minimal for n >_ 3.
ff either the PCR or ACR restriction is placed on the construction of such a
tableau then the same formula must be decomposed more than once because
the symmetry of the literal clashes in the tree is broken. This is i l lustrated
by observing the start of an ACR tableau for Ta.

f

C

x
d
X ~ a ~ d H i

× ×

Fig. 5: Partial ACR tableaux for T3

Given the start formula ab, the next formula beneath a must be c~e of
the four formulae containing ~a , say ~ a ~c ~g. The branch containing ~c

The Relative Complexity... 329

can be dosed by cd in a parent clash decomposition (right hand side of Fig.
5) or after some ancestor clash (left hand side of the figure). In either case
there are still two more formulae containing ~c and ~ d which have yet to
be decomposed (since the set is minimally inconsistent) and whose branches
must be dosed by another decomposition of cd.

3.2 . I m p r o v e d A n a l y t i c T a b l e a u

There is a simple extension to the analytic tableau method that increases
its efficiency as a method for proving theorems and produces a considerable
improvement in the complexity of its proofs.

We will say that an analytic tableau for a set of formulae ~ is improved
if it is completed or checked which we define simultaneously by induction as
follows:

1. A subtableau is completed if it is dosed.

2. If a branch of a subtablean ends in a literal l and there is an ancestor
of this node that has a child also labelled with I which is at the top of
a completed subtableau then the branch ending in I is checked.

3. A subtableau is completed if all its branches are closed or completed.

For example, a completed I-analytic tableau for the formulae {ab,~ ab,~b}
is given in Fig. 6. Compare this with the tableau in Fig. 3.

~ , ~ a

×

a b

b ~ b

J ×

Fig. 6: Completed I-analytic tableau for ~'0

To show the soundness of this method it is sufficient to observe that
any completed I-analytic tableau can be transformed into a closed tableau
by replacing every check mark by a closed sub-tableau containing no check
marks (check-marks cannot justify each other cyclically). Without loss of
generality, we will assmne that .[-analytic tableau are constructed so that the

330 A. Vellino

check marks occur to the left of the nodes by which they are justified. This
is always possible since the literals in each formula are not order sensitive.

Notice that checking a branch that ends in a literal l simply has the
effect of reporting (or delaying) the justification for closing that branch to
the decomposition of formulae on another branch ending in l, provided that
both occurrences of the literal have the same ancestor. The checking of a
literal always reports its decomposition to a literal belonging to an ancestor
formula and effectively merges nodes in the tableau, allowing them to share
the closure of a sub-tableau.

4. L i n e a r R e s o l u t i o n

In this section we examine a refinement of resolution that has been studied
extensively in the field of automatic theorem proving: linear resolution. We
show that the SL refinement of resolution p-simulates and is p-simulated by
the parent clash restricted improved anMytic tableau.

4.1. S L - R e s o l u t i on

A linear resolution proof is a resolution proof where each resolvent is one of
the parents of the next resolvent and the other parent is either an input clause
or a previous resolvent. Resolvents neither of whose parents are input clauses
are said to follow by reduction. The SL refinement of linear resolution linear
resolution with selection function was first introduced in [7]. SL- resolution
is also a general form of OL (ordered linear) resolution ([2], p. 144-159).

The strategy underlying SL-resolution is derived from considerations
common to semantic resolution and set of support resolution (see [2], Chapter
6). The idea with both of these restrictions is to force a choice of resolutions
that will yield a contradiction quickly by imposing a strict order on the elim-
ination of the literals. Since a partial tva that satisfies a group of clauses
also satisfies all its resolvents it follows that a good strategy is to separate a
(minimally) inconsistent set of clauses into two classes of self-consistent but
mutually inconsistent clauses and resolve the clauses from each set against
one another.

Applied to linear resolution, this insight means that the tva assigned
to the literals of the set of input clauses S, must be critical for the start
clause of the linear proof: that is, make the start clause false and each of
the other input clauses true. The choice of start clause in a linear proof
therefore imposes an order on the resolutions of clauses with one another.
A further restriction on the progression of resolutions is to specify the order
in which literals in a resolvent should be annihilated. In SL-resolution the

The Relative Complexity... 331

literal scheduled for the next resolution on the vine is the right-most literal
of the current clause.

To avoid redundant sub-proofs, it is useful to keep track of the previous
resolutions representing a clash of tvas. This means that a certain amount of
syntactic overhead rrmst be grafted onto each clause in a linear resolution in
order to maintain a record of both the ordering of the literals in the clauses
and the previously resolved literals, the proof then verifies that no tva can be
consistently assigned to all the clauses in S -{ s t a r t dause}U {start clause}.
We ignore the method of choosing appropriate tvas and set of support. The
results below are independent of such heuristic mechanisms.

To keep track of each literal which is resolved on from an input clause
and to ensure that the next resolvent inherits the semantic information about
the previously resolved literal until the information is no longer necessary,
every resolved literal in an SL-resohition proof is kept track of by framing the
resolved literal in the position in which it occurs in the previous resolvent.
([7] distinguish between A-literals, here called framed literals and B-literals,
here called unframed literals, following [2].)

A sequence of sets of literals is called a chain. Each literal belonging to
a chain is either framed or unframed depending on whether the literal has
undergone a previous resolution. Input clauses then, are chains of unframed
literals and SL resolvents, in general, are chains containing framed literals.

We call each sequence of contiguous unframed literals in a chain a cell.
Thus a chain is a sequence of cells. Note that while the order of the elements
in a cell is immaterial, the order of cells in the chain is significant since it
partially determines the order in which literals are resolved.

Now, if any resolvent contains both a literal framed and its complement
unframed, the reduction operation is trivial: it consists in simply deleting
the unframed literal. On the other hand, a framed literal indicates that its
resolution has already been performed. Therefore a resolution on a framed
literal is equivalent to using the resolvent immediately prior to the framing
of that literal, thus forming an arc in the vine (linear proof tree). If the
right-most cell is empty, it may be discarded (retention of the information
that previous resolutions on these literals has been performed is no longer
necessary).

The choice of literal for resolution depends on a selection function which
picks c~t a literal from the right-most cell containing a non-framed literal.
The question of which literal is to be selected on for resolution does not
affect the results below.

We can now define an SL-resolution [7] proof of C from a set of chains
(clauses) Y~ as a sequence of C1 . . . C,~ of chains such that:

332 A. Vellino

1. O . = C .

2. C1 is an input clause

3. Ck, 1 < k <_ n is obtained from Ck-1 by one of extension (with an
input chain) or reduction (with a previous resolvent).

4. No two literals occurring at distinct positions in Ck have the same
variable unless Ck+l is a reduction step (admissibility restriction).

A resolvent Ci is obtained by extension with an input chain B iff:

1. The right-most literal in Ci-1 is an unframed literal.

2. The selected literal I in Ci-1 (picked out by the selection function) is
the complement of the left-most literal in B.

3. Ci is the chain obtained by concatenating Ci-1 / l, < l :> and B / ~ l,
in that order. The literal I in C~-x is framed in Ci and every other
literal has the same status as it had in its ancestor.

A resolvent Ci is obtained by reduction hT:

1. The right-most literal in Ci-1 is an unframed literal.

2. The literal I occurs both framed and unframed in Ci-1.

3. Ci is the chain obtained by deleting the unframed occurrence of l in

Ci-1-

Ci is obtained by truncation itf:

1. The fight-most literal I inCi-1 is a framed literal.

2. Ci is obtained by deleting every framed literal to the right of the right
most unframed literal in Ci-1.

Ci is obtained by merging iff:

1. Ci-1 contains two or more occurrences of an unframed literal I.

2. (7/ is obtained by deleting all the occurrences of l subsequent to the
first.

For instance, an SL-resolution refutation for the set of clauses ~1 = {a,,~b,
,~ab, b~c,,.~bc, ac,~a~c} is given in Fig. 7.

The Relative Complexity... 333

0 f

(b>(a)(,.~c) ,.~b

<.) ~ c c ~ b

<bt . ~ c

5

b(~a)(c
truncate

merge

b(, .~a) (c)b

b(~ a)~ ~cb

b ,.o a ae

Fig. 7: SL-resolution vine for Z1

It should be noted from the definition of SL-resolution that, from the
point of view of a worst case complexity measure, neither merging nor trun-
cation nor reduction are crucial. The number of truncations will be a max-
imum in a refutation with no reductions. If the number of resolution steps
is K, there will be at most K more truncation steps.

As for merging, it is evident that if L is the number of distinct literals
in S then the merging procedure need be performed at most L × K times,
where K is the number of extension steps in the proof only a linear increase.
Similarly, the definition of reduction makes it clear that reduction steps can
be made just by keeping track of previous resolutions (by framing literals).
But since reduction steps add no new literals to the resolvent, performing the

334 A. Vellino

reduction step is computationaUy equivalent to merging literals. One need
only scan the resolvent chain to check for the presence of ~ a m e d (unfTamed)
literal and its unframed (framed) complement. Moreover, the number of
reduction steps is also bounded by the number of extension steps. The
worst case is when the number of merges in the proof is smallest, i.e. 0.
Then each input resolution will add a maximum of N - 1 literals to the
chain, where N is the length of the longest input clause. Assuming that all
the remaining literals are eliminated by reduction, the greatest number of
reduction steps is bounded by K × (N - 1) where K is the number of input
clauses used in the proof times N - 1.

4 .2 . L i n e a r R e s o l u t i o n a n d A n a l y t i c T a b l e a u x

In this section we show that SL-resolution and the improved parent clash
restricted (IPCR) analytic tableau method exactly simulate each other.

Let 8 be an IPCR analytic tableau for the set of clauses ~. Since the
decomposition of the literals in a clause can be performed in any order,
we can assume that the tableau is constructed in such a way that , at each
decomposition stage, the literals are ordered so that the parent clashed lit-
eral is always right-most in the extension step. However, the tableaux are
constructed depth-first from left to right.

e ,-~a c

× ×

a b

b ~ a

×

Fig. 8: Partial IPCR tableau for ZI

Now let C r be the clause formed by traversing 0 in reverse postorder ~
gathering all and only the unchecked literals at the leaves of 0 up to and
including the literal on the left-most open branch. Let C r~ be the result of

tA postorder traversal of a tree traverses the subtree8 of the first (left-most) subtree,
visits the root and then traverses the remaining subtrees ([6], p.316)

T h e R e l a t i v e C o m p l e x i t y . . . 335

replacing every literal p in C' that corresponds to a literal whose branch is
dosed by a parent literal, by the framed literal <,,~p >. Then let C be the
result of deleting from C" all the literals q whose branch is checked or dosed
by a complementary a n c e s t o r in O.

For example, in the tableau shown in Fig. 8, C ' = b ~ a c ~ a e , C " = b < a >

< ~ c > ~ a e a n d C = b < a > <,,~c > e.

Now to prove that resolution and I P C R analytic tableau exactly sim-
ulate each other we must show that a sequence of tableaux 01,02,. . . On

constructed in the stages described in section 3.2, corresponds to a sequence
of chains in an SL-resolutjon proof. For the case of the singleton clause,

= {C}, the theorem is obvious. There are three cases to consider:

CAS~ 1: EXTBNSION

If p labels a node in 8,~ and C,~ = ala2 . . . a j p is the chain obtained from 0,~
by the construction above, then 0,~+1 is obtained by extending the tableau
0n with a clause C = " p q l q2 . . . qk.

\

q ~ . . . q 2 ql ~ q

Q.+I

Fig. 9: Partial I P C R tableau

The chain Cn+l obtained by construction on 0~+1 is then al a2 . . . aj < p >
ql q2 . . . qk which corresponds exactly to an input resolution (extension) in the
corresponding SL proof as shown in Fig. 10.

al a2 " . aj (p) ql q2 " " qk ~ Cn + l

al a2 " " a j p "~Pql q2 " ' " qk ~ C

Fig. 10: Partial SL-resolution vine

336 A . V e l l i n o

CASE 2: CHECKING

Checking a literal in a tableau 0 corresponds exactly to the merging step in
an SL proof. If there are two open branches containing the literal p in 0 then
the SL clause obtained by construction has the form a l a 2 . . . Pq lq2 . . . p
After checking the left-most open branch the clause has the literal p merged
to the left.

: p ' "

qn qk " " P " "

, /
Fig. 11: Checked partial tableau

CASE 3: CaOSSING

Closing a branch in ~ whose endnode is labelled by a literal that is not com-
plementary to a parent ancestor is the equivalent of the reduction operation
in SL-resolution. QED.

Thus, an SL-resolution refutation can be interpreted as instructions for
the construction of a I P C R analytic tableau and visa versa. This result
is quite interesting and somewhat unexpected given the semantic nature of
analytic tableaux methods and the syntactic nature of resolution methods.

5. C o n c l u s i o n

The P C R improved tableau method described in section 3.2 provides tableau
proofs whose minimal size is of the order of SL-resolution proofs. However,
just as resolution proofs methods require strategies to search for the small-
est trees, minimal sized tableau proofs can be obtained only by choosing a
strategic order in which to decompose the formulae. Although this paper
does not discuss this problem it should be easy to adapt resolution-style
optimization strategies to this semantic method.

The Relative Complexity... 337

References

[1]

[2]

[4]

[5]

[~]

W. BIBBL, A u t o m a t e d T h e o r e m Proving, Vieweg Verlag, Braunschweig; Wies-
baden: Vieweg 1982.

C. L. CHANG and R. T. C. LEE, Symbol ic Logic and Mechanical T h e o r e m
Prov ing , New York 1973.

S. A. COOK, The Complexity of Theorem Proving Procedures, Proc. 3rd A C M
STOC~ 1971, pp. 151 - 158.

S. A. COOK and R. A. RECKHOW, The Relative E~ciency of Propositional Proo]
Systems, Jou rna l of Symbol ic Logic, 44 (1979), pp. 36 - 50.

M. D'AGOSTINO, Investigations i~to the Complexity of some Propositional Calculi,
Ph.D. Thesis, Oxford University Computing Laboratory, Technical Monograph PRG-
88, 1990.

D. E. KNUTH, The Ar t of C o m p u t e r P r o g r a m m i n g , Vol.1, Addison-Wesley,
1968o

[7] R. KOWALSKI and D. KUEHNER, Linear Resolution with Selection Function, Art i -
ficial Inte l l igence 2 (1971), pp. 227 - 260.

[8] R. SMULLYAN, First Order Logic, Springer-Verlag, New York 1968.

[9] A. VELLINO, The Gomplexity of Automated Reasoning, Ph.D. Thesis, Department
of Philosophy, University of Toronto, 1989.

COMPUTING RESEARCH LABORATORY

BELL-NORTHERN RESEARCH

P.O. Box 3511, STATION C
KIY 4H7, OTTAWA, ONTARIO, CANADA
e-mail: vellhlo ~ hnr.ca

Received June 17, 1992

Studia Logiea 52, 2 (1993)

