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The finite-size corrections, central charges c, and scaling dimensions x of 
tricritical hard squares and critical hard hexagons are calculated analytically. 
This is achieved by solving the special functional equation or inversion identity 
satisfied by the commuting row transfer matrices of these lattice models at 
criticality. The results are expressed in terms of Rogers dilogarithms. For 
tricritical hard squares we obtain c = 7/10, x = 3/40, 1/5, 7/8, 6/5 and for hard 
hexagons we obtain c=4/5, x=2/15, 4/5, 17/15, 4/3, 9/5, in accord with the 
predictions of conformal and modular invariance. 
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1. I N T R O D U C T I O N  

In  statistical mechanics it is well established that two-dimensional  critical 
lattice models exhibit scale invariance,  (1) conformal  invariance,  (2,3) and  

modu la r  invariance.  (4's) Critical behaviors are classified into universali ty 

classes according to the central charge c of the Virasoro algebra of the 
corresponding conformal  field theory. For  models with c < l, a complete 
classification of critical exponents  can be given in terms of the uni tary  
series with central charge (2'6) 

6 
c = 1  (1.1) h(h - 1) 

where h = 4, 5, 6 ..... In  particular,  the scaling dimensions of various scaling 
fields are determined by the conformal  weights in the Kac  table. (7) 
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In lattice calculations, the central charge and scaling dimensions are 
accessible (8'9) from finite-size corrections to the row transfer matrix 
eigenvalues at criticality. Indeed, extensive calculations of these finite-size 
corrections (lw21) have given the strongest and most direct evidence to date 
supporting the predictions of conformal and modular invariance. However, 
apart from the Ising model (see, for example, ref. 22), there has been no 
exact analytic calculation of the scaling dimensions. The widely adopted 
methods for calculating the central charge based on the Euler-Maclaurin 
formula ~e~3) or thermodynamics of the corresponding quantum chain ~9'23) 
have proved too cumbersome to extend to calculations of the scaling 
dimensions. 

In this paper, we develop methods to calculate analytically the finite- 
size corrections and scaling dimensions of critical lattice models as 
announced previously. (24) The results presented here bring to fruition an 
approach initiated in earlier work. (25) The methods are quite general and 
applications to other models will be given in subsequent papers. In this 
paper, as a first example, the methods are applied to the tricritical hard 
square and critical hard hexagon models. These models are both special 
cases of the generalized hard hexagon models introduced by Baxter (26-~9) 
and further studied by Baxter and Pearce. (3~ The results we obtain for 
the central charges and scaling dimensions are summarized as: 

Tricritical hard squares: e = 7/10, x = 3/40, 1/5, 7/8, 6/5 (1.2) 

Critical hard hexagons: c = 4/5, x = 2/15, 4/5, 17/15, 4/3, 9/5 (1.3) 

The layout of the paper is as follows. The interacting hard square 
and hard hexagon lattice models are defined in Section 1.1. This section 
introduces the inversion identity satisfied by the row transfer matrices of 
these models and summarizes the known critical behavior. In Section 1.2 
we discuss the predictions of conformal and modular invariance. The 
details of the calculations of the central charge and scaling dimensions 
of the two models are given separately in Sections 2 and 3. The paper 
concludes, in Section 4, with a discussion of further work to be done. 

1.1. Generalized Hard Square and Hard Hexagon Models 

The hard square and hard hexagon models are both special cases of a 
generalized interaction-round-a-face model ~26'29-31) with face weights given 
by 

W(~ ;)=z(a+b+c+d)/4exp(Lac+Mbd)(1-ab)(1-bc)(1-cd)(1-da) 
(1.4) 
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This is a lattice gas on the square lattice with nearest-neighbor exclusion. 
Here z is the activity, L and M are diagonal interactions, and the spins or 
occupation numbers a, b, c, d =  0, 1 according to whether the site is empty 
or occupied. The usual noninteracting hard square model is given by 
L = M =  0 and the hard hexagon model is given by L = 0, M =  -o e .  

The generalized hard square or hexagon model (1.4) satisfies a 
Yang-Baxter equation, and is therefore exactly solvable, when the inter- 
actions satisfy the constraint 

z=(1--e-L)(1--e M)/(eL+M--eL--eM) (1.5) 

This surface consists of disjoint sheets with a line of critical points on each 
sheet given by 

Z~ = Z - - 1 / 2 ( l  - ze  L+M) = ___ [ ( , , / -5-  1)/235/2 (1.6) 

On the critical lines the interactions can be parametrized as 

sin(2-u) 6(a,c)+ 6(b,d) (1.7) 
W a sin 2 sin 2 \ S ~ J  

where 

2 = =/5, $1 = sin 2, So = sin 22 (1.8) 

The spectral parameter u is related to spatial anisotropy, 2 is the crossing 
parameter, and 6 is the Kronecker delta. If L, M > 0, then 0 ~< u ~< ~/5 and 
the model describes interacting hard squares. If L > 0 ,  M < 0 ,  then 
-7r/5 ~< u ~< 0 and the model describes interacting hard hexagons. Setting 
L = 0, M =  - o e  in the critical condition (1.6) gives the critical activity of 
hard hexagons as 

zc = [�89 +,,/-~)]5 = �89 + 5,~/-5)= 11.09017... (1.9) 

Similarly, taking L = M >  0 or u = re/10, we obtain a critical point of the 
isotropic interacting hard square model as 

Lt = M, = ln(3 + x/5)  = 1.65557 .... zt = (x / -5-  1 )/32 = 0.038627... (1.10) 

This is in fact a tricritical point. (31,32) The phase diagram of the isotropic 
hard square model with nearest-neighbor attractions is shown in Fig. 1. 

The generalized hard square or hexagon model possesses a family of 
commuting row transfer matrices parametrized by the spectral parameter u. 
Suppose that ~ and ~r' are allowed spin configurations of two consecutive 

822/64/1-2-2 
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Fig. 1. Phase diagram of the isotropic interacting hard square model showing the phase 
boundary between the fluid and square ordered solid phases. The tricritical point T separates 
the critical line (solid curve) from the first-order line (thick solid curve). The model is exactly 
solvable on the first-order line and its analytic continuation (dashed line). The phase diagram 
of hard hexagons with its simple critical point C is shown on the right. 

rows of an N-co lumn lattice with periodic bounda ry  conditions. Then the 
elements of the row transfer matr ix  are given by 

<~rlV(u) l a ' > -  W J (1.11) 
j = l  O'j O' j+ 1 /  

with aN+l  = a l ,  a~v+l =cr] .  The eigenvalues V(u) of the transfer matr ix  
V(u) are entire functions of u. They are completely determined by their 
zeros via the factorizat ion 

N 

V(u) = R I] s i n ( u -  uj) (1.12a) 
j = l  

where R is a constant  independent  of u. It  can be shown that  the zeros 
satisfy the sum rule 

N 

uj=3N2+krt,  ks7/.  (1.12b) 
j = l  

Let us define a normal ized transfer matr ix  T(u)  by 

f sin(22 + u) sin 2 -I N 
T(u) = L/- sin(-ST2-- V(u) (1.131 

Then these transfer matrices commute ,  

[T(u),  T (v ) ]  = 0 (1.14) 
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and furthermore the eigenvalues T(u) of T(u) satisfy (3~ the special 
functional equation or inversion identity 

T(u) T(u + 2) = 1 + T(u - 22) (1.15) 

The eigenvalues T(u) are in general complex. We will regard the 
eigenvalues T(u) as functions of a complex variable u. They are then 
meromorphic functions of u satisfying the following periodicity and 
crossing symmetry: 

r (u  + ~) = / ' ( u ) ,  ~(u)  = r(;~ - a) (1.16) 

If u = Uz is a zero of T(u), then it must satisfy the equations 

T(u~ +_ 22) = -1 ,  T(u z + 32) = -1  (1.17) 

This is a consequence of the inversion identity and periodicity. The 
inversion identity (1.15) is an exact equation for finite N and completely 
determines the eigenvalues T(u). It therefore contains all the information 
needed to calculate finite-size corrections. We will solve it using Fourier 
transforms. The eigenvalues T(u) are analytic and nonzero in various 
vertical strips in the complex u plane. Moreover, taking the limit 
Im(u)--* +c~ in (1.15) and solving the resulting quadratic equation, we see 
that the asymptotic values are given by the golden numbers 

lim T(u) = lim T(u) = (1 _ x/-5)/2 (1.18) 
I r a ( u )  ~ oo I m ( u )  ~ Go 

It therefore follows that within such strips the derivative [-ln T(u)]' admits 
a Fourier transform. 

An inversion identity of the form (1.15) holds, not just at criticality, 
but on the whole of the exact solution manifold (1.5). Indeed, the inversion 
identity has already been solved off criticality (3~ to obtain the free energy 
and correlation lengths of both interacting hard squares and hard 
hexagons. Similarly, the order parameters and sublattice densities of these 
models have been calculated using corner transfer matrices. (z6,28,31) In 
summary, these results yield the following values for the critical exponents 
and scaling dimensions. 

Tricritical hard squares: 

~ =  -1/2,  v=5/4,  fl=3/32, f l ' = l / 4  

x~=6/5, xo=3/40,  x ~ = l / 5  (1.19) 
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Hard hexagons: 

= 1/3, v = 5/6, /3 = 1/9 

x, = 4/5, x~=2 /15  (1.20) 

In two dimensions, the thermal and magnetic scaling dimensions, denoted 
by x~ and x~, respectively, are given in terms of the critical exponents by 
the scaling relations 

2 2/~ 
2 - c ~ = 2 v =  = x ~  (1.21) 

2 - x ~ '  2 - ~  

1.2. Conformal  and Modular  Invariance 

In this section we briefly summarize the application of conformal and 
modular invariance to critical lattice models with central charge c < 1. An 
emphasis is placed on the particular consequences of the theory for the row 
transfer matrix eigenvalue spectra of tricritical hard squares and critical 
hard hexagons. Comprehensive reviews are given elsewhere. (33 35) 

Consider a critical lattice model with central charge c < 1. The central 
charge is therefore restricted to the values c = 1 -  6 /h (h -1 ) .  On a finite 
M x N periodic lattice or torus the partition function can be written as 

Z M, N ~-- exp( - M N f  ) Z(  q ) (1.22) 

where f is the bulk free energy and Z(q)  is a universal term describing the 
leading finite-size corrections in the limit of M, N large with the aspect 
ratio 6 = M / N  fixed. The argument q is the modular  parameter. For  a 
spatially isotropic model, it is simply related to the aspect ratio ~ by q = 
exp(-2rc6).  The partition function on a torus, calculated from the eigen- 
values of the row transfer matrix T of a periodic row of N faces, is 

ZM, N = Tr T M = ~ A ff = ~ exp( - M E  n) (1.23) 
n n 

where 
An = e x p ( - E , )  (1.24) 

are the eigenvalues of T and En are the corresponding energy levels labeled 
by n = 0, 1, 2,.... The leading finite-size corrections to the energy levels take 
the form (8'9) 

7~C 
Eo = N f  - ~ sin 0 

(1.25) 
2n 

E ,  - Eo = ~ (x,  sin 0 + is, cos 0) 
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where Eo is the g round-s ta te  energy and  c is the central  charge. The angle 

0 is de te rmined  by the spat ia l  an i so t ropy  (36) and  depends  on the spectral  
p a r a m e t e r  u. F o r  tr icr i t ical  ha rd  squares  and ha rd  hexagons  it is given by 

~5u, 0 ~< u ~< zt/5 (1.26) 
O = [ - -  lOu/3, - zc/5 <~ u <~ O 

The scaling d imensions  and spins are 

x n = A + J + k + l ~ ,  s n = A - A + k - f c ,  k, k e N  (1.27) 

where the conformal  weights (A, zl) of the p r imary  ope ra to r s  are given by 
the K a c  fo rmula  (7) 

[hr - (h -  1)S] 2 -  1 
A = A r , , -  , l < ~ r < ~ h - 2 ,  l < ~ s ~ h - 1 ,  r>~s 

4h(h - 1) 

(1.28) 

with zTr,,= zJe,~ defined similarly.  The a l lowed values of the conformal  
weights descr ibing the cri t ical  behav ior  of the Ising model  (h = 4), tr icri t ical  
Is ing mode l  ( h = 5 ) ,  and  te t racr i t ical  Ising model  ( h = 6 )  are l isted in 
Table  I. The tr icri t ical  ha rd  square  mode l  is descr ibed by the h = 5 grid, has 

centra l  charge e =  7/10, and  lies in the universal i ty  class of the tr icri t ical  
Ising model .  The conformal  weights of cri t ical  ha rd  hexagons  appea r  on 

Table l .  Grids of Conforma lWeights  At. s f o r  h -- 4 ,  5, and 6 a 

h=4 h=5 

s = 3 1/10 
s = 2 1/16 s = 2 3/80 3/5 
s = 1 0 I/2 s = 1 0 7/16 3/2 

r = l  r=2  r = l  r = 2  r=3  

h=6  

s = 4 1/8 
s = 3 1/15 2/3 
s = 2 1/40 21/40 13/8 
s = 1 0 2/5 7/5 3 

r = l  r = 2  r=3  r = 4  

a The conformal weights of the tricritical hard square model are given by the h = 5 grid. The 
conformal weights of hard hexagons appear on odd rows of the h = 6 grid. 
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odd rows of the h = 6 grid and so the hard hexagon model has central 
charge c = 4/5. The hard hexagon model is in the universality class of the 
three-state Potts model. 

The energy spectrum of c <  1 critical lattice models consists of a 
ground state and an excited state for each primary operator. Above each 
of these is a tower of equally spaced levels or descendants. More specifi- 
cally, the universal finite-size partition function is given as a sesquilinear 
form in Virasoro characters 

Z(q) = ~ z~(q) Y(d, 3) gJ(q) (1.29) 
x , j  

where the sum is over conformal weights in the Kac table and the integer 
X(A,  Z) gives the multiplicity of the primary operator (A, zl). The modular 
parameter is 

M 
q = exp(2niz), ~ = ~ exp[i(n - 0)] (1.30) 

and c] denotes the complex conjugate. The Virasoro characters are defined 
by 

x~(q) = Z ~ J r , , ( q )  -= q-C/24 ~ d~(k)q~ +k 
k=O 

--1-In~176 ~ q{[2h(h--1)n+hr (h--l)s]2--1}/4h(h--l) 

__q{[2h(h-- t )n+hr+(h--1)s]  2 1}/4h(h--l)} (1.31) 

The factors d~(k) are integers giving the degeneracy of levels. The set of 
numbers Y(A,  A)e  N, which completely determines Z(q), is called the 
operator content of the theory. 

On a torus, the universal partition function (1.29) must be invariant 
under transformations of the modular group. This fact has been used to 
classify completely the modular invariant partition functions Z(q) and 
operator content of theories with central charge c < 1. (37 39) Remarkably, 
they are in a one-to-one correspondence with the classical A-D-E Lie 
algebras. There are two infinite families corresponding to the A and D 
series and three exceptional cases corresponding to the classical E Lie 
algebras. Critical lattice models corresponding to each of the A-D-E 
Lie algebras have been constructed by Pasquier. (4~ The spin states of 
these models are described by the Dynkin diagrams of the associated Lie 
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algebras. The A series is realized by the restricted solid-on-solid (RSOS) 
models of Andrews e ta / .  (42) The Ising model (h = 4) and tricritical hard 
square model (h = 5) are the first two members of this hierarchy. At criti- 
cality, the face weights of the RSOS models are given by (1.7) with 
a, b, c, d =  1, 2,..., h - 1, 2 = n/h, and S a = sin(an~h). The numbers Sa are the 
components of the Perron-Frobenius eigenvector of the adjacency matrix 
associated with the Dynkin diagram. The graphs of allowed neighboring 
states for interacting hard squares and hard hexagons are shown in Fig. 2. 

The modular invariant partition functions of the classical A or RSOS 
models are 

Z(q) = ~ ]z~(q)[ 2 (1.32) 
A 

In particular, the modular invariant partition function of tricritical hard 
squares is 

Z(q) = IZo(q)12 + IZ3/80(q)12+ IZ1/m(q)[Z+ IZ7/16(q)12 + IZ3/5(q)12+ Iz3/2(q)l 2 

= (q(~) 7/240[ l -~- (q~)3/80 "k (q6])1/10 .q_ (q~)7/16 q_ (q3/80~83/80 q_ q83/80{]3/80) 

+ (q~)3/5 q_ (q1/10~11/10 + qll/lO~l/lO) q_ (q7/16~23/16 _.}_ q23/16~7/16) 

+ (q2 + ~2) + O(Iq183/40)] (1.33) 

For the isotropic case with u = n/10, the modular parameter q is real and 
the first few terms simplify to 

Z(q) = q -7/20[ 1 -1- q3/4o -k- ql/5 -t- q7/8 _1_ 2q43/4o -t- 3q 6/5 + 2q ls/8 + 2q 2 + O(q 83/4~ ] 

(1.34) 

1 

w . . . .  
1 0 1 

Fig. 2. Graphs of allowed neighboring states for interacting hard squares and 
hard hexagons. Note that the bonds in the hard hexagon case are directed. Identifying 
corresponding states under the ~ 2  and 2~ a symmetries leads to the tadpole diagram on the 
right for the two states 0 and 1 used in this paper. 
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On the other hand, the modular invariant partition function of the three- 
state Potts and hard hexagon models belongs to the D series and is given 
by 

Z(q) = IZo(q) + z3(q)[ 2 + 1)~2/5(q) + Z7/5(q)[ 2 -'b 2 [Z~/15(q)L 2 + 2 [Z2/3(q)[ a 
= (qt])-1/30[ 1 + 2(q0) 1/15 + (q~)2/5 + 2(ql/15~]16/15 + q16/15~]1/15) 

+ 2(qr + 2(q2/5(17/5 + q7/5~2/5) + (q2 + gl 2) + O(Iq132/t5)] (1.35) 

This completes the review of the application of the theory of conformal 
and modular invariance. To summarize, the modular invariant partition 
functions (1.33) and (1.35) are the predicted spectrum-generating functions 
of tricritical hard squares and critical hard hexagons. Most importantly, 
the scaling dimensions, spins, and degeneracies of energy levels associated 
to all the relevant scaling fields can be read off immediately from these 
expansions. In the following sections we will confirm these predictions by 
direct calculation of the finite-size corrections to row transfer matrix eigen- 
values of tricritical hard squares and critical hard hexagons. 

2. TRICRIT ICAL HARD SQUARES 

In this section we describe our method for calculating finite-size 
corrections to the eigenvalues of the transfer matrix for tricritical hard 
squares. The physical regime is 0 ~< u ~< re/5. We first consider the largest 
eigenvalue to calculate the central charge. The generalization to calculate 
the scaling dimensions of next-largest eigenvalues is presented in sub- 
sequent subsections. We will take N to be even throughout this section. 

2.1. The Central Charge c = 7 / 1 0  

The keystone in our approach is the identification of analyticity 
domains of the eigenvalues T(u). These domains are delimited by curves in 
the complex u plane on which the zeros of the largest eigenvalue T(u) 
become densely distributed in the thermodynamic limit. By periodicity we 
can restrict our attention to the strip -re/10 ~< Re(u)< 9re/10. For tricritical 
hard squares, the zeros accumulate on the lines Re(u)= -~/10, 3rc/t0 for 
large N as shown schematically in Fig. 3, where the distance of the furthest 
zeros from the real axis grows as in N. We therefore distinguish two 
analyticity strips: 

3~ 
strip 1: - l--d< R e ( u ) < ~  

(2.1) 
37z 9re 

strip 2: ]-~ < Re(u) < 1-0 
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Fig. 3. Schematic representation of the zeros in the complex u plane of the largest eigenvalue 
of tricritical hard squares. The finite-size correction to this eigenvalue yields the central charge 
c = 7/10. 

Since we are interested in finite-size corrections to the largest eigenvalue, it 
is natural to represent T(u) by its bulk behavior multiplied by some correc- 
tion function l(u). Allowing for different analytic forms in strips 1 and 2 
and using the known bulk behavior gives the representations 

r l ( u )  = ~.  t l ( u )  

T2(b/) = Z(bl) N �9 12(b/), z(u)= I i c~ ( ~ )  ] 
(2.2) 

Inserting (2.2) into the functional equation (1.15), we obtain relations 
for the l functions 

ll(U) /l(b/ + ~) ~-- p2(b/) 

12(U) 12(U + ;~) = p l ( U )  
(2 .3)  

where the functions on the rhs are defined by 

pl(u) := 1 + Tl(U- 22) 

p2(u) := 1 + T2(u + 32) 
(2.4) 

As seen from (1.13), ll(u) and /2(U) a r e  analytic, nonzero in strips 1 and 2, 
and their logarithms have constant asymptotic behavior for large positive 
or negative imaginary parts (ANZC). The functions Pl and P2 also share 
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such an ANZC property in narrower strips. Therefore the derivatives of 
In ll, etc., can be Fourier-transformed, e.g., with Fourier transform pair 

Ll(k)= l~ f  dv[lnll(V)]'e -kv 
2M Re(~)=x 

Eln/l(V)] ' =  dk Ll(k)e ~ 
- o o  

(2.5) 

where the integration path denoted by Re (v )=x  has to lie in the 
appropriate analyticity strip, but is otherwise arbitrary due to Cauchy's 
theorem. Taking the logarithm and derivative of (2.3) and then the Fourier 
transform, we obtain 

L~(k) + e;~kLl(k) = P2(k) 

L2(k ) + e)'kL2(k) = P~(k) 
(2.6) 

which is readily solved for the L functions in terms of the P functions. 
Transforming back, we find a double integral whose order can be inter- 
changed. The k integral can then be evaluated using 

f ~ e k" 5 0 < R e ( u ) <  5 (2.7) 
- o o  dk 1 + e k'~/5 sin 5u' 

Thus we obtain 

[ l n l l ( u ) ] ' = l ~ f  dv [ln p2(v)]' 5 
2hi Re(v)=0 sin 5(u--v) 

1 fR dv Eln px(v)]' 5 [ln/2(u)] '  = ~ e(v~ = ~/2 sin 5 ( u -  v) 

(2.8) 

These equations are valid in the strips 0 < Re(u)< re/5 and re/2 < Re(u)< 
7rc/10 respectively. 

To make further progress, it is convenient to restrict the T and p 
functions to certain straight lines in their analyticity strips in order to deal 
with functions of real variables 

b(x):= T~ ~ x + ~ , 

9.1(x) := pl x +  = l + a ( x )  

~ 3 ( x ) : = p z ( ~ x ) = l  +b(x)  

(2.9) 
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After integrating (2.8) with respect to u and introducing the functions 
defined in (2.9), we find 

in a(x) = k �9 in ~3 + D 1 
(2.10) 

In b(x) = In z(ix/5 + 3~/5) u + k �9 In oA + D 2 

where D1 and D2 are integration constants and the branch of the logarithm 
of z is chosen such that it vanishes as x ~ oo. The notation g �9 f denotes 
the convolution of the functions g and f,  

( g , f ) ( x ) =  -oo g(X-  Y) f (y)dy (2.11) 

and the kernel k is defined by 
1 

k(y) = 2~ cosh y (2.12) 

To evaluate the constants D1 and D 2 w e  take the limit Im(u)--+ _+oo in 
(2.10) using the asymptotic values (1.18) of T(u). Since the largest eigen- 
value is positive, we must have 

a(oo) = b(oo) = (1 + x/-5)/2 (2.13) 

Using this and the integral 

we deduce 

f ~  =-1 (2.14) _ ~ d y  k ( y )  2 

D1 = D 2 = 0  (2.15) 

To handle the thermodynamic limit we observe that z N in (2.10) 
possesses the scaling behavior 

i 37~'~ u 
lim z + 7 ( x + l n U ) + - - ; - ]  = e x p ( - 2 e  -x) (2.16) 

N ~ o o  3 3 1  

Numerically a, b, ~ ,  and ~3 are found to scale similarly. We therefore 
define appropriate limiting functions in the positive scaling regime and 
introduce a shorthand notation for their logarithms: 

a(x) := lim a(x + in N), 
N ~ o o  

A(x) := lim 9,1(x + In N) = 1 + a(x), 
N ~ o o  

b(x) := lim b(x + In  N), 
N ~ o o  

B(x) := lim ~3(x + In N) = 1 + b(x), 
N ---+ oo 

la(x) := In a(x) 

lA(x) :--=In A(x) 

lb(x) := In b(x) 

lB(x) := In B(x) 

(2.17) 
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Analogous limiting functions are defined in the negative scaling regime. In 
the case of the largest eigenvalue these are simply related, since a, b, 92, and 
~3 are even functions. For the next-largest eigenvalues, however, such a 
relation is no longer valid in general and in later subsections we will treat 
the positive and negative scaling regimes separately. 

In the positive scaling regime the integral equations (2.10) simplify to 

la(x)  = k * IB 

lb(x)  = - 2 e - X  + k * lA 
(2.18) 

The notation could be made more compact by introducing a matrix K 
whose entries are functions 

We do not employ such a notation, but point out that the symmetry of K 

K r ( y  - x )  = K ( x  - y )  (2.20) 

will turn out to be a crucial property in further manipulations of (2.t8). 
Let us now consider the finite-size corrections to the eigenvalue in the 

physical strip Tl(U). Using the variable u = ix/5 + zt/10 in (2.9) and (2.10) 
and scaling the integration variable, we derive 

In Tl (u  ) = In a(x )  = k �9 in 23(x) 

;0 = dy [ k ( x  - y )  + k ( x  + y ) ]  In ~3(y) 

= d y [ k ( x - y - l n N ) + k ( x + y + l n N ) ] l n ~ ( y + l n N )  
I n  N 

oo e X 12 
= f  dy [~--~- + e -X-Yl  

1 is  - -  e x + e ~) dy e - ~ m ( y )  (2.21t 
- ~ N  ( - - o 0  

The finite-size corrections in the physical strip 1 are therefore determined 
by the behavior in the scaling regime of the unphysical strip 2. The integral 
in (2.21) is well-defined and nonzero. In particular, as y ~ - o o  the 
integrand vanishes 

e - Y l B ( y ) = e  -v ln[1 + e x p ( - 2 e - Y + k  * l A ( y ) ]  ~ 0  (2.22) 
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and is dominated by exp( -2e-Y) ,  so the integral exists. This confirms the 
scaling forms (2.17). A different ansatz in (2.17), for instance with In N 
replaced by �89 in N or 2 in N, would have led to correction terms of the form 
0/x /N or oo/N 2, indicating an inconsistency. 

The integral equations (2.18) can be solved straightforwardly numeri- 
cally and appear t o  yield a unique solution. However, we have not been 
able to solve these equations analytically. Nonetheless, precisely the 
integral occurring in (2.21) can be calculated analytically from (2.18) 
without solving explicitly. We find this fortuitous fact remarkable. To 
achieve this, we first differentiate (2.18) 

la'(x.) = k �9 IB' 
(2.23) 

lb'(x) = 2e-X + k �9 lA' 

Multiplying (2.23) with lA(x),  lB(x)  and (2.18) with lA'(x),  lB'(x),  sub- 
tracting, and lastly integrating, we obtain 

dx [la'(x) lA(x)  - la(x) lA ' (x ) ]  + dx [lb'(x) lB(x)  - lb(x) lB ' (x)]  
- - o 0  o o  

= 2 dx e x [ /B(x)  + l B ' ( x ) ]  (2.24) 
o o  

where the contributions of the kernel K cancel due to the symmetry (2.20). 
After integrating by parts and using (2.22), the integral on the rhs of (2.24) 
is recognized as the required integral in (2.21). On the other hand, the 
integral on the lhs of (2.24) can be evaluated after changing the variable of 
integration x to a and b, 

4 dx e -X lB(x )  
o o  

= ~ (  oo~ da a 1 +aJ ~ 0o) b 1 +bJ 

= 4 L +  - 2 L + ( 1 ) = 4 L  - 2 L  - 1 0  3 (2.25) 

The last integrals are Rogers dilogarithms (Appendix A) and are evaluated 
by using the asymptotics of a(x) and b(x), which can be read off from 
(2.13) after recalling the definitions (2.17) and (2.18), 

a ( - o o ) =  1, a(oo) = (1 + xf5)/2 

b ( -  oo) = 0, b(oo) = (1 + x/5)/2 (2.26) 
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Collecting together (2.21) and (2.25) and using the fact that 

gives the result 

Klfirnper and Pearce 

cosh x = sin 5u, sinh x = i cos 5u (2.27) 

7 7~ 
Eo = - l n  Tl(u ) - 10 6N sin 5u (2.28) 

c = 7/10 (2.29) 

from which we see that 

2.2. The Leading Magnetic Scaling Dimension x--3/40 

For  tricritical hard squares the next-largest eigenvalues, or excitations 
from the ground state, possess O(N/2) zeros on the lines Re (u )=  -n/lO 
and 3n/10, respectively, and a finite number of zeros shifted onto the lines 
R e ( u ) = - n / 5 ,  n/lO, 2n/5, 3n/5 in the complex u plane. These patterns, 
which characterize the various eigenvalues, must satisfy the reflection sym- 
metry about the axis Re(u)=n/lO. Clearly, there are many different 
possible patterns of zeros giving rise to the many possible excitations. As 
input for the calculation of these eigenvalues we will assume certain basic 
properties, such as the qualitative pattern of zeros in the complex u plane, 
as well as the asymptotic behavior of T(u). These assumptions are readily 
justified for small values of N by direct numerical diagonalization of the 
transfer matrices. 

The eigenvalue we calculate in this subsection is characterized by just 
two shifted zeros located exactly at the points u = -n/5 and 2n/5 as shown 
in Fig. 4. In this case we are able to use almost the same analysis as for the 
largest eigenvalue. We work with two strips of analyticity labeled 1 and 2', 
where the latter strip is just a little narrower than strip 2 in (2.1), 

37c 
strip 1: - 1-6 < Re(u) < 1-6 

2~ 4re 
strip 22 - -  < Re(u) < - -  

5 5 

(2.30) 

We then derive the same integral equations (2.10); only the integration 
constants are different due to the different asymptotic behavior of a and b, 

a ( ~ ) =  b ( ~ )  = (1 - xf15)/2 (2.31) 
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Fig. 4. Schematic representation of the zeros in the complex u plane of the leading magnetic 
eigenvalue of tricritical hard squares. The finite-size correction to this eigenvalue yields the 
scaling dimension x = 3/40. 

We fix the branches of the functions In a and In b by setting 

in a (oe )= ln  b(cc) = l n [ ( x / 5 -  1)/2] + z i  (2.32) 

The logarithms of 9.1 and ~3 are simpler to deal with, because od and ~ are 
real and positive for real arguments. The branches for In N and In ~3 are 
fixed by 

In 9.t(~ )=  In ~3(oe)= ln[(3 - x f 5 ) / 2  ] 
(2.33) 

in ~(0)  = 0 

where the last line is consistent with ~ ( 0 ) =  1. 
From (2.32) and (2.33) we determine the constants in the integral 

equation (2.10), 

Dt = D2 = rci (2.34) 

We define limiting functions in the positive scaling regime as in (2.17). The 
integral equations then reduce to 

la(x)  = k �9 IB + 7zi 

lb(x)  = - 2 e - X  + k �9 lA + ~i 
(2.35) 
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We could have considered the negative scaling regime as well, but this is 
still not necessary, since the functions a and b are even. The finite-size 
correction to the eigenvalue in strip 1 is given in terms of lB by 

In Tl(u) = In a(x )  = k ,  In ~3(x) + D 1 

;o =~zi+ d y [ k ( x - y ) + k ( x + y ) ] l n ~ ( y )  

1 dye  " lB(y)  ~- =i + --~ (e ~ + e ~) _ oo (2.36) 

Multiplying the derivative of (2.35) with lA(x), lB(x) and (2.35) with 
lA'(x), lB'(x), subtracting, and lastly integrating, we obtain 

~ ax [la'(x) l A ( x ) -  {la(x) - ~i} lA'(x)] 
d 

O0  

+ dy [lb'(x) lB(x) - {lb(x) - rri} lB'(x)] 
o o  

= 2 dx e X[lB(x) + lB'(x)] (2.37) 
- - o o  

After performing an integration by parts and changing the variable of 
integration x to a and b, we obtain 

4 f L  dxe  XlB(x) 

~ a ( -  oo) a J b( co) 

= - 4 L  + 2L(1) = - ~ 7 (2.38) 

The dilogarithm integrals are calculated using the asymptotics of a(x) and 
b(x), 

a(--  oo) = --1, a(oo) = (1 -- x/5)/2 

b ( - o e ) = 0 ,  b(oo) = (1 - , , f 5 ) / 2  (2.39) 
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Combining (2.36) and (2.38) gives the result 

1 rc 
E =  - l n  Tl(u) ~ - ~ i + ~ - - ~ s i n  5u 

o r  
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(2.40) 

3 2re . 
E -  Eo = - ~ i  + ~ -~ sin 5u (2.41) 

xl = 3/40 (2.42) 

Recalling (1.25), we see that 

with spin zero. 

2.3. The Leading Thermal Scaling Dimension x=1 /5  

The eigenvalues T(u) calculated in this subsection are characterized by 
two shifted zeros u_+ located exactly on the line Re(u)= re/10 as shown in 
Fig. 5. We are particularly interested in next-leading eigenvalues of this 
type and anticipate that they are given by zeros u_+ with imaginary parts 
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Fig. 5. Schematic representation of the zeros in the complex u plane of the leading thermal 
eigenvalue of tricritical hard squares. The finite-size correction to this eigenvalue yields the 
scaling dimension x = 1/5. 
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as large as possible. The location of the zeros u+ is determined by the 
equat ion T(u+ + 32) = - 1  as in (1.17). F r o m  this we see that  u+ have to 
scale with In N, 

i 
u+ = g  (y+  + l n  X ) + ] ~  

(2.43) 
i 

u = - ~ ( y _  + l n N ) +  1% 

We represent  T(u) by explicitly taking into account  the zeros u+ ,  

Tl(U) = tan ~ ( u -  u+)  tan ~(u-  u_ ). ll(U) 
(2.44) 

T2(u ) ~-- z(u)  N 12(U) 

where Ii and l 2 a re  A N Z C  in strips 1 and 2 as in (2.1). F r o m  the functional 
equat ion (1.15) we get exactly the same relations for the l functions as in 
(2.3) and (2.4). We therefore take over  the analysis of  Section 2.1 through 
to Eq. (2.9). Ins tead of (2.10), we now have 

In a(x) = In [ - tanh �89 - y + - it - in N ) tanh  �89 + y _ - it + In N )  ] 

+ k * In ~B + D1 (2.45) 

In b(x)  = In z(ix/5 + 3rc/5) jv + k * in 9.[ + D 2 

where the infinitesimally small e > 0 is in t roduced so that  the integrat ion 
line avoids the two zeros _+ (y_+ + In N).  The branch  of the first logar i thm 
on the rhs is fixed such that  it approaches  _+rci as x--+ •  We next 
evaluate the constants  D1, D2 f rom the asympto t ic  behavior  of a and b, 

a( _ oo ) = b( _+ oo ) = (1 - x ~ ) / 2  (2.46) 

The  branches  of the logar i thms are fixed by requiring 

l na (+_oo)=lnb (+_oo)=ln[ (x /5 -1 ) /2 ]+rc i  (2.47) 

and 

In 9,1( _+ oo ) = I n $ (  + oo ) = In[ (3  - , f 5 ) / 2  ] 
(2.48) 

In $ ( 0 )  = 0 

where the last line is consistent with ~3(0)= 1. Using (2.47) and (2.48) in 
(2.45), we get 

D 1 = 0, D2 = ~i (2.49) 
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We next define limiting functions of a, b, 92, and ~3 in the positive and 
negative scaling regimes by 

a+_(x) := lim 
N ~ o v  

A+(x )  := lim 
N ~ o o  

b +_(x) := lim 
N ~ o o  

B+(x)  := lim 
N ~ o o  

a ( + x + l n N ) ,  

92(+x + ln  N ) =  1 +a+(x) ,  

~ 3 ( + x +  In N), 

~ 3 ( + x + l n  N ) =  1 +b+(x) ,  

/a•  :=in a i ( x )  

lA +_(x) :=In A + (x) 

lb +(x) :=In b +_(x) 

lB+(x) := in B+(x)  

(2.50) 

where the branches are fixed such that 

la+(oo) = Ib+(oo)= l n [ ( x / 5 -  1)/23 _+ ~i 

lA +(oo) = lB+(oo ) = In [-(3 - x/-5)/2 ] (2.51) 

IB• =0 

From (2.45) it then follows immediately that 

la+_(x) = In[- - t a n h  �89 y• T- ie)] + k �9 IB+_ 

l b i ( x ) =  - 2 e - X + k  , lA+_ +_~i 
(2.52) 

Before proceeding we find the finite-size correction to the eigenvalue in 
the physical strip. The product of tan functions in (2.44) contributes a 1IN 
term for In T 1 of the form 

I 1 
In - t a n h  ~ ( x -  y+ - ie - in N)  tanh ~ (x + 

2 
N ( e  x-y+ +e  x-y_)  

y - i e + l n N ) ]  

(2.53) 

Another O(1/N) correction terms is given by 

k �9 In ~3(x) = dy [k(x  - y) In ~ ( y )  + k(x  + y) in ~ (  - y ) ]  

eX e-xf  dye-ylB 
7rN J o~ dy e-YlB + (y) + lrN _~ (2.54) 
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Combining (2.53) and (2.54), we find 

lnTl(U)~-l{ex[-2e-y++lf_ 2 dye-YlB+(y)] 

E 1} +e -x -2e Y- +- dye-YlB (y) (2.55) 
- - o r  

To apply our manipulation of the integral equations, we need to 
express the exponentials in (2.55) in terms of integrals involving the 
functions lA+_. This is achieved by remembering the condition 
T(uz+37z/5)= - 1  given by (1.17) that each zero of T(u) has to satisfy. 
Applying this requirement to u_+ in the scaling limit, we find the equivalent 
conditions 

b+ y+_-T-i-~ = - 1 ,  +_ilb+_ y+-T-i~ = ( 2 k _ + - l ) n  (2.56) 

where k_+ are integers. The lhs of the last equation can be written in terms 
of the functions lA+_ using (2.52) 

+_ill)+ y+_-T-i = 2 e  Y+- ++-~f~_~dYcosh(y+_-T-irc/2-y) rc (2.57) 

Combining the last two equations, we see that 

1 f~ lA+(y) 
2e--~-+ = - 2---~ _~ dYsinh(y-y_+)  § 2k _+ ~ (2.58) 

Inserting this into (2.55) now gives 

In T~(u) 

lA+(y) +l  f~ dy e YlB+(y)] ~- l  {ex[-2k+~+~--~f~ dYsin~y~y+) 

I 1 ~ lA (y) +l_f ~ dye_YlB (y)] } + e x _ 2k_~ + ~._~n f d Y s i n ~ y _ y _ )  rc 
- -  - - o o  

(2.59) 

The integrals appearing in (2.59) can in fact be calculated from (2.52) 
without solving (2.52) explicitly. After multiplying the derivative of (2.52) 
with IA+, lB+ and (2.52) with lA'+_, lB'+_, taking the difference, and 
integrating, we obtain 
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foo dx [la'++_(x) lA+(xl-la+_ (xl lA'+_(x)] 
- -  o 0  

+ dx {lb2(x ) lB• [lb• lB2(x) } 
- - o 0  

= dx{ ln [ - t anh  �89 tanh �89177 
- - c o  

+ 2 f~-oo dx e X[lB• lB'• (2.60) 

Performing an integration by parts using 

1 (2.61) ln[ tanh~(x-  Y+_)l'-sinh(x_ y+) 

and I n [ -  t a n h ( -  oo )] = 0 as well as l n [ -  tanh(oo)] = _+gi, we then obtain 

f 
oo 1A+(x) : + 4  

2 dx s i n h ( x -  y_+ dx e-XIB + (x) 
o o  - - o o  

= dx [la'++_(x) lA+_(x)-la+(x)IA'• lA+_(ov) 
- - o 0  

+ dx {lb2(x) m • 1 7 7  m2(x)} (2.62) 
- - O : 3  

Changing the variable of integration x to a and b on the right side of (2.62) 
gives the a integral 

fco dx [la~(x) IA+_(x)-la• IA'+_ (x)] +_r~i lA+_ (oo ) 
o o  

[a(oo) [ln(1 + a )  ln a ] 
= da +rci lA+(oo) 

~o~ ~ ~ ~ +-aj - - 

=f~l-,/g)/2da[ln(la+a ) l n ( - a ! ]  + f ~ [ l n ( 1 ) a ) l n a ]  
l + a  J i da - -  -[~-a[ 

(2.63) 

For the last step in (2.63) we have specified the correct branches of the 
logarithm and have used the asymptotics after dropping subscripts + ,  

a ( - o o ) =  1, a(oo) = (1 - xf15)/2 

b ( - o o ) = O ,  b(oo) = ( 1 -  xf15)/2 (2.64) 
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A similar calculation for the b integral in (2.62) yields 

f+o dx {lb'+(x) lB+(x)- [Ib+tx)~ ni]lB'+(x)} 
- - o 0  

fb(_~) [ln(lb_+ b ) ln_bT-_~i] 
=~b(co) db l + b  ] 

= f21-'flg)/2 db [ !n(lb+ b) ln(-b)]T+_b] (2.65) 

Inserting (2.63), (2.65) into (2.62), we derive 

f o~ lA + (x) f ~ 
2 ~ dXsin~((x~y+_i+4 ~ dxe-~lB+(x) 

=2[+i "fg-l)/2dal ln(laa)+-~_aj-lna] f l d a l  ln(l+a)-- l+lna~aJ 

( ~ )  ( ~ ) 1 7 n 2  
= - 4 L  - 2 L  = -  10 3 (2.66) 

Recalling (2.59), this yields 

E=-lnT~(u)~_-  A k+ +k + s in5u+(k+-k_) i  cos 5u] 

and 

E-Eo~--~  k+ +k_ + s in5u+(k+-k_) icos5u d 

(2.67) 

(2.68) 

Varying the integers k+, k_ gives rise to a whole tower of eigenvalues of 
the transfer matrix with scaling dimensions x = i/5 + k+ + k_ and spins 
s = k+ - k _  subject only to the physical constraint x > 0. In particular, the 
smallest choice k+ = k = 0 gives the eigenvalue corresponding to the 
leading thermal scaling dimension 

x2 = 1/5 (2.69) 

with zero spin. 
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2.4. The Magnetic Scaling Dimension x=7/8 

In this subsection we calculate eigenvalues T(u) characterized by four 
shifted zeros. Two of them are located at the points u = -7r/5, 27z/5. The 
other two zeros u_+ lie on the line Re(u)=  ~/10, 

bt+ 

U 

i 7~ 
= ~ ( y +  + ln  N)  + 1--0 

i /c 
= --~ (y_  + l n N ) + ~  

(2.70) 

The pattern of zeros is depicted in Fig. 6. We respesent T(u) exactly as in 
(2.44) where Ii and 12 are ANZC in strips 1 and 2' given by (2.30). 
Proceeding as in the last subsection, we again derive the integral equations 
(2.45); however, the constants D1, D2 are different due to the different 
asymptotic behavior of a and b, 

a(___ oo)= b( _+ ~ )  = (1 + .~f5)/2 (2.71) 

We fix the branches of the logarithms by requiring them to have real 
asympt0tics. Using this in (2.45), we get 

D1 = -h i ,  D2 = 0 (2.72) 
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Fig. 6. Schematic representation of the zeros m the complex u plane of the second magnetic 
eigenvalue of tricritical hard squares. The finite-size correction to this eigenvalue yields the 
scaling dimension x = 7/8. 
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We see immediately that the limiting functions of a, b, 9I, and ~3 defined 
in (2.50) satisfy the integral equations 

la+(x)=ln[- tanh �89177  T-is)] + k , IB +_ -T- zi 

lb +_ (x)= -2e-~  + k * lA e 
(2.73) 

where the branches are fixed such that 

la+(az) = lb+(oo) = ln[(1 + x/-5)/2] 

lA ++(oo) = lB+(oe) = ln[(3 + xf5)/2] 

/ B + ( - o e ) = 0  

(2.74) 

We can now carry through the previous analysis, noting that the term - r t  
in (2.57) is missing. Thus we derive the finite-size correction to the eigen- 
value in strip 1, 

lnT~(u)~ - r c i + l  { e x [ - ( 2 k + - l ) r t +  ~-~ f~_ dy 

[ 1 ~  
+e -x - ( 2 k  - 1 ) T r + ~ f _ ~ a y  

+ -  dy e-YlB (y) 
oo  

IA+(y) 
sinh(y - y + ) 

lA (y) 
sinh(y - y_  ) 

(2.75) 

We next calculate the integrals in (2.75). We first multiply the 
derivative of (2.73) with IA+, lB+ and (2.73)with lA'+_, IB'+_. After taking 
the integral of the difference and performing an integration by parts, we 
obtain 

f 
oo  

= dx {la'+(x)lA+(x)- [la+_(x)+zti] lA'+_(x)} +_rci lA+(oo) 
- - o 0  

f 
oO 

+ dx [lb'+_(x) lB+(x)-lb+(x)lB'+_(x)] 
- - o 0  

(2.76) 
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Changing the variable of integration x to a and b onthe right side of 
(2.76), we get for the a integral 

f~ dx {la'+_(x) IA+_ (x)-  EIa+(x) +_rci] lA'+(x)} • rci IA+_(oo) 
oO 

ra(~) Iln(1 a) lna___rci] 
=Ja( ~ d a  a + l + a  j___rti/A+(oo) 

=f2l+'/~)/ida[ln(l+a)a {7_aj+f_ d a l n a ]  o i ln(1 +__ a) 
l + a J  

(2.77) 

where we have dropped the subscripts _+ and used the asymptotics 

a ( -  oo) = -1, a(oo) = (1 + ,,~)/2 
b(-oo)=0, b(ov) = (1 + x/5)/2 (2.78) 

A similar calculation for the b integral in (2.76) yields 

f~ dx [lb'+_ (x) lB + (x)-  lb ++_ (x) lB'++_(x) ] 
- - O : 3  

~b(oo) [!n(1 +b) lnb ] 

=;2'+'/-g)/Zdb[ln(b -+b) l+bjlnb] (2.79, 

Inserting (2.77), (2.79) into (2.76), we derive 

lA+_ (x) ~-4 dxe XIB+_(x) 2 dx sinh(x- y + ) 
- - o 0  - - o 0  

=2 Io 1+ "/g)nda [!n(1 + a ) a  l+aj!na ] _  f 10 da [ln(1 a-a) lnaq 
~ ]-5--~_ ~_ 1 

(2.80) 

Recalling (2.75), this yields 

71) 1 E=-lnTl(u)~-rci+~ k+ +k --d- 6 sin5u+(k+-k )icos5u 

(2.81) 
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and 

2 I( ;) 3 E - E o ~ - - ~  k+ + k _ -  s i n 5 u + ( k + - k  ) i cos5u  (2.82) 

Again varying the integers k + ,  k_  gives rise to a whole tower of eigen- 
values of the transfer matrix.  The choice giving the smallest positive scaling 
dimension is k+ = k = 1. This leads to the magnet ic  scaling dimension 

x3 = 7/8 (2.83) 

with zero spin. 

2.5. The Thermal Scaling Dimension x=615 

The eigenvalues T(u) we calculate in this subsection are also 
characterized by four shifted zeros. Two of these, uz_+, are located on the 
line R e ( u ) =  rt/10 and the other  two zeros, u2_+, are located on the line 
Re(u) = 3rc/5, 

i ~r 
Ul+ =-5 (Yl+ q-ln N ) + i O '  

i rt 
u~ - 5 ( y l _  + l n  N ) + ] ~ ,  

/A2+ 
i 3rt 

= ~  (Y2+ + In N)-t-  ~ -  

i N 37z 
u2 = - ~ ( y 2 _ + l n  ) + ~ -  

(2.84) 

The pat tern  of zeros is shown in Fig. 7. We represent T(u) by explicitly 
taking into account  the zeros ul_+ and u2+, 

Tl(u) -- tan ~ ( u -  ul + ) tan 5 ( u -  u~_ ) .16u) 
(2.85) 

Tz(u ) = z(u) N tan ~(u - u2+ ) tan ~(u - u2_ ). lz(u) 

Here ll and l z are A N Z C  in strips 1 and 2' as given in (2.30). F r o m  the 
functional equat ion (1.15) we obtain  exactly the same relations for the l 
functions as in (2.3) and (2.4). The analysis of Section 2.1 therefore holds 
through to (2.9). Ins tead of (2.10) we now obtain  

In a(x) = In[  - t a n h  �89 - Yl + - i~ - In N )  tanh �89 + y~_ - ie + In N ) ]  

+ k , l n ~ 3 + D  1 

In b(x) = In z(ix/5 + 3TC/5) u 

+ l n [ - t a n h  �89 - Y2+ - i e -  in N )  tanh �89 + Y2- - ie + In N ) ]  

+ k �9 In 9.1 + D 2 (2.86) 
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Fig. 7. Schematic representation of the zeros in the complex u plane of the second thermal 
eigenvalue of tricritical hard squares. The finite-size correction to this eigenvalue yields the 
scaling dimension x = 6/5. 

where the infinitesimally small e > 0 is in t roduced so that  the integrat ion 
line avoids the zeros ---(Yl,2_+ + l n N ) .  The  constants  D I , D  2 can be 
evaluated f rom the asympto t ic  behavior  of a and b, 

a( + oe ) = b( _ oe ) = (1 - x /5) /2  (2.87) 

The branches  of logar i thms are fixed by 

in a ( o e ) =  In b ( o o ) =  l n [ ( x f 5 -  1)/2] + ni 

and 

In 9,1( _ oe ) = In ~3( -t- oe ) = ln[ (3  - , ~ ) / 2  ] 

In ~3(0) = 0 

(2.88) 

(2.89) 

Using (2.88) and (2.89) in (2.86) yields 

D 1 - -  D 2 = 0 (2.90) 

Defining limiting functions of a, b, 9.I, and ~3 as in (2.50) and (2.51), we 
obta in  the integral equat ions  

la+_ (x) = ln[  - t a n h  �89 - Yl_+ -T- ie)] + k �9 lB+_ 

lb _+ (x) = - 2 e  x + In[  - tanh �89 - Y2_+ �9 ie)] + k �9 lA +_ 
(2.91) 
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We now repeat the analysis of the last subsection with the term - 
in (2.57) replaced by +_i ln[- tanh �89177 irr/2)]. In this way we 
derive the finite-size correction to the eigenvalue in strip 1 

1 (  { 1 ~ lA+(y) 
In Tl(u)~- ~ e ~ (1-2k1+)~+~-~I_ ~ dYs inh(y_  yl+ ) 

; + l f 2 d y e - Y l B + ( y ) +  in I - t a n h  ~ Y2+ 

1 ~ IA_(y) 
+e -~ (1-2k~_)~+~-~f  oodYsinh(y-yl_ ) 

[ 1( 
+-~ dye-YlB ( y ) - i l n  - t a n h ~  y~ - Y 2 - +  

oO 

(2.92) 
Applying the usual manipulations to (2.91) now yields 

f ~  [la'+_(x) lA+(x ) - la+(x )  dx IA'+_(x) ] 
- -  o o  

f 
oO 

+ dx [lb'+_(x) lB+_(x)-lb+_(x)lB'+_(x)] 
- - o o  

= f ~  dx {ln[-tanh �89 l A + ( x ) - l n [ - t a n h  �89 lA'+(x)} 
- - o o  

I ~(x - y2)] m'+ (x) } + ~ dx {ln[--tanh �89 1 
c O  

+ 2 1 ~ dx e-X[lB+(x) + IB'+_(x)] (2.93) 
- - o 0  

Performing an integration by parts using l n [ - t a n h ( - o o ) ] = O  and 
ln[- tanh(oo)]  = +zti, we thus obtain 

foo lA+(x) + 4 f ~  dxe-XIB+(x) 
2 -~  dXsinh(x_yl+ ) 

= f ~ dx [la'+_(x) lA + (x) - la +_(x) lA'+_(x) ] +_ ~i lA + ( oo ) 
- - o 0  

+ dx[lb'+_(x) IB+_(x)-lb+(x)lB'+_(x)]+_rcilB+_(oo) 
- - o o  

f ~  IB+(x) (2.94) 
- 2  dX sinh ( x _  y 2 + ) 

o o  
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Changing the variable of integration x to a and b on the right side of 
(2.94), we obtain the a integral 

fo~ [la'+(x)lA+(x)-la+(x) lA+(x)] +_hi lA+(oo) dx 
- - o 0  

= da f + a j  +- ni IA +(~) 

= [in(1 + a) ln(-a)] 
~o a i -~a  J 

fo [ ! n ( 1 ]  a ) l n a ]  
+ da (2.95) 

1 l + a  

In this last step we have dropped the subscripts _ ,  specified the correct 
branches of the logarithms, and used the asymptotics 

a ( -  m) = 1, a(c~) = (1 - x/-5)/2 
(2.96) 

b ( -oo )=0 ,  b(oo) = (1 - V/5)/2 

A similar calculation for the b integral in (2.94) yields 

f~  [lb'+_(x) lB+_(x)-lb+_(x) lB'+_(x)] +_hi lB+_(oo) dx 
- - o o  

~b(~o) Iln(1 +b) !nb_ ] 
='b( ~)db b l +bJ ++-ni lB+-(c~) 

=f~l - , /g) /2dbI!n( l ;b)  l n ( -b ) ]  
l-+-b- ] (2.97) 

Inserting (2.95), (2.97) into (2.94), we derive 
IA + (x) oo 

2 f dXsinh(ff_ yl+) +4 f dxe XlB+_(x) 
- - o 0  _ - - o o  

= 2  fo'/5-1j/2da [ l n ( l f  a) + ~--a- ad -.olnaq/f '  da [ln(la+a) 1- q-ajlna ] 

ca3 IB + (x) 
2 j ~ dx sinh(x~___ Y2 + ) 

;2 = - 4 L  - 2 L  - 2  _ dXsinh(x_ y2+_) 

17 n z 2 f  ~~ dx lB+(x) 
10 3 s inh(x-  Y2+ ) - - o 0  

(2.98) 
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The remaining integral in (2.98) is evaluated analogously to deriving (2.57). 
It is achieved by remembering the condition T(uz- 27U5)= -1 each zero 
of T(u) has to satisfy. Applying this requirement to u2+ in the scaling limit, 
we find 

+_i la+_ Y2++_Ti-~ = ( 2 k 2 + - l ) r t  (2.99) 

where k2+ are integers. The lhs of this last equation can be written in terms 
of the functions IB+ using (2.91), 

1 +ila+_(Y2+_T-iT)=+iln[-tanh~(Y2+_-Yl+_-T-iT) ] 
i oo lB+ (x) (2.100) 

+-27~ I_oo dXcosh(y2+_+ i~lZ- x) 

Combining the last two equations yields 

lB+_ (x )  - ~ i  In I - tanh  1 ~(Y2+-Yl+ T 2 ) ]  + (2k2+ - 1)~ 
sinh(x -Y2_+ ) - - - 

(2.1Ol) 

Inserting this into (2.92), (2.98), using 

iln - tanh yl+-y2+T- + i l n  - t anh~  Y2+-Yl+-T- = Tzc 

(2.102) 

which follows from our choice of branches, we derive the results 

103  1 E = - l n T l ( u  )_-~ k+-i-k -120/s in5u+(k+-k  )icos5u 

(2.1o3) 

and 

E-Eo~-- ~ k+ +k - s i n 5 u + ( k + - k  )icos5u (2.104) 

Here k+ :=kl+ -bk2+ and k :-=kl_ +k2_ are integers giving rise to a 
tower of eigenvalues of the transfer matrix. The smallest allowed choice 
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k+ = k _  = 1 gives the eigenvalue corresponding to the leading thermal 
scaling field with scaling dimension 

x 4 = 6/5 (2.105) 

and zero spin. 

3. CRIT ICAL HARD HEXAGONS 

The critical hard hexagon model is described by the same transfer 
matrix as tricritical hard squares. The physical regime, however, given by 
- 7~/5 ~< u ~< 0 is different. So, although the eigenvalues of the two models 
are the same, the eigenvalues appear in a different order and different 
eigenvalues dominate. In particular, the largest eigenvalue for critical hard 
hexagons exhibits different analyticity properties and analyticity domains 
from those of tricritical hard squares. Nevertheless, the methods of Section 2 
can be applied with suitable modifications. We first treat the largest eigen- 
value to obtain the central charge and then generalize our arguments to the 
next-largest eigenvalues in subsequent subsections. Throughout this section 
we will assume that N = 0 (mod 3). 

3.1. The Central  Charge c = 4 / 5  

The eigenvalues of critical hard hexagons are characterized by their 
patterns of zeros in the complex u plane. Using periodicity, we restrict our 
attention in this case to the strip -3~ /5  < Re(u)~< 2~/5. As for tricritical 
hard squares, zeros are found to occur on the lines Re(u)= -27~/5, -~ /5 ,  
-~/10,  ~/10, 3r(10, 2~/5. In this case, however, the zeros of the largest 
eigenvalues become dense in the thermodynamic limit on the lines Re(u)= 
-21r/5, ~/10. A typical pattern of zeros for the largest eigenvalue T(u) is 
shown in Fig. 8. We therefore distinguish two strips where the largest eigen- 
value T(u) is analytic and nonzero, 

2zr 
strip 1' - -~- < Re(u) < iO 

(3.1) 
7~ 

Re(u) < ? strip 2: 1-0 < 

Again we represent T(u) in these strips by the known bulk behavior 
multiplied by some correction functions l(u), 

~sin(5u/3- ~/3)] 
T,(u)=zl(u)N l,(u), z , (u )=L~T~13 l j  

(3.2) 
( sin(5u/3) 7 

T2(u) = z2(u) N 12(u), z2(u) = [_sin(5u/3 - 2~/3)/ 
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Fig. 8. Schematic representation of the zeros in the complex u plane of the largest eigenvalue 
of critical hard hexagons. The finite-size correction to this eigenvalue yields the central charge 
c = 4/5. 

Inserting (3.2) into the functional relation (1.15), we obtain 

ll(u ) ll(U + -~)/12(u "Jr- 3,~) = p 2 ( u )  

/2(u) 12(u + ,~ )/ll(U - -  2 2 )  = pt(u) 
(3.3) 

where the functions on the rhs are defined by 

p l ( u )  := 1 + 1 / T l ( U -  22) 

p2(u) := 1 + 1/T2(u + 32) 
(3.4) 

Since l~(u), /2(u), p~(u), and p 2 ( u )  a re  ANZC in their strips of 
analyticity, the derivatives of In l t(u),  etc., can be Fourier-transformed. 
Adopting the notation of Section 2 for Fourier transforms, it follows from 
(3.3) that 

(1 + e ;'k) Lt(k) - e3;kL2(k) = P2(k)  
(3.5) 

(1 + e ;'k) L2(k )  -- e - 2 ; k L t ( k )  = P l ( k )  

These linear equations are readily solved for L l ( k )  and L2(k), 

e 3"~k 1 + e ;~k 

L l ( k )  - 1 + e ;~g + e 2;~k P l ( k )  d- 1 + e ;'k + e 2;~ P2(k) 

1 + e ;~k e -2; 'k  

L e ( k )  - 1 + e ;~k + e 2)~k P l ( k )  q- 1 + e ;k  + e 2~: P 2 ( k )  

(3.6) 
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Transforming back, we find a double integral. Evaluating the k integral 
using 

f o o  e k" 10 s in(5u/3+2n/3)  0 < Re(u) < ~  
- o~ dk 1 + e k~/5 + e 2 k ~ / 5  - -  ~ sin 5u ' 

we obtain 

(3.7) 

1 10  f s i n [ ~ ( u - v ) + 2 n / 3 ]  
[ln ll(u)] '  - 2hi x/~ R~(v)=,~/4 dv [-In pl(v)] '  sin 5(u -- v) 

1 10 sinE~(u -- v) + n/3] C + j dv l-In p2(v)]' (3.8) 
Re(;) = n/4 sin 5(u - v) 

1 10 dv [In pl(v)] '  sinE~(u- v) + n/3] 
[In/2(u)] '  2ni~/3fRe(v)==/4 sin 5(u-- v) 

fR sin [~(u -- v)] 1 ~10 dv [lnp2(v)] '  _ (3.9) + 
4 3  e(v) = n/4 Sln 5(b/ - -  V) 

These equations are valid in the strips - n / 4 < R e ( u ) <  -n /20  and n /4<  
Re(u) < 9n/20, respectively. 

To make further progress, we restrict the T and p functions to 
appropriate straight lines and define the following functions of a real 
variable x: 

a(x) := l /T,  (3_~ 3~) (3]_~ 4 )  X - -  , 9s X ) : = p l  X +  = l + a ( X )  

(3.10) (3; 4) b(x) := 1/r2 ~-~ x + -26 ' f3(x) := P2 io  x - = 1 + b(x) 

After integrating (3.9) with respect to u and introducing the functions 
defined in (3.10), we are led to the integral equations 

In a(x) = - I n  zl(3ix/lO - 3zt/20) x - s �9 In ~I - c �9 In ~3 + D 1 
(3.11) 

in b(x) = - I n  z2(3ix/lO + 7n/20) N - c �9 In 9.I - s �9 In ~3 + D2 

where the functions s and c of the kernel are given by 

s(y)  , f i s i n h  �89 Ocosh �89 (3.12) 
2n sinh ~y ' c(y)  = Ancosh 3y 

and the branches of In zl and In z2 are fixed by requiring that they vanish 
as x--, oo. 

822/64/1-2-4 
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We next evaluate the constants DI and D 2 from the asymptotic 
behavior of T(u) for large (positive or negative) imaginary parts of u, 

lim T(u)-  1 + v -  -/-~ (3.13) 
Ira(u) ~ •  2 

Using (3.10), we see that 

a(oo) = b ( o o ) =  1)/2 (3.14) 

From this and the integrals 

for  foo 2 
dy s(y) = �89 dy c(y)= 5 (3.15) 

- - o : 3  ~ 3  

we deduce that the constants in the integral equations (3.11) vanish, 

D I = D 2 = 0  (3.16) 

Now we observe that the functions z 1 and z 2 have the scaling behavior 

lim Z 1 ( + 3i 3rc]N=exp(,,~e_X) 
u ~ oo -- 1-0 (X + In N) - 20]  

lira z 2 ( + 3i 7g'~ N u~oo - ~(x+lnN)+-2-O)  = e x p ( x f 3 e - X )  

(3.17) 

Assuming that a, b, 9.1, and ~3 scale accordingly, we define the limiting 
functions 

a(x):= lira a ( x + l n N ) ,  
N~oo 

A(x) := lira 9.I(x + in N) = 1 + a(x), 
N~oo 

b(x) := lira b(x + In N), 
N ~  

B(x):= lira ~ ( x + l n N ) = l + b ( x ) ,  
N~oo 

la(x) := In a(x) 

lA(x) := In A(x) 

lb(x) := In b(x) 

lB(x) := In B(x) 

(3.18) 

In the case of the largest eigenvalue, the limiting functions in the negative 
scaling regime are simply related to the above ones because a ( - x ) =  b(x). 
For the next-largest eigenvalues, however, this symmetry relation is not 
valid in general and so in the next subsections we treat the two scaling 
regimes separately. 
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From (3.11) we immediately obtain integral equations in the positive 
scaling regime, 

la(x) = - x / 3  e -X  - s * lA - c *lB 
(3.19) 

lb(x) = - x f 3  e -~ - c * IA - s * IB 

As for tricritical hard squares, the matrix K of the kernel 

is symmetric, 

,:=(: ;) ,,20, 

K r ( y  - x)  = K(x  - y )  (3.21) 

This is essential for the last step in the calculation of the central charge c. 
We next consider the largest eigenvalue in the physical strip Tl(u). 

Using the variable u = 3 i x / l O - 3 r c / 2 0 ,  applying (3.10) and (3.11), and 
scaling the integration variable, we derive 

In TI(U ) = - l n  ct(x) = Nln  Zl(U) + s * In 9.1 + c * In ~3 

fo = N l n z l ( u ) +  dy [ s ( x - y ) + c ( x +  y)]  In 9.I(y) 

+ dy [c(x  - y )  + s(x  + y)]  In ~3(y) 

~ - N l n z l ( u ) +  ( eX+e  x) d y e  Y [ l A ( y ) + I B ( y ) ]  (3.22) 
- - o 0  

The integral in (3.22) can be calculated from (3.19) without explicitly 
solving this set of integral equations. For this purpose we first take the 
derivative of (3.19), 

l a ' ( x ) = x f 3  e X - s  , I A ' - c  , lB' 
(3.23) 

l b ' ( x )=  xfl3 e - X - c  , l A ' -  s , lB ' 

Multiplying (3.23) with lA(x )  and lB(x)  and (3.19) with lA ' (x )  and lB'(x),  
subtracting, and integrating, we obtain 

f ~ dx [la '(x)  lA(x )  - la(x) lA ' (x )  + lb'(x) lB(x)  - lb(x) IB'(x) ] 
- - e r a  

= xfl 5 foo dx e - X [ l A ( x )  + lA ' (x )  + lB(x)  + lB' (x)]  (3.24) 
- - o 0  
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where the contributions of the kernel K cancel due to the symmetry (3.21). 
Integrating the rhs by parts and changing the variable of integration x to 
a and b on the lhs gives 

2 ~  f0o dx e ~[lA(x)+ lB(x)] 
- - 0 o  

- - 0 O  

r"(0o) [ l n ( l + a )  ln_a 1 [b(0o) 
= ~a(_0o) da a 1 + aJ  +~b(_0o) 

dx [la'(x) lA(x) - Ia(x) lA'(x) + lb'(x) lB(x) - lb(x) lB'(x) ] 

db[ln(1; b) l + b J  ]nbl 

(3.25) 

The Rogers dilogarithms are calculated using the asymptotics of a(x) and 
b(x), which can be read off from (3.14) after recalling the definitions (3.18) 
and (3.19), 

a ( - ~ ) = 0 ,  a(oo) = ( , ~ -  1)/2 
(3.26) 

b ( - ~ ) = 0 ,  b ( ~ )  = (x/-5-  1)/2 

Collecting the results (3.22) and (3.25) together and observing the relations 

10 10 
cosh x = - s in  -~- u, sinh x = - i  cos -~- u (3.27) 

we obtain 

4 7c 10 
Eo = - l n  Tl(u) = - N  In Zl(U ) + ~ ~ sin -~- u (3.28) 

from which we see that 

c = 4/5 (3.29) 

3.2. The Leading Magnetic Scaling Dimension x = 2 / 1 5  

The next-largest eigenvalues for critical hard hexagons are described 
by patterns of zeros with 0(2N/3) zeros on the line Re(u)=  ~/10, O(N/3) 
zeros on the line Re(u)=  -2rc/5, and a finite number of zeros shifted to 
other lines in the complex plane. The only a priori requirement these pat- 
terns have to meet is the reflection symmetry about the axis Re(u)=  7t/10. 
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The patterns for leading excitations turn out to be more diverse than 
for tricritical hard squares. As input to our calculations we will again 
assume some basic properties of the next-largest eigenvalues, such as the 
qualitative pattern of zeros in the complex plane and the corresponding 
asymptotic behavior of T(u) given by the golden numbers. The two next- 
largest eigenvalues T(u) we treat in this subsection are complex conjugates 
with zeros distributed asymmetrically on the lines Re(u)= re/10 and -2rc/5 
as shown schematically in Fig. 9. These eigenvalues have the same 
analyticity strips as the largest eigenvalue, but different asymptotics given 
by 

1-,f  
lim T(u) - (3.30) 

Im(u) ~ _+oo 2 

The entire analysis of the last subsection can therefore be repeated to 
derive the integral equations (3.11), where the constants Dj and D 2 need 
to be evaluated with the different asymptotic behavior 

a(oo) = b(oo)= - (1  + x/5)/2 (3.31) 

The branches of the functions In a and In b can be specified by requiring 

l na (oe )=ln[ ( l+v /5 ) /2] -~ i ,  in b(oe)= ln[(1 + x/-5)/2] + rti (3.32) 

i 
i 
i 
i 

t ! t 
-3rc/5 O -r~/5 

t 
i 
i 
i 

+ 

Strip 1 

I I 

g / 5  2 ~ / 5  

tp Strip 2 

Fig. 9. Schematic representation of the zeros in the complex u plane of the leading magnetic 
eigenvalue of critical hard hexagons. The finite-size correction to this eigenvalue yields the 
result x = 2/15. 
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We next pick one of the complex conjugate eigenvalues and check that the 
branches of the functions In ~1 and in ~3 can be fixed such that 

In 9.1( _+ oo) = in [(,~f5 - 1)/23 - rci, 

lim In 9.I(0) = 0, 
N--* oo 

In ~3( _+ oo) = In [ ( , , / -5  - 1 ) / 2 ]  + ~ i  

lira In ~3(0)=0 (3.33) 
N ~ o o  

where the last line is consistent with limN~ ~ 7 [ ( 0 ) = l i m N ~  ~3(0)= 1. 
Using (3.11), (3.32), and (3.33) we therefore deduce that 

D~ = --2~i/3,  D 2 = 2toil3 (3.34) 

We next define limiting functions of a, b, ~1, and ~3, in the positive and 
negative scaling regimes, 

a+_(x) := lim a (_+x•  l a •  :=lna_+(x) 
N ~ o o  

A_+(x):= lira 9 . 1 ( + x + l n N ) = l + a m ( X ) ,  l A + _ ( x ) : = l n A •  
N ~ o o  

b e ( x  ) : =  lim b ( + x + l n N ) ,  l b •  
N ~ o o  

B e ( x ) : =  lim ~ 3 ( + _ x + _ l n N ) = l + b + _ ( x ) ,  I B •  
N ~ o o  

(3.35) 

where the branches are fixed such that 

Ia _+ (oo) = ln[(1 + .,/5)/2 ] - ~i, 

lA • (oo) = In [ ( , ,~  - 1)/2] - ~i, 

/ A •  oo) =0,  

l b •  = ln[( t  + xf5)/2 ] + ~i 

lB•  (oo) = In [(xf5 - 1)/2] + ~i 

/ B •  (3.36) 

From (3.11) we then immediately obtain the integral equations in the 
scaling regimes 

la + (x)  = - x / 3  e X - s *  lA • - c , lB • - 2~i/3 
(3.37) 

lb • (x)  = - x f  3 e -  X _ c * lA + - s * lB • + 2~zi/3 

We next turn to the eigenvalue in the physical strip T~(u). Using the 
variable u = 3 i x / 1 0 - 3 n / 2 0 ,  applying (3.10) and (3.11) and scaling the 
integration variable, we derive 



Analytic Calculation of Scaling Dimensions 53 

In Tl(u) = - I n  a(x) = Nln  zdu) + s * In 9.1 + c * In ~3 + - -  
2~zi 

3 

27ri C ~ 
= N In z~(u) + ~ -  + Jo dy [s(x - y) In g l ( y )  + s(x + y) In 9.1( - y ) ]  

+ dy [c(x - y) In ~3(y) + c(x + y) in ~3( - y ) ]  

~ - N l n z l ( u ) + - ~ - +  e x dye  Y[ lA+(y)+lB+(y)]  
- - o 0  

3 oo 
+ ~--~3e-X( dye  Y [ I A _ ( y ) + I B _ ( y ) ]  

2rcN :_ oo (3.38) 

The integrals itl (3.38) can be calculated from (3.37). In order to simplify 
the notation, we drop the subscripts _+. After multiplying the derivative of 
(3.37) with lA(x) and lB(x) and (3.37) with lA' and lB' and lastly integrating 
the difference, we obtain 

f oo dx [la'(x) IA(x) - la(x) IA'(x) + lb'(x) lB(x) - Ib(x) lB'(x) ] 
- - o 0  

27ri 
- -  - -  [ / A ( o o )  - -  lB(oo )] 

3 

f 
o o  

= x ~  dx e X[lA(x) + lA'(x) + lB(x) + lB'(x)] 
- - o 0  

(3.39) 

Integrating the rhs by parts gives 

2x/3 I2~  dx e-X[lA(x)  + lB(x) ] 

47C2 fo~ 
-- 3 ~- dx[ la ' ( x ) lA(x ) - la (x ) lA ' (x )+lb ' (x ) lB(x ) - lb (x ) lB ' (x ) ]  

- - o o  

(3.40) 

Changing the variable of integration x to a and b on the rhs then yields 

foo dx [ la'(x) lA(x) - la(x) lA'(x) + lb'(x) lB(x) - Ib(x) lB'(x) 3 
- - o 0  

='a( oo)da a l + a 3  ~b( oo) b l + b 3  

(3.41) 
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where the terminals can be read off from (3.36) and (3.31) after recalling 
the definitions (3.35), 

a ( - o o ) = 0 ,  a(oo) = - (1  + w/5)/2 

b ( -  oo) = 0, b(oo) = - ( 1  + x/~)/2 (3.42) 

The last integrals can be calculated using the branches specified in (3.36). 
Appealing to Cauchy's theorem, we also take the a and b integration paths 
along the real axis from 0 to - ( 1  + x/-5)/2 surrounding the point - t  in the 
lower and upper half-planes, respectively, as shown in Fig. 10. Thus, we 
trace back the integrals in (3.41) to integrals of real functions, 

f~(oo,_ ) da ln(1 + a ) a  fo 1 d y - - . + l n ( 1  + y ) y  e--lf - (1 + x/'~)/2 dy l n [ - -  (1 + y ) ]  -- r C i y  

da(oota(~176 da-f--~a=.olna ~-- (1 + X~)/2 da ln(--a)--rcil +a 

fo 
-(l +'/-~)/2 , l n ( - - y ) x / - 5 - -  1 

= ay l + y  - z t2 -Tr i ln  2 

[b(~) db--ln(l+b) fo l d y _ + l n ( l + y )  f - o + . / ~ ) / 2 d y l n [ _ ( l + y ) ] + r c i  
"b(--~) b y -~ y 

f~((oo)_ )db_f~=f olnb (~+ ,/~)/2 dbln(_b)+Zcil+b 

fo-(l+~)/~ l n ( - y )  7z2 + rci in x / -5-  1 (3.43) 
= dy 1+----7 2 

-(1+45)/2 b 
I _ /'7 N, 

-2 -1 0 a 
i [ 
1 2 

Fig. 10. The lower and upper paths from 0 to --(1 + x/5)/2 are the paths in the complex a 
and b planes respectively needed to evaluate the integrals leading to the scaling dimension 
x = 2/15. A semicircular path is taken around the pole at -1. 
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Collecting (3.41) and (3.43) together gives 

f oo dx [ la'(x) lA(x) - la(x) lA'(x) + lb'(x) lB(x) - lb(x) lB'(x) ] 
- -  (Y,3 

1 F In y + - + .fg)/2 = 2 f o  d Y [ _ l _ y  I n ( ;  y ! ] + 2 s  d y I l n , ~ l  , 

= - 4 L ( 1  ) - 4 L  + 2r~ 2 = ~ rc 

_l J l+ y -  1_] 292 

(3.44) 

where we have evaluated the Rogers dilogarithms. Using (3.38) and (3.40), 
we thus obtain the result 

2~i 4 7r 10 
E =  - l n  T~(u) = -N lnz l (u )  3 5 6--N sin-3 u (3.45) 

and 
21ti 2 27r 10 

E -  Eo = 3 15 N sin -~- u (3.46) 

Comparing with (1.25), we see that 

Xl = x2 = 2/15 
with zero spin. 

(3.47) 

3.3. The Leading Thermal  Scaling Dimension x = 4 / 5  

The eigenvalues T(u) we consider in this subsection are characterized 
by four shifted zeros. Two of them, ua _+, are located close to the line Re(u)= 
-~/5.  The other two zeros, u2_+, are located close to the line Re(u)=  2r~/5, 

3i 2n 3i 47t 
u~+=i-d(Yl+ +lnN)  10' u2+=-~(y2+ +lnU)+-(~ 

3i 2re 3i 4re 
u ~ _ -  10 (y~- + I N N )  I0'  u2 - 1 0 ( Y 2 - + l n N ) + I - O  

(3.48) 

Here Yl+, Y2+ and y l _ ,  Y2- are complex conjugate pairs as shown in 
Fig. 11. All four of these zeros deviate off the lines Re(u)=  -7z/5, 2~/5 
toward the imaginary axis. We represent T(u) in strips 1 and 2 by explicitly 
taking into account the zeros u,+ and u2+, 

Tl (b / )  = Z l ( b l ) N f ( b l ) .  / I (U)  

T 2 ( u  ) = z2(b/) N g(/,/) " 12(b/) 
(3.49) 



56 Kli]mper and Pearce 

Ul+ 

I o I 
3~/5 -~/5 

t l  1 - 

i 
i 
i 

I 
I 

O 

~/5 
i 

i 
i 

U2+ 

k 

2~/5 

LI 2 _  

Fig. 11. Schematic representation of the zeros in the complex u plane of the leading thermal 
eigenvalue of critical hard hexagons. The finite-size correction to this eigenvalue yields the 
scaling dimension x = 4/5. 

where 

f ( u )  : = z l ( u - u l +  + ~ / 5 ) z l ( u - u l _  -~- TE/5)ZI(U--U2+)ZI(bl--U2 ) 
(3.50) 

g(u) := 1/f(u-~/5) 

By inspection we see that  l~ and 12 are A N Z C  in strips somewhat  nar rower  
than strips 1 and 2 given by (3.1). Because of the functional relation 

f ( u )  f ( u  + g/5) f ( u  + 2~/5) = 1 (3.51) 

we obtain  the same equat ions as in (3.3) and (3.4). Hence we m a y  carry 
through the analysis up to (3.10) as before. Ins tead of (3.11) we now get 

In a(x)  = - l n  z~(3ix/lO - 3~/20) u - / f ( x )  - s �9 In ~[ - c * In ~3 + D1 
(3.52) 

In b(x)  = - l n  z2(3ix/lO + 7~/20) N -  lg(x) - c * In ~A - s �9 In ~ + D2 

where /f  and lg are defined by 

/ f (x)  := In f ( 3 i x / l O  - 3~/20), lg(x) := In g(3ix/ lO + 7n/20) (3.53) 

and the branches  are specified by requiring 

8 ~  8 ~  
/ f ( ~ )  = - -~  i, / g ( ~ )  = --~--  i (3.54) 
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The eigenvalues under consideration have asymptotics given by 

lim T( u ) 1 -  ~ 
I m ( u )  ~ + c o  2 

(3.55) 

or, in terms of the functions a and b, 

a(oo) = b(oo)=  - (1  + xf5)/2 (3.56) 

The branches of the functions in a and in b can be specified by requiring 

In a(oo) = In [(1 + xf5)/2] - rci, in b(ov) = ln[(1 + xf15)/2] + 7ri (3.57) 

The branches of the functions In 91 and In ~ can then be fixed such that 

In 9.I( _+ oo) = in [ (x/5  - 1)/2 ] -T- ~i, In ~3( _+ oo) = ln[ - (xf5-  1)/2] ___ 7ri 

lim In 96(0) =0,  lira In ~3(0) = 0  (3.58) 
N ~ c ~  N ~ o o  

From (3.52), (3.57), and (3.58) we therefore deduce that 

D1 = 2rci, D 2 = -27ri (3.59) 

We next define limiting functions of a, b, 9X, and ~ in the positive and 
negative scaling regimes as in (3.35), where the branches are fixed such that 

la+(oo)=ln[(l+x/5)/Z]T-Tzi, lb+(oo)=ln[(l+x/-5)/Z]++_~zi 

lA+_(oo)=ln[(~-l)/2]-T-~i, IB+(oo)=ln[(x/-5--1)/2]+_Tzi 

/ A + ( -  oo) =0,  / B + ( - o o ) = 0  (3.60) 

From (3.52) we similarly obtain the integral equations 

la +_(x) = - x f  3 e X- lf +_(x)- s �9 lA + - c * IB +_ + 2rci/3 

lb+_(x)= -x / -3e-X-lg+_(x)-c .  lA+_ - s  * lB+ T- 2rti/3 
(3.61) 

where /f+ and lg+ are the scaling limits o f / f  and Ig apart from trivial 
constants, 

lf+(x)= _+ln [z l  (1~ (x 4) ,-+;o)] - - Y l + ) i -  Zl ~(x--y2+_ 

7~ 3i 
lg +_(x)= -T-ln [zl (~o (X-  yl+ )~ ~-d) zl ( ~  ( x -  y2+_)-T-4) ] 

(3.62) 
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and the branches are specified by requiring 

4re 4re 
/f_+(oo) = -t---~- i, lg_+(oo) = -T-~-i (3.63) 

At this point we turn to the eigenvalue in the physical strip. The func- 
tion /f in (3.52) contributes a 1/N term for In T~, 

e x e -x  --21r1/3 (e + e2rCi/3 y2 ) [ f (x)~_-~ ~ ( e  2rci/3-yl+ ~-e 21zi/B-y2+)~___~_ ~ -yl 

(3.64) 

Another O(1/N) correction term is given by the integrals in (3.52). 
Collecting these correction terms together yields 

In Tl(u) = - In a(x) = Nln  z~(u) + lf(x) + s �9 In ~1 + c * in ~3 - 2rti 

~- Nln  zl(u) - 2rci 
eX N ~  oo 

+'~ {-~ f_~ dye-YElA+(y)+ ,B+(y)] 

+ , /3(e 2~'-y'+ + e 2~,~-~2+)t 

+-~- f_ dye-Y[lA_(y)+lB_(y)] 

,,fi(e-2~,/3 .~l- + e~,/~ ,~ ) t  (3.65) + 
) 

To apply our manipulation of the integral equations we have to express the 
exponentials in (3.65) by integrals involving the functions lA+ and I, t1+. 
This is achieved by remembering the condition T(uz + 3z/5)= -1  that each 
zero of T(u) must satisfy. Applying this requirement in the scaling limit to 
ul+, we obtain 

( 6 )  b_+ Yl+ -T-i = -1,  ilb+_ yl+_-T-i-~ =___(2k_+-l)rc (3.66) 

where k_+ are integers. Similarly, we find 

( 6 )  ( 6 )  a+_ y2+_+_i =--1 ,  ila+_ y2+_+_i =-T- (2k+- l ) rc  (3.67) 
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with the same integers k+_ due to the crossing symmetry la(~i=lb(z).  
Inserting this into (3.61) gives 

~/-5( e • 2rci/3 --Yl++_ .~_ e -T- 2 ~ i / 3  - -  Y 2 +  ) 

= - -  (2k_+ - 1 ) 2~z + 4rt/3 

-T- i ( c * lA + + s , lB +_ )( y l + - T- ni/6 ) +- i ( s * lA +_ + c * lB + )( y 2 + +_nil6) 

+ i[(l f+ (Y2+ ~ hi~6) -  lg+ (Yl + -T- ng6) ]  (3.68) 

where on close inspection the last line is equal to - 4 n .  Hence 

f oo dy e-Y [lA + (y) + lB + ( y ) ]  + ~v/3(e ~ 2=,/3 -.,,• + e v2~,73 -y2• ) 
2re _~  - - 

=~-~3 f ~ d y e - Y [ l A + ( y ) + l B + ( y ) ] - ( Z k +  + l)2~ + ~  
2rt _~  - - - 

T i ( c * I A +  + s *  lB• - -T-6) 

+_i(s*lA+ + c * I B + ) ( y 2 +  +7z6) (3.69) 

We next manipulate  (3.61) to obtain 

f ~  dx [la'+_(x) l A + ( x ) - l a e ( X  ) lA'+_(x) 
- -  oO 

+ tb'~ (x) IB• (x) - lb + (x) m'+ (x)] 

+-~- co ax [ l f  +_ (x) 1A _+ (x) - (lf  + (x) -T- 2~i/3) IA'+_ (x)]  

+ foo_~ dx [lg'+(x)_ lB+(x)  - (lg+(x) _+ 2rti/3) lB'+_(x)] 

= x f S f  ~ d x e - X [ l A + ( x ) + l A ' + ( x ) + l B + ( x ) + l B ' + _ ( x ) ]  (3.70) 
- - r  

Integrating by parts and using 

lf'+ (x) ~- +2~i[c(x  - Yl + +- 7ti/6) - s(x - Y2• T- rti/6)] 
(3.71) 

lg'+(x) = +_2=i[s(x - Y l +  q- 7zi/6) - c(x - 72• --T- rti/6)] 
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we find 

2re _ 0o dy e-Y[IA +_ (y) + IB__ (y)] 

1 dx [la'+(x) lA+(x)-la+(x)lA'+(x) 
4 7 c  _ ~ - - - 

+ tb'+_ (x)  18 + (x)  - tb +_ (x)  tB'+_ ( x ) ]  

-~+_i(c*lA+ +s*lB+_) yl+_-T- 

T-i(s*IA+_+c*IB+)(y2+_ + 6 )  (3.72) 

where the last integral was already encountered and calculated in the 
previous subsection. Inserting (3.69) and (3.72) into (3.65), this simplifies 
to give 
In rl(u) "~ Nln Zl(U)- 2~zi 

+-~ -~ dx [la'+(x) lA+(x)-la+(x)lA+(x) 

+ lb+(x) lB+(x) - lb+(x) lB+(x)] - (2k+ + 1)2~z + 7t} 

e X { 1  
+-N- -~ f dx [la~(x) lA_(x)- la_(x)  lA'_(x) 

- -  o f ~  

+ lb'_(x) l B ( x )  - lb_(x) B'_(x)] - ( 2 k  + 1)27t + re} 

e X ( 11 
= Nln z l (u)-  2~i +-~ - -i5 

c0sh x ( =Nlnz l (u) -2~ i+~  - - -  

sinh x 
+ ~ (2k_ - 2k + ) 27t 

11 - 4 ~ k  ) 

11 - 2 k +  - 2k_'] 2rt 
15 / 

(3.73) 

where the result (3.44) for the integral was used in the last step and k+ and 
k_ are integers. We thus obtain the results 

/11 2k )2~ ~ 2~ 10 E~_-Nlnz~(u)-~-~+ ++2k  ~ s i n  u - i ( 2 k + - 2 k  )~-cos-~--u 

(3.74) 
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and  

27z . 10 
+ 2k + + 2k = ~ -  sin ~ -  u - i(2k + - 

So compar i son  with (1.25) gives 

2~r 10 
2k_  ) ~ -  cos -~- u 

(3.75) 

X 3 = 4 / 5  ( 3 . 7 6 )  

with zero spin. Not ice  tha t  Eq. (3.75) gives a semi tower  on x3 and  not  the 
comple te  tower.  

3.4. The  Scal ing D imens ion  x = 1 7 / 1 5  

The eigenvalues T(u) cons idered  in this subsect ion are charac te r ized  
by two shifted" zeros Ul and  u2 which are loca ted  close to the lines 
Re(u) = -rc/ lO and R e ( u ) =  3n/10. The co r respond ing  exci ta t ions  turn  out  
to be long to the tower  above  x 1 = x2 = 2/15. Here  we assume that  u I and  
u2 lie in the upper  half-plane,  

3i n 3i 3n 
Ul = ~ (Yl -[- In N )  10' u2 = - ~  (Y2 + In N )  + i 0  (3.77) 

where Yl, Y2 are complex  conjugates  as shown in Fig. 12. The two zeros 
deviate  off the lines R e ( u ) =  -rc/ lO,  3~z/10 away  from the imag ina ry  axis. 

1 a 
a 

I I I 
-3~/5 ~ -~/5 

u I 

§ 
i 
h 

o 
n 
n 

e 
,k i 

rt/5 
§ 
u 

o 
n 
1 
0 

U 2 

I 
27z/5 

Fig. 12. Schematic representation of the zeros in the complex u plane of an eigenvalue in the 
same tower as the leading magnetic eigenvalue of critical hard hexagons. The finite-size 
correction to this eigenvalue yields the result x = 17/15. 
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Eigenvalues corresponding to ul and u2 in the lower half-plane can be 
obtained by complex conjugation. We represent T(u)  in strips 1 and 2 by 
explicitly taking into account  the zeros u~ and u2, 

Tl (u )  = Zl(U) ~v f ( u ) .  l l (u ) 
(3.78) 

7"2(u) -- z2(u) ~ g ( u ) . / 2 ( ~ )  

where 

f ( u )  := 1 / [ z l ( u  - ul - ~/5) z l ( u -  u2 + 2~/5)]  

g(u)  := 1 / f ( u -  ~/5) 
(3.79) 

By inspection we see that 11 and 12 are ANZC in strips somewhat  narrower  
than strips 1 and 2 given by (3.1). Proceeding as in the last subsection, we 
derive the integral equations 

in n(x )  = - l n  z l (3 ix / lO  - 3rc/20) u - l f ( x )  - s �9 In 9.1 - c * In ~3 + D1 

In b(x) = - I n  Zz(3ix/lO + 77~/20) u - Ig(x)  - c * In 9.I - s * In ~3 + D2 

(3.80) 
w h e r e / f  and lg are defined by 

I f ( x )  := In f ( 3 i x / l O  - 3~/20), Ig(x)  := in g(3 ix / lO + 7g/20) (3.81) 

and the branches are specified by requiring 

4~i 4~i 
l f  ( ~ ) = - ~-- ,  lg( ~ ) =--~- (3.82) 

The eigenvalues at hand have asymptotics given by 

lim T(u)  = 1 - x /5  (3.83) 
I r a ( u )  ~ •  2 

or, in terms of the functions a and b, 

a ( ~  ) = b ( ~  ) = - ( 1  + x/-5)/2 (3.84) 

The branches of the functions In a and In b can be specified by requiring 

in a ( ~ )  = ln[-(1 + x/-5)/2] - 7zi, In b(~v) = ln[(1 + ,~-5)/2] + ~zi (3.85) 

Similarly, the branches of the functions In 9~ and In ~ can be fixed such 
that 

In 9.1( + ~ )  = In [-(x/-5 - 1)/2] -T- ~i, In ~3( __+_ ~ )  = l n [ ( x / - 5 -  1)/2] + 7zi 

lim in ~ ( 0 )  = 0, lim In ~3(0) --- 0 (3.86) 
N ~  N ~  



Analytic Calculation of Scaling Dimensions 63 

Using (3.80), (3.85), and (3.86), we deduce 

D1 = -27zi, D2 = 2hi (3.87) 

We next define limiting functions of a, b, 9,1, and ~3 in the positive and 
negative scaling regimes as before and fix the branches as in (3.60). From 
(3.80) we obtain the integral equations in the positive and negative scaling 
regimes, 

la + ( x ) =  - ~ f 3  e - X - I f  + ( x ) -  s * IA + - c  , lB + - 2ni 
(3.88t 

lb + (x) = -~/ -3  e -  X -  lg + ( x ) -  c * lA + - s * lB + +27zi 

and 
la ( x ) = - ~ f 3 e - X - s * l A  - c * l B  +27ri/3 

(3.89) 
Ib_(x)  = -a / -3  e - X - c  * IA - s * IB_ - 2~i/3 

and Ig+ are the scaling limits of If and lg apart from trivial where l f  + 
constants, 

3i n 
If+(x) = - l n [ z ~ ( ~ o ( X - y ~ ) - 4 ) z ~ ( - - ~ ( x - y 2 ) - ~ - 6 )  ] 

(3.90) 

l g + ( x ) = + l n  Zl - ~ ( x - y ~ ) + ~ -  d zl - ~ ( x - y 2 ) +  

and the branches are specified by requiring 

4~ 4~ 
/f+ ( ~ )  = - - ~ - i ,  l g + ( ~ ) = ~ - i  (3.91) 

As before, we now consider the eigenvalue in the physical strip. The 
function /f in (3.80) contributes a 1/N term for In T1, 

2~i e x 
I f (x)  - 3 _~ x/-3(e~Zi/3 -yl  + e-r:i/3 -y2) (3.92) 

Another O(1 /N)  correction term is given by the integrals in (3.80). 
Collecting all correction terms together yields 

In Tl(u)  = - in a(x) = Nln  zl(u)  + I f (x)  + s �9 In 9.I + c * In ~ + 27ri 

-~ N ln  zl(u)  + 47zi/3 

+ -~ d y e  -Y[IA + (y)  + lB+ (y)]  
o o  

_ x/~(e~i/3 -yl + e -~i/3 -Y~)t 

} +-N-- {27z 0_~ dye  Y[IA ( y ) + I B  (y)]  (3.93) 

822/64/1-2-5 
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We next calculate the first integral in (3.93). We need to express the 
exponentials in (3.93) by integrals involving the functions !A+ and lB+. 
This is achieved by remembering the condition T(uz+27r /5)=-1  that 
each zero of T(u) must satisfy. Applying this requirement to ul, we get in 
the scaling limit 

b+ y l + i -  d - - - 1 ,  ilb+ y l + i  = - ( 2 k - 1 ) ~  (3.94) 

where k is an integer. Similarly, we find 

a+ y 2 - i  = - 1 ,  ila+ y 2 - i  =(2k-1 )Tr  (3.95) 

with the same integer k due to the relation la(2) = lb(z). Inserting this into 
(3.88) leads to 

_ ~ ( e ~ i / 3 - y l  +e ~i/3 y2) 

= -- ( 2 k -  1)2re + 41t 

+ i(c * IA + + s * IB+ )(Yl + 7zi/6) - i(s * lA + + c * IB+ )(Y2 - lri/6) 

- i [-/f+ (Y2 - 7ri/6) - lg + (Yl + ~zi/6) ] (3.96) 

where on close inspection the last line is equal to -47r. Hence 

" /3  f ~  dye Y[lA + (y) + lB + (y) ] - , , f 3 ( e  ~i/3 Yl + e .i/3-y2) 
27r _ 

= x f 3  f ~ d y e - Y [ l A + ( y ) + l B + ( y ) ] - ( 2 k - 1 ) 2 ~ z  
2rt _~ 

+ i(c �9 IA + + s �9 IB+ )(Yl + 7ri/6) - i(s �9 IA + + c �9 IB+ )(Y2 - 7rU6) 

(3.97) 
We next manipulate (3.88) to obtain 

I ~  [la+(x) +(x) - la§ dx IA lA+(x) 
- -  o z ?  

+/b'+ (x) /B + (x) - / b  + (x) /B'+ (x) ] 

dx [lf+ (x) IA + (x) - (/f+ (x) + 21ti) lA+ (x)] 
+ oo 

+ dx[lg'+(x) l B + ( x ) - ( l g + ( x ) - 2 r t i ) l B ' + ( x ) ]  
- - o o  

=., f3  f ~  (3.98) 
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Integrating by parts and using 

l f  + (x)  = --2~i [c(x  - Y l  - ~i/6) - s (x  - Y2 + 7~i/6)] 

lg+(x)  = -2rc i [ s (x  - Yl - ~zi/6) - e(x - Y2 + ~zi/6) ] 
(3.99) 

we obtain 

~ 3  f ~ d y e  Y E I A + ( y ) + I B + ( y ) ]  
2re _~  

=4--~ dx [ l a + ( x ) l A + ( x ) - l a + ( x ) l A + ( x )  

+ lb'+ (x) z8 + (x) - lb + (x) m'+ (x) ]  

~z i(c * lA + s * + - - ~ - -  + lB+) Yl 

+ i ( s * I A +  + c * I B + ) ( Y 2 - 6 )  (3.100) 

Inserting (3.97) and (3.100) into (3.93), and manipulating the second 
integral in (3.93) as in Section 2.2, we obtain 

4rci 
In Tl(U) ~_ Nln  z l (u  ) + 

3 

\ dx [ la'+ (x)  lA + ( x ) -  la + (x)  lA'+(x) -t--~ - -  _ 

3} + I b + ( x )  l B + ( x ) - l b + ( x ) l B + ( x ) ]  ( 2 k -  1)2rc- 

e ~ ( 1  oo 
+ ~ -  ~-~  f _ ~  dx [la'_(x) l A _ ( x ) - l a _ ( x )  lA' (x)  

47ri e ~ 29 = N l n z ~ ( u ) + ~ - - + - ~ ( - ~ r c - 4 ~ k ) +  e x 

47~i c o s h x ( 1 4  2k~ sinhx 
= N l n z l ( u ) + - - f - + - - - - ~ \ - ~ -  j 2~ + - - - - ~  (1 - 2k)2~ 

(3.101) 
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where we have used the result (3.44) for the integrals in the last step. We 
thus obtain the results 

27ri 
E =  - l n  Tx(u) ~- - Nln  Zl(U ) + - -  

3 

- - - i - ~ + 2 k  -~s in  u + i ( 1 - 2 k ) ~ c o s ~ u  

(3.102) 

and 

2~ri ( 13 )2re . 10 2re 10 
E - E o ~ _ ~  -i-~ + 2k ~ s l n - ~ - u + i ( 1 - 2 k ) ~ c o s - ~ - u  (3.103) 

Using the minimal value k = 1 and comparing with (1.25), we obtain 

x4 = 17/15 (3.104) 

with spin s = 1. The complex conjugate eigenvalues with zeros Ul and u2 in 
the lower half-plane is given by x5 = 17/15 and s = -1 .  Notice that (3.103) 
gives a semitower on Xl = x2 = 2/15. 

3.5. The Scaling Dimension x=4 /3  

The eigenvalues T(u) calculated in this subsection are characterized by 
four shifted zeros. Two of them, ul+ and u2+, are located close to the lines 
R e ( u ) = - r e / 1 0  and Re(u)= 3~/10, from which they deviate toward the 
imaginary axis. The other two zeros, u~ and u2 , are located close to 
the lines Re(u)=  -27r/I0 and Re(u)= 4z/10, and deviate away from the 
imaginary axis. Here we will assume that ul+ and u2+ lie in the upper half- 
plane and u~_ and u2_ in the lower half-plane, 

3i ~ 3i 3re 
ul+=TO (y l++lnN)  10' u2+=~(Y2++lnN)+l--O 

131_ - -  

3i 2~z 3i 4re 
- - l ~ ( y  1 + l n N ) - ~ ,  u2 = - ~ ( y 2 _ + l n N ) + l ~  

(3.105) 

where Yl+, Y2+ and Yl , Y2- are complex conjugate pairs as shown in 
Fig. 13. 

Proceeding as in the last two subsections but now using the function 

f(u) . -  z l ( u - u l -  +rc/5)zl(u-u2-) (3.106) 
zl(u-- ul+ - ~/5) z~(u-- u2+ + 2~z/5) 
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-3r~/5 I -re/5 
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i 
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Fig. 13. Schematic representation of the zeros in the comp|ex u plane of the second magnetic 
eigenvalue of critical hard hexagons. The finite-size correction to this eigenvalue yields the 
result x = 4/3. 

we derive (3.52) or (3.80), where /f and lg are defined as before and the 
branches are specified by requiring 

t f (oo)  = lg(oo) = 0 

The asymptotics of these eigenvalues is given by 

In a ( o o ) = l n [ ( ~ - -  1)/23, 

in 9.I( + oo) = ln[-(1 + , ,~) /2  ], 

lira In ~1(0) = 0, 

From this we deduce 

(3.107) 

In b(oo) = l n [ ( , , ~ -  1)/23 

(3.108) 

in ~ (  + oo) = ln[(1 + x ~ ) / 2 ]  

lira in ~3(0) = 0 (3.109) 
N ~ c o  

O l  = D 2 = 0  (3.110) 

We next define limiting functions of a, b, 9.I, and ~3 in the positive and 
negative scaling regimes and fix branches such that 

/a_+ (oo) = l n [ ( x / 5 -  1)/2], /b+(oo) = l n [ ( x / 5 -  1)/2] 

/A_+(oo) = lnl-(1 + x/5)/2],  /B_+ (oo) = in[(1 + x/5)/2] (3.111) 

IA + ( -  oo) = 0, IB_+(-- oo) = 0 
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From (3.52), (3.80) we obtain the integral equations 

la +_(x) = - x f  3 e -  ~ - l f  +_(x) - s �9 lA + - c * iB +_ - 4~zi/3 
(3.112) 

lb + (x)  = - x / 3  e -~  - lg + (x)  - c �9 lA + - s * lB e + 4~i/3 

where /f+ and Ig+ are the scaling limits of /f and Ig apart from trivial 
constants, 

/f+ ( x ) = - l n  [z, (1~ ( x -  

I g + ( x ) =  +ln [Zl (~-~0 ( x -  

YI+ ) -  z l  ( x -  y2+_) -  

re) (3/  4 ) ]  yl+_)+-f6 z~ Td(x-y2+)+ 

(3.113) 

The branches here are specified by requiring 

4rci 4rci 
l f + ( o o ) -  3 ' Ig+(oo) =--~- (3.114) 

The finite-size corrections of T~ are expressed in terms of lA+ and lB+ 

functions as follows: 

2~i 
In T l ( u ) ~ -  N l n  z l (u )  + - -  

3 

+ - ~  f _  o o d y e - Y [ l A + ( y ) + l B +  ( y ) l  

_,jS(e~i/3-y,~ + e-~,/~ ,2+)} 

+ N [ 2 ~  ~o 

+,/SIe 2~,/~ ~,_ + e2~,j~-~ )} (3.115) 

Instead of (3.96) and (3.100), we get 

--,jS(e~'/~- Yl+ + e-~'/3-,2+) 
= - (2k+ - 1)2zr + 8~/3 + i(c * lA + + s * lB+ )(Yl  + + r~i/6) 

- i ( s  �9 I A  + + c * 1 B +  ) ( Y 2 +  - ~66) 

- i [/f+ (Y2+ - ~i/6) - lg + (Yl + + rc66)] (3.116) 
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where the last line is equal to -2re and 

xf3 f ~ dye-Y[lA+(y)+lB+(y)]  
2re -o0 

1 dx [la+(x) lA+(x) la+(x) lA+(x) 
4re _~ 

+ lb'+ (x) tB + ( x ) -  ~b + (x) IB'+ (x)] 

- i ( c * l A +  +s* lB+)  Yl+ + 

+i (s* lA+ + c * l B + ) ( y 2 + - 6 )  (3.117) 

Similarly, instead of (3.68) and (3.72), we obtain 

N~(e-2~i/3 Yl .4ye2ni/3-y2 ) 

= - (2k - 1)2rt + 8rc/3 + i(c �9 IA_ + s * lB_)(yl + 7ri/6) 

- i ( s * l A  + c , I B  )(Y2 -rri/6) 

- i [ l f  (Y2 -zc i /6) - lg  (yj +~zi/6)] (3.118) 

where again the last line is equal to - 2 ~  and 

x/3 f ~ dye-Y[ lA_(y )+lB_(y )]  
2~z -o~ 

=-47 dx [laL(x) lA (x)- la  (x)lA' (x) 
c ~  

+ lb'_(x) l B _ ( x ) -  lb_(x) IB'_(x)] 

- i ( c * l A  + s * l B _ )  Y l - +  

+i( s* lA  + c * l B  ) (y2 - - 6 )  (3.119) 

Inserting Eqs. (3.116)-(3.119) into (3.115), we find that this simplifies to 
give 
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2hi 
In Tl(U) - Nln zl(u) +-~- 

eX {41-n 1 2 dx [la+ (x) lA + (x) - la + (x) lA + (x) + ~  - -  _ 

+ lb+(x) lB+(x) - lb+(x) lB+(x)] -k+ 4n + ~ }  

+--~- - -  d x  [ l a ' _ ( x )  l A _ ( x ) -  la ( x )  l A ' _ ( x )  

+lb'_(x) lB_(x ) - lb  (x) lB '_ (x ) ] -k  4 n + ~ }  

2hi e ~/41 e-~(_~rc_4nk_  ) = N l n z l ( u ) + - ~ - + - ~ n - 4 n k + ) + - ~ -  41 

2hi cosh x (41_2k ) 
= N l n z l ( u ) + - - ~ - + - - - ~ \ 1 5  + - 2 k  2n 

sinh x + ~ (2k_ - 2k+ )2n (3.120) 

where we have used the values of the integrals (3.25) in the last step and 
k+ and k are integers. We thus obtain the result 

23i ( 41 )2n . 10 
E~- - N l n z l ( u )  . . . .  -i-~+ 2k+ +2k -~ _ sin ~- u 

2n 10 
-- i ( 2k + - 2k_ ) -~ cos -~- u (3.121) 

and 

2hi ( 8 )2n 10 
E - E o -  3 - ~+2k+ + 2 k  -~ sin-~- u 

2n 10 
- i ( 2 k + - 2 k  )-~ cos-~ u (3.122) 

Choosing the minimal values k+ = k_ = 1, we obtain the scaling dimension 

x6 = 4/3 (3.123) 
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with zero spin. The complex conjugate eigenvalue is given by the same 
numbers x7 = 4/3 and zero spin. We again point out that (3.122) gives a 
semitower on x6 = x7 = 4/3. 

3.6. The Scaling Dimension x = 9 / 5  

The eigenvalues T(u) calculated in this subsection are also 
characterized by four shifted zeros and are very similar to those treated in 
the last subsection. The first difference, however, lies in the fact that the 
zeros ul_ and u2_ deviate from the lines Re(u)= -2~/10 and Re(u)= 
47(10 toward the imaginary axis. Second, the asymptotic behavior of the 
eigenvalues T(u) is different, 

In a(oo) = ln[(1 + x/-5)/23 + ~i, 

In 9.1( _+ oo ) = In [(x/-5 - 1)/23 + ~i, 

lim in 9X(0) = 0 
N ~ o o  

In b(oo ) = ln[(1 + x/-5)/23 - zi 

(3.124) 

in ~3( _ oo ) = in [ (x/-5 - 1)/2] - gi 

lim in ~(0) = 0  (3.125) 
N ~ V  

Repeating the steps of the last subsection, we deduce 

2~z 27r 
D~=-~- i ,  D2 = - ~ - i  (3.126) 

We define limiting functions of a, b, 9.1, and ~3 in the positive and negative 
scaling regimes and fix branches such that 

/a_+(oo) =In[(1  + xf5)/23 +~i,  /b+(ov) = ln[(1 + xf15)/2]-rci 

l A + _ ( o o ) = l n [ ( w / 5 - 1 ) / 2 ] + T z i ,  l B + ( o o ) = l n [ ( x f l 5 - 1 ) / 2 ] - r c i  

/A_+(- oo) = 0, / B + ( - o o ) = 0  (3.127) 

From (3.52) or (3.80) we obtain the integral equations 

la+_(x) = - ~  e - X - l f  + _ ( x ) - s  �9 IA+_ - c  �9 IB +_ - 2~i/3 

Ib + (x)  = - x / - 3  e -  X -  lg +_(x)-  c , lA +_ - s , IB + + 2~i/3 
(3.128) 

where/f_+ and lg+_ are defined in (3.113) and (3.114). 
The finite-size corrections of T1 are expressed in terms of lA +_ and lB+ 

functions as in (3.115) without the lattice momentum 2~i/3. In order to 
evaluate the integrals, we note the following relations: 
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- -x /3(e  ~i/3-yt+ --k e ~i/3 y:+) 

= -- (2k+  - 1 )2~  + 4~z/3 + i(c * lA + + s * lB+ )(Yl + + toil6) 

- i ( s  * lA + + c * IB + )(y2+ - toi l6)  

- / E / f +  (y2+ - ~ i / 6 ) -  lg+(yl+ + zci/6)] (3.129) 

where  the  las t  l ine is equal to - 2 x  and 

x /3  f ~ d y e - Y [ l A + ( y ) + I B + ( y ) ]  
2re o~ 

1 dx [la'+(x) lA+(x)  la+(x) IA'+(x) 
4g _ o~ 

+ ?b'+ ( x ) / B +  (x)  --  lb + (x)  lZ~'+ ( x ) ]  

2z i ( c * ' A  + s *  ( + 6 )  - - ~ -  + IB+) Yl+ 

+ i ( s , l A +  + c , l B + ) ( y 2 + - 6 )  (3.130) 

as well  as 

, ,~  (e 2~i/3-,1_ +e2~i/3-y2_) 

= - (2k - 1 )2zc+ 47r/3 + i(c * 1A_ +s  �9 lB ) (Y l -  + ru'/6) 

- i(s * lA _ + c * IB )(Y2- - zr66) 

- i [ l f _ ( y  2_ - T z i / 6 ) - I g  ( Y l -  + ~ i / 6 ) ]  (3.131) 

where  a g a i n  the  las t  l ine is equal to  - 4 z t  a n d  

~3 ~ dye-Y[lA (y)+lB (y)] 
2re J_~ 

1 
= ~ f ~ dx [la'- (x) l A - ( x ) -  la (x) lA"  (x) 

+ lb'(x) m _ ( x ) -  tb_(x) m -  (x)] 

i ( c * l A  + s * l B  ) Yl + 
3 

+ c , l B  )(y2_--~--/~ (3.132) + i(s * lA 
\ 0 /  
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Inserting (3.129), (3.130) and (3.131), (3.132) into (3.115) and ignoring 
the lattice momentum 2~zi/3, we find that this simplifies to give 

in Tl(u ) ~_ Nln  zl(u) 

+-~ ~ dx[la+(x)  l A + ( x ) - l a + ( x ) l A + ( x )  
- - o : ?  

+ lb+ (x) lB+ (x) - lb + (x) lB+ (x)] - k + 4g + re} 

+ - ~ -  ~ d x [ l a ; ( x )  lA ( x ) - l a  (x) l A ' ( x )  
0 o  

+ lb'_ (x) IB_ (x) - lb _ (x) IB'_ (x)] - k_ 47c - rct 

= 'Nln  Zl(U)+ ~ ~ ~ - 4 ~ k  +)  + - ~ -  - ~ ~ - 4 ~ k  

) = N l n z l ( u ) + - - ~  ~ - ~ - 2 k + - 2 k _  2~ 

sinh x 
+ ~ (1 + 2k - 2k+)Zrc (3.133) 

where we have used the values of the integrals in the last step and k+ and 
k_ are integers. We thus obtain the results 

(4 
E ~ - N l n z l ( u ) -  - - i ~  + 2k+ + 2k_ - ~ s i n T u  

2~ 10 
- i ( - 1  + 2 k +  - 2k_) ~-  cos-~- u (3.134) 

and 

E -  Eo ~- - - + 2 k + + 2 k _  - ~ s i n ~ - u  

2~ 10 
- i( - 1 + 2k + - 2k_ ) -~  cos ~- u (3.135) 

Choosing the minimal values k+ = 1, k_ - -0 ,  we obtain the scaling 
dimension 

x8 = 9/5 (3.136) 

with spin s = 1. The complex conjugate eigenvalue is given by x9 = 9/5 and 
spin s =  -1 .  Notice here that (3.135) gives a semitower on x3 = 4/5 and so 
completing the tower, except perhaps for degeneracies. 
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4. D I S C U S S I O N  

In this paper we have calculated the central charges and scaling 
dimensions of tricritical hard squares and critical hard hexagons from the 
finite-size corrections to the row transfer matrix eigenvalues. The calculated 
central charges c = 7/10 for tricritical hard squares and c = 4/5 for critical 
hard hexagons establish beyond doubt the generally accepted values. The 
various scaling dimensions calculated are summarized in (1.3). This is not 
an exhaustive list, but the methods presented here can be straightforwardly 
extended to analyze further excitations as required. All the results obtained 
are in complete agreement with the predictions of conformal invariance 
and modular invariance. More specifically, the scaling dimensions and 
spins agree with the Kac formula and the eigenvalue spectra are indeed 
found to be generated by the modular invariant partition functions (1.33) 
and (1.35). The indicated degeneracies of these levels have been confirmed 
for all levels corresponding to relevant scaling fields. Notice that excitations 
characterized by quite distinct patterns of zeros can in fact yield identical 
levels in the thermodynamic limit. In particular, we remark that it remains 
an open problem to completely classify the patterns of zeros that occur. 

Of course much remains to be done. In this paper we have restricted 
ourselves to periodic boundary conditions with N =  0 (rood 2 or rood 3) as 
appropriate. It would be of interest to obtain the eigenvalue spectra with 
these conditions relaxed to confirm the predicted effects of other boundary 
conditions. It is also naturally desirable to extend our results to the 
complete family of RSOS models introduced by Andrews e ta / .  (42) and to 
other A - D - E  models. (4~ We hope to treat these models in future 
publications. There is also much interest in the spectra of quantum spin 
chains. The central charges of the spin-l/2 and spin-1 X X Z  chains 
considered previously (25) can now be obtained analytically even with 
twisted boundary conditions by an extension of the methods of this paper. 
The details of this calculation will be published elsewhere. (43) 

A P P E N D I X :  R O G E R S  D I L O G A R I T H M S  

In this Appendix we collect together some basic properties and special 
values of Rogers dilogarithms. (44) The Rogers dilogarithm is defined by 

[ln(ly- lnyq 

= -  dy ln (1 -y~)  ~- l n x l n ( 1 - x )  (A.1) 
y 
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In particular, 

L(1)=-r~dyln(1-Y)Jo ~~176 1 ~2 L(0) = 0, (A.2) 
y = ~ o  ~ = =  6 

By differentiating, it can be verified that L(x) satisfies the simple functional 
equation 

L(x) + L(a -- x) = L(1 ) -- 7z2/6 (A.3) 

Similarly, L(x) satisfies the two-variable functional relation 

- \ l - x y )  

Setting x = y  = ( , , f5-1) /2  in these two linear equations and solving, it 
follows immediately that 

L \  2 ) 10' L = i 5  (A.5) 

In addition, from (A.3) with x = 1/2, we obtain 

L = 1-2 (1.6) 

The dilogarithm 

z Jo a 1-+aj = L ~ (1.7) 

which occurs often in this paper, is simply related to the Rogers 
dilogarithm by changing the variable of integration to y =  a/(1 +a). The 
definition of the Rogers dilogarithm (A.1) and the associated integral (A.7) 
can be extended (44) to complex values of x. The dilogarithms are then in 
general complex with branch cuts along the real axis. 
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