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A b s t r a c t .  We give a condensed survey of recent research on generalized quantifiers in 

logic, hnguistics and computer science, under the following headings: Logical definabihty 

and expressive power, Polyadic quantifiers and linguistic definability, Weak semantics and 

axiomatizability, Computat ional  semantics, Quantifiers in dynamic settings, Quantifiers 

and modal  logic, Proof theory of generalized quantifiers. 

1. I n t r o d u c t i o n  

The study of generalized quantifiers is by now an old and respectable field 
of logic. With  the pioneering work of Mostowski and LindstrSm in the fifties 
and sixties, quantifiers became a major tool in the model theory for logics 
extending first-order logic - -  many of these being representable as first- 
order logic with added quantifiers. Apart from general structure theorems 
on how various general properties are distributed in this class of logics (most 
famous of these is still LindstrSm's theorem on the properties which charac- 
terize first-order logic), particular logics were examined in detail w.r.t, their 
model theoretic properties and their comparative expressive power, as well 
as the behaviour of theories expressed within these logics. Though some 
of the extensions transcend first-order models (e.g. logics with measure- 
theoretic or probabilistic quantifiers), this work, which reached its peak in 
the late seventies and early eighties - -  witness the book Model-Theoretic 
Logics edited by Barwise and Feferman - -  is squarely situated within clas- 
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sical model theory, with mathematics as its main source of inspiration and 
set theory as its basic :framework. 

In the beginning eighties the study of quantifiers received an impetus 
from a quite different direction, when it was realized (by Barwise and Cooper, 
Keenan and Stavi, and others) that  determiners and noun phrases, which 
abound in most natural languages, were interpreted in Montague style se- 
mantics by means of generalized quantifiers. This brought parts of the estab- 
lished model theory of quantifiers to bear on linguistics, but it also brought 
new logical questions about quantifiers, motivated by the linguistic perspec- 
tive and by particular constraints inherent in natural  languages (such as 
conservativity, or the use of finite or at least 'small' models). 

Research on quantifiers stemming directly from the original waves of 
inspiration (LindstrSm's theorem and Montague semantics, respectively) has 
perhaps had its hey-day, but the field does not show signs of exhaustion. 
On the contrary, a lot of work on quantifiers is going on, addressing not 
only 'classical' issues, but also extending them in new directions, charting 
new territories and establishing sometimes surprising connections with other 
fields. One such connection is with finite model theory as used in descriptive 
complexity theory in computer science. Another is with recent developments 
in modal logic. Both will be elaborated on below. 

Our aim here is to indicate the direction of some of this recent research, 
sketching a few major research areas and research problems, in a way that  
hopefully may be useful both for the practitioner in the field and for the 
interested logician/linguist, and also for students looking around for some- 
thing to set their teeth in. At least, that  is our intention. Moreover, through 
this unified presentation, we hope to illustrate, and to encourage the cur- 
rent confluence and interaction of more mathematical  and more linguistic 
research lines in this area. After some background, the material is presented 
under eight distinct headings. This is for ease of exposition, but it will be- 
come clear that  much of the work is interconnected and some of it belongs 
under more than one heading. 

Thus, this paper is not a scholarly survey but rather a condensed 'state 
of the art '  document.  Extensive surveys of generalized quantifier theory and 
its uses in various fields already exist (cf., in addition to the volume edited 
by Barwise and Feferman, van Benthem 1986, Westerst£hl 1989, Krynicki, 
M. Mostowski and Szczerba 1994, Keenan and Westerst£hl 1994), though,  
to our knowledge, none that  covers all the aspects of quantifiers signalled 
here. 
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2. B a c k g r o u n d  

We assume familiarity with s tandard notions and terminology from gener- 
alized quantifier theory. In particular, the initial concept of a (generalized) 
quantifier is that  of a class of structures of a given similarity type, or, equiva- 
lently and more informatively (when the similarity type is finite and involves 
only relations), a functional relation Q associating with each universe M a 
quantifier QM on M,  i.e., a relation between relations on M, of that  type. 
The type  can then be identified with a finite sequence of natural  numbers  
(nl , . . . ,nk) ,  and (M, R1,. . . ,Rk) e Q can be writ ten 

QMR1... Rk where Ri C_ M TM. 

Q is usually assumed to be closed under isomorphic structures (ISOM); we 
will note explicitly when this is not required. The arity of Q is max(n1,... ,  
nk). Let Qn be the class of all n-ary quantifiers. Q1 is the class of monadic 
quantifiers, i.e., quantifiers of type (1, 1 , . . . ,  1/; the others are called polyadic. 
A quantifier Q of type n l , . . . , n k  comes with a variable-binding opera- 
tor binding ni distinct variables in formulas ~ai, i = 1 , . . . ,  k, respectively, 
and when a corresponding formation rule and the obvious t ru th  condi- 
tion is added to first-order logic we obtain the logic L~o~(Q). Similarly for 
L ~ ( Q 1 , . . . ,  Q,~), or L~(Q) where Q is a class of quantifiers, and also for 
L(Q) where L is some other familiar given logic. 1 This is a s tandard con- 
cept of generalized quantifier ( 'Lindstrhm quantifiers'). Various extended or 
otherwise different concepts will appear below. 

3. L o g i c a l  d e f i n a b i l i t y  a n d  e x p r e s s i v e  p o w e r  2 

The first thing you want to know about a quantifier is its expressive power, 
which in model  theory is measured in terms of what you can say with the 
corresponding sentences. L _( L I iff for every L-sentence there is an equiv- 
alent L~-sentence (one with the same models), and L _ L ~ iff L < L ~ and 
L' ~< L. In particular,  L(Q) < L(Q') iff Q is definable in L(Q'), i.e., there is 
an L(Q')-sentence ~ with non-logical symbols matching the type of Q such 
that  QMR1...Rk ¢~z (M, R I , , R k )  ]= ~a. There are thus innumerable (un- 
countably many!)  definabihty issues for quantifiers. Typical forms of these 
questions are: 

*The notations 'EL(Q)' and 'FO(Q)' for L,,,~(Q) are also common. Often 'L(Q)' is also 
used, but here we let L be any logic which uses the same models as first-order logic, and 
which allows addition of generMized quantifiers in a similarly straightforward way. 

2Thanks to Lauri Hella for help with this section! 
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( la)  Given two quantifiers Q and Q', when is Q definable in L=~(Q')? 

(lb) Given a quantifier Q and a class of quantifiers Q, when is Q definable 
in L ~ ( Q ) ?  

(lc) When is Q definable in L(Q) for some other logic L? 

To prove definability of a particular quantifier Q you provide a definition. To 
prove undefinability you either proceed indirectly, using some known prop- 
erty of the target logic L which would fail if Q were definable in it, or directly 
by providing for each L-sentence q~ a model over which Q and ~2 disagree. 
Often, the latter is done for each quantifier depth d (the maximal number of 
nestings of quantifier symbols in a formula): you find two models which are 
equivalent for L-sentences of quantifier depth at most d but which differ over 
Q, where L-equivalence up to d is estabhshed by means of an Ehrenfeucht- 
Fraissd game for the logic L. The general theme in the background here is 
the characterization of appropriate semantic invariances for quantifier lan- 
guages, either via comparison games or via some structural connection like 
'partial isomorphism' or 'bisimulation' (see van Benthem and Bergstra 1993, 
de Rijke 1993 on this general theme for families of modal logics and process 
theories). 

Undefinability proofs range from straightforward to impossibly difficult. 
Lots of particular results occur in the literature, but systematic attacks on 
definabihty questions are only fairly recent. For a start, Corredor 1986 gave 
a complete characterization for the mutual definabihty, relative to first-order 
logic, of two universe-independent type (1} quantifiers on finite structures; 
the result involves simple arithmetical properties of such quantifiers. 3 Re- 
cently V/i/£n£nen proved (V£/in/£nen 1994) that the question of definability 
between any two monadic quantifiers can be reduced to a relationship be- 
tween certain boolean algebras associated with them. Thus, problem (la) 
has in principle been solved in the case of monadic quantifiers (though var- 
ious issues, also discussed by V/t£n~nen, of finding particularly perspicuous 
definability classifications for interesting classes of monadic quantifiers re- 
main). The next natural step would be to consider quantifiers of type (2}. 
There seem to be no characterization results for mutual definability here, 
and such results appear difficult to obtain for any extensive class of binary 
quantifiers. Still, it could be worthwhile to find general criteria for definabil- 
ity and undefinability also in the case of polyadic quantifiers. Undefinability 
results for particular polyadic quantifiers are multiplying (the next section 

3Here universe-independence means that  if A C M, M '  then QMA ¢=~ QM, A. This prop- 
erty, often called extension (EXT) in the literature, applies straightforwardly to quantifiers 
of other types as well. 
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has some examples), and probably some of the constructions behind these 
could be turned into such general criteria for undefinability. 

Questions (]b) and (1c) have attracted attention especially in the case 
where Q = Q~. Already LindstrSm 1966 proved that the well ordering 
quantifier W is not definable in L~(Q1). Krynicki, Lachlan and V££n£nen 
1984 gave an example of a ternary quantifier not definable in L ~ ( Q 2 ) .  
Then, V££n£nen 1986 established the existence of arity-based hierarchies 
of quantifiers: for each n there are (n + 1)-ary quantifiers not definable 
in L~(@~) .  Using this result as a starting point, Hella 1989 developed a 
fairly general method for proving that a given quantifier is not definable in 
L~(Qn).  The paper Hella and Luosto 1992 contains an up to date survey 
of results obtained by this method. The existence of natural hierarchies 
of quantifiers is another important genera] theme, which fits in well with 
developments elsewhere in linguistic semantics (witness various proposed 
hierarchies of expressive power in categorial, modal or dynamic logics: cf. 
van Benthem 1991). Arity-based quantifier hierarchies are tightly connected 
with another definability issue, the finite generation problem: 

(2a) Given a logic L, does there exist a finite set Q of quantifiers such that 
L - L ~ ( Q ) ?  (Equivalently, is there a single quantifier Q such that 
L ___ 4) 

(2b) Is there a finite set Q of quantifiers such that L -_- L'(Q) for some 
other logic L'? 

If a logic L is capable of defining a sequence Q1, Q2,... of quantifiers such 
that for each n, Qn+I is not definable in L~(Qn) ,  then L cannot be finitely 
generated (or even be a sublogic of a finitely generated logic). Hence, the 
known arity hierarchies of quantifiers have led to negative answers to the 
finite generation problem for many extensions of first-order logic familiar 
from the literature (cf. Hella and Luosto 1992). The finite generation prob- 
lem was first rMsed by Makowsky, Shelah and Stavi 1976 for the A-closure 
of the cardinality logic L~(Q1), where Q1 is now the quantifier "there ex- 
ist uncountably many". The answer for this special case is still open. The 
problem is of particular interest in cases, like A(L~(Q1)) ,  where the syntax 
or semantics of the logic under consideration is given in an indirect way: 
a representation of the form L~(Q) with some finite set Q of quantifiers 
would give the logic a simple finitary syntax and a nice semantics. 

The study of definability with generalized quantifiers has received new 
impetus recently through contacts with computer science. Two influentiM 

4That this is an equivalent formulation was observed in Krynicki and V£~n£nen 1982. 
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themes here are finite model theory and complexity of queries, as we shall 
demonstrate  by a few examples. 

In finite model theory certain extensions of first-order logic have proved 
feasible to work with. A main examp]e is (least) fixed point logic (introduced 
in this context by Chandra and Hare] 1982), FP, which roughly extends L ~  
by allowing certain recursive definitions. Another is the logic L ~  which 
has been shown to extend FP. Here L ~  is just as L ~  except that  there 
are only k variables, and L ~  = [.Jk<w L ~ .  Kolaitis and V££n£nen 1992 
proved that  the H~rtig quantifier I (defined by IMAB ~ ]A{ = {B{) is not 
definable in L~(Q)  for any finite set Q of type (1) quantifiers. The main 
result of Cai, Furer and Immermann 1992 implies the existence of a binary 
quantifier which is computable in polynomial time (PTIME) (cf. below and 
section 6) but not definable in L ~ ( Q 1 ) .  Extending this result, Hella 1992 
proved that  for each n there is a PTIME computable (n + 1)-ary quantifier 
which is not definable in L~(Q.n). 

The result by Kolaitis and V~£n£nen also points towards other quanti- 
fier hierarchies than purely arity-based ones. For example, with monadic 
quantifiers one may count the number of l:s in their type. Let Q(~) be the 
class of monadic quantifiers with at most n l:s. By the Kolaitis-V~£n£nen 
result, I is not definable in L~(Q(1)). Lindstrhm 1992 used a counting 
argument to show that the classes Q(n) form a strict hierarchy over finite 
structures relative to Lw~. In general, the most fine-grained complexity or- 
dering of types w.r.t, definability is the following. For a type r of arity 
n and 1 ~ k ~ n, let rk be the number of relations of arity k in r ,  and 
associate with r the sequence s~ = ( r n , . . . , v l ) .  Then types r and a are 
compared by means of the lexicographic order between s~ and s~. (E.g., 
(1,2,2,3> < (2,2,2,3)  <: (2,3,3).) Extending Lindstrhm's proof, Hella, Lu- 
osto and V££n~nen 1994 prove a general hierarchy theorem for this ordering: 
each type contains a quantifier Q not definable in first-order logic over finite 
models from any finite number of quantifiers of lower type. Moreover, Q can 
be made to have various properties, like being monotone or PTIME.  The 
theorem a]so yields a resumption hierarchy: A type (1) quantifier Q yields a 
sequence of resumptions Q(n) of type (n), n = 1, 2 , . . . ,  where Q(n) says of an 

n-ary relation R what Q says of the set of n-tuples of _R (Q~)R ~=~ QM~R), 
and they prove that  there exists a Q such that  for each n, Q(~+I) is not defin- 
able in L~w(Q(~)) over finite structures. 5 However, it should be noted that  
the existence of these quantifiers is proved by probabilistic methods,  not 
explicit construction. The hierarchy theorem gives no information about 

5In fact, it is not definable in Lw~(Q), where Q is any finite set of quantifiers of the 
form Q~m), where Q1 is of type (1 / and m ~ n. 
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particular quantifiers - for them the definability issues remain. For example, 
does some familiar quantifier yield a resumption hierarchy? What  about QR 
defined by QRMA ¢++ IAI > I M -  A]? 

A much studied problem in finite model theory concerns connections 
with natural  complexity classes whose original definition was algorithmic. 
In particular, there has been a very interesting search for a logical charac- 
terization for polynomial-time computability. If we consider models with a 
given ordering then fixed point logic FP provides such a characterization: a 
property P of finite ordered structures is PTIME computable if and only if P 
is definable in FP  ( Immermann t986, Vardi 1982). However, in the general 
case where the existence of a linear order is not assumed, this characteriza- 
tion fails badly. Indeed the above mentioned quantifier hierarchy result of 
Hella 1992 implies that  there exists no finite set Q of quantifiers such that  
FP(Q)  would characterize a~ PTIME computable properties of finite struc- 
tures. Thus,  PTIME,  as a logic on finite structures, is not finitely generated 
even over FP. 

This negative result does not rule out the possibility of characterizing 
PTIME by a so-called uniform sequence of quantifiers: there might exist 
a single (PTIME computable) quantifier Q such that  PTIME = L ~ ( Q ) ,  
where Q is the set of all relativized resumptions of Q.6 Note that  this is 
actually a finite generation problem in disguise: if L* is like L~++ except 
that  it has explicit formation rules for relativizing and for quantifying of 
tuples of variables, then L~+(Q) =- L,(Q). 7 Dawar 1993 proves a result that  
emphasizes the significance of this variation of the finite generation problem 
for PTIME.  Namely, there is a reasonable logic capturing PTIME iff PTIME 
is finitely generated over L*. In particular, a negative answer to this finite 
generation problem would immediately yield the separation of PTIME from 
NPTIME.  Regardless of whether the answer in this specific case is negative 
or positive, it would be desirable to find general tools for proving that  a 
given logic is not finitely generated over L*. 

With  this we hope to have shown that  logical definability of general- 
ized quantifiers is an active research area, with a large supply of particular 
problems, but  also with some more general structure theorems, sometimes 
related to problems of computational complexity. In the next section we will 
also find relations to linguistic issues. 

We end this section with a suggestion (as opposed to a conjecture or a 
well-defined problem) pointing in a different direction. Some undefinabil- 

6I.e., quantifiers Q(~)~t of type (1, n} defined by (Q(n)*'t)MAR ¢~ O(An)A~nR. 
rL* is a quite natural logic from a computer science point of view; cf. Makowsky and 

Pnueli 1993. Dawar 1993 calls Q1 reducible to Q2 if QI is definable in L*(Q2). 
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ity results for generalized quantifiers on finite structures seem to require 
sophisticated combinatorial methods. For example, the proof of the result 
about the H£rtig quantifier mentioned above starts with type (1) quantifiers 
Q 1 , . . . , Q m  and a number k, and constructs two models M and M ~, each 
with two disjoint unary predicates P and R, so that  M and M '  are equiv- 
alent relative to the k move Ehrenfeucht-Frai'ssd game for Q I , . . . , Q m ,  and 
P and R have the same cardinality in M but not in M ' .  One way of doing 
this uses van der Waerden's theorem. It also seems that  the construction of 
the models is impossible without some appeal to Ramsey theory, although 
some work would be needed to make this statement exact. This leads to the 
question whether every proof of the undefinability result requires Ramsey 
theory. Or is there perhaps another proof which avoids the construction of 
such models? s 

Given the very general nature of generalized quantifiers it may be worth- 
while to do some ~reverse mathematics '  in the field of finite combinatorics 
and definability questions, and thus to assess the combinatorial content of 
certain results about generalized quantifiers. And corresponding results may 
be obtainable also for infinite models. 9 

4. P o l y a d i c  q u a n t i f i e r s  a n d  l i n g u i s t i c  d e f i n a b i l i t y  

The quantifiers appearing as denotations of determiners in natural  languages 
are normally monadic - -  usually of type (1, 1) where the first argument  
belongs to the noun and the second to the verb phrase, though noun phrases 
with more than one nouns and hence quantifiers of type ( 1 , . . . ,  1~ occur as 
well. A typical example is mostMAB ¢v IAHB I > ]A - B I. But sentences 
can combine such monadic quantifiers into polyadic ones. The canonical 
example is a sentence with quantified subject and object and a transitive 
verb, like most students criticized at least two teachers. With type (1, 1) 
determiner denotations Q1 and Q2 of the subject and object, respectively, 
this construction results in the type (1, 1, 2 / iteration QIQ2, defined by 

(QIQ2)MABR ¢~ (Q1)MA{a E M :  (Q2)MBR~} 

where R a = { b E M : R a b } .  

However, linguists have noted that  natural language sometimes operates on 

nit may be noted that the corresponding result for the stronger quantifier more  
( m o r e M A B  z~ IAI > IBI) ' also proved in Kolaitis and V£~n~nen 1992, only requires a 
simple use of the pigeon hole principle. 

9Barwise 1972a and Friedman 1974 studied how much set theory is needed to prove the 
existence of the ganf  number of second order logic. How much set theory is required to 
prove that the game quantifier is not definable in Loo~? 
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monadic  quantifiers in other  ways. Among the examples cited are branching 
(e.g. for two quantifiers which are upward  monotone  in their right a rgument ,  
Br(Q1,Q2)ABR ¢:~ 3X c_ A 3Y C_ B [ Q 1 X & Q 2 Y & X  × Y c_ R]), the 
resumptions ment ioned  above, and Ramsey quantifiers (Ramk(Q1)AR ¢=~ 
3X C A [Q1X& Vdistinct  al , . . . ,akEXRal , . . . ,ak] ) .  1° Initial papers  
in this move are Keenan 1987,1992, van Benthem 1989, Sher 1990, while 
Keenan and Westerst£hl  1994 is the most  up- to-date  survey. 

A systemat ic  s tudy of such polyadic patterns would thus be quite in- 
teresting.  First ,  what  are most  general schemas of definition for polyadic 
quantif icat ion (cf. Sher 1991, Spaan 1993)? More systematically, one may  
inquire how much  of the existing monadic  theory (cf. van Ben them 1986, 
Westerst£hl  1989) can be lifted to the polyadic case. Second, what  are typ- 
ical propert ies  of the lifts, and can some lifts be interestingly characterized 
in terms of such propert ies? Third,  can we get an i l luminating overview 
of all the  lifts tha t  occur in natura l  languages? Fourth ,  there are obvious 
questions of definability in this connection: how far (and in what  sense) do 
these lifts increase expressive power? And finally, what  are the prospects for 
axiomatizabil i ty here? 

An indicat ion of recent research on points one to four can be found in the 
survey paper  ment ioned  above - -  the subject is far from exhausted.  Here, 
we shall jus t  emphasize some general themes. First,  the general linguistic 
challenge in this area involves the extent  and precise nature  of the princi- 
ple of semant ic  compositionality (cf. Janssen 1994). Where lies the 'Frege 
Boundary '  of s t andard  i terat ion of (quantified) components  of expressions, 
and where do we need addit ional forms of 'logical glue' to construct  the 
sentence meanings  tha t  we use? In the limit, one might  use full l ambda  
calculus or type  theory for this purpose (cf. van Benthem 1991), but  intu- 
itively there are s t rong constraints  on what  would be admissible in empirical 
' l inguistic definability'  (which will be weaker than  logical definability tout  
court) .  These general concerns may  actually be t ranslated into a variety of 
specific technical questions of definability in the earlier sense. Here is a quite 
recent i l lustration. 

There  are two obvious definability questions for a polyadic lift F:  Is 
F(Q1, . . . ,  Qk) definable in terms of Q 1 , . . - ,  Qk, or, more generally, in terms 
of any monadic  quantifiers? As logicians we thus ask if F(Q1, . . . ,Qk)  is 
definable in L ~ ( Q 1 , . . . , Q k ) ,  or in L~,~,(Q1). (A case might  also be made  
for considering other  basis logics than  L ~  here.) But it is not clear tha t  

1°Observe that branching and Ramsey quantifiers could be handled by adding monadic 
quantifiers to second-order logic instead. But the polyadic quantifiers give a more precise 
estimate of just how much extra expressive power one needs here. 
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logical definability is really what the linguist wants: one might reasonably 
restrict attention to definitions that are somehow easily expressed in natural 
languages. Definability as an iteration, or as a boolean combination of itera- 
tions, are obvious candidates that have been studied, but common construc- 
tions in natural languages would yield richer notions of linguistic definability, 
tending towards full lambda calculus and type theory in the limit. Keenan 
1992 calls the most restrained definability notion (definability as an itera- 
tion) reducibility, and provides methods for proving unreducibility of several 
linguistic constructions; these methods are systematized and extended in 
Ben-Shalom 1994a. Apart from reducibility this area remains largely unex- 
plored, but note that in so far as linguistic definitions are expressible in the 
logicM language, a logicM un-definability result yields linguistic undefinabil- 
ity as well. In this connection, Hella, V~£n~nen and Westerst£hl 1994 obtain 
a characterization of precisely when Br(Q1, Q2)is definable in L~(Q1,  Q2), 
and in L ~ ( Q 1 ) ,  on finite structures, and similarly for Ramk(Q1). In gen- 
eral, e.g. when Q1 = Q2 = most or some other 'proportional' quantifier, 
the branching (and the corresponding Ramsey quantifier) is not definable in 
L ~ ( Q 1 ) .  The case of resumption seems harder, but recently Luosto (1994) 
succeeded in proving (using van der Waerden's theorem) the conjecture that 
most(2) is not definable in L ~ ( Q 1 )  on finite structures. 

Another interesting linguistic topic is the semantic and inferential be- 
haviour of quantifier combinations, involving the central notion of scope. 
For instance, how strict is the position-dependence of individual quantifiers 
in a sequence: when can they be interchanged, etcetera? See, for example, 
Zimmermann 1993, van Benthem 1989, Keenan 1993, Westerst£hl 1994. For 
a technicM illustration, once again connecting linguistics with mathemat- 
ics, let us mention Keenan's Prefix Theorem, which is formulated for the 
linear prefixes of iteration, but holds in a suitable form for the 'vertical' 
prefixes of simple branching as well. One version says that if Q1 , . . . ,  Qk and 
Q~, . . . ,  Q~ are positive (do not hold of 0) non-trivial type (1 / quantifiers 
on M and QI'" "Qk = QIl'" "QJk on M, then Qi = Q~ for i = 1 , . . . ,  k, on 
M. There is also a version which does not mention M. Compare this with 
the Linear Prefix Theorem of Keisler and Walkoe 1973 which says that,  for 
Q1 , . . . ,Qk ,  Q~,. . . ,Q'k E {V, 3}, if ( Q , , . . . , Q k )  and (Q~, . . . ,Q~)  are dis- 
tinct prefixes then there is a sentence with the (Q1,. . . ,Qk)-prefix which 
is not equivalent to any sentence with the (Q~,.. . ,Q~)-prefix. Keenan's 
Prefix Theorem generalizes this to arbitrary quantifiers, but the conclusion 
is weaker, namely, only that the two sentences QlXl . . .QkxkRxl . . .xk  and 
Q~Xl...Q~xkRxl.. .xk are not equivalent. The proof is surprisingly simple, 
whereas the Keisler-Walkoe theorem uses Ramsey theory. An obvious ques- 
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tion is: Can the Keisler-Walkoe result be generalized to other quantifiers 
than V and 37 (See the last paragraphs of Keenan 1993 for some caveats.) 
For truly polyadic constructions, of course, these issues would require more 
sophisticated formulations. (Some linguists have even claimed that  absence 
of scope is a hall-mark of the latter: cf. de Mey 1990.) 

As a final linguistic issue, we mention the pervasive phenomenon of plural 
predicates and collective quantification. So far we have been talking about 
so-called 'distributive quantification', i.e., quantification over individuals, 
but an equally common natural  language phenomenon, especially in con- 
nection with plurals, is collective quantification, which can be construed as 
quantification over sets of individuals. This suggests a second-order version 
of generalized quantifiers, or, more generally, a higher-order version. Here 
too there are natural  notions of lifts from the first-order (monadic) domain 
to the higher-order one, and all of the issues we mentioned above for the 
potyadic lifts have their counterparts. These lifts have been investigated in 
van der Does 1992, 1994a, but a general study from the perspective sug- 
gested here does not yet exist. And in contrast with the polyadics there is 
not this t ime an established model theory to fall back on. 

5. W e a k  s e m a n t i c s  a n d  a x i o m a t i z a b i l i t y  

Going higher-order, as in the previous section, carries connotations of a 
substantial  increase in complexity, loss of nice properties, etc. But in fact 
this need not be so. The familiar technique of general models allows great 
freedom in the choice of sets, while re taining a many-sorted first-order 
framework. Thus,  in the analysis of collective quantification, one avoids set 
theoretic complexity and can be explicit about which sets to invoke for the 
t reatment  of plurals. In other words, one may profitably use a 'weak' seman- 
tics tailored to one's needs. Likewise, polyadic patterns may actually involve 
only the existence of certain restricted families of 'choice functions', rather 
than full quantification over Skolem functions and the like. This perspective 
on lowering semantic complexity is discussed at length in van Benthem 1994, 
where a plea is made for reconsidering many received views on semantic com- 
plexity in tile semantics of natural languages and computation. Of course, 
the art will be not just to switch to some broad abstract model class, but to 
find some informative yet more tractable ' intermediate'  modelling. (Many 
successful examples of this kind may be found in the field of algebraic logic, 
which has to navigate between standard set-theoretic models at one extreme 
and trivial Lindenbaum algebras at the other.) Again, this general theme 
has definite technical counterparts. 
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Few logics with generalized quantifiers are axiomatizable in the sense 
of having a recursively enumerable set of standard validities. For example, 
in L~(most )  one can characterize the order of the naturM numbers,  so 
there is no axiomatization (by Tarski's Theorem). But here again there are 
moves to 'weak' semantics which sometimes restore axiomatizability. This 
was originally used by Keisler and others as a technical step in proofs of 
ordinary completeness and omitting types results for certain quantifiers, but 
we have Mready hinted that  'weak' semantics has an independent motivation. 

A weak model has the form (M, q), where M is an ordinary model  and 
q is a quantifier on M - -  in this context ISOM is not assumed. If we now 
take a (generalized) quantifier of type r to be a class Q of weak models 
instead, where the right elements are of type r ,  satisfaction of the usual 
formulas of L ~ ( Q )  in weak models is defined as expected, and the earlier 
notion of a quantifier is essentially the speciM case of a class of models of 
the form (M, QM). n Such quantifiers are called ambiguous in Krynicki and 
Mostowski 1993, the idea being that the variety of local instances of Q on 
a given universe may reflect an ambiguity of meaning. 12 An example would 
be most, which on infinite models might need some form of measure to give 
a reasonable interpretation. 

Continuing with most as our example, there are now at least two ways 
in which axiomatizability could be obtained. First, we may consider a type 
(1, 1) ambiguous quantifier which allows all local quantifiers with some typ- 
ical properties of most, like monotonicity, conservativity, existential import ,  
etc. Now valid reasoning with most which only depends on these properties 
can be axiomatized - -  Doets 1991 in fact shows (roughly) that  universM 
properties like these are always axiomatizable. 

Another route to axiomatization goes via the observation that  (the or- 
dinary quantifier) most is definable in second-order logic, which already has 
a familiar complete semantics in terms of generM models, i.e., models of 
the form (M, K),  where K is a class of relations on M over which the 
second-order variables vary. M. Mostowski 1993b provides proof systems 
for second-order definable quantifiers, which are complete with respect to 
~ny class of general models (M, K) such that  K is closed under definability 
over (M,  K) by L~(Q)-formulas .  This again turns most into an ambiguous 
quantifier, whose ambiguity now resides in the choice of the class K. Other 
cases are the ttenkin quantifiers (quantifiers with partially ordered prefixes), 
but of course there is a vast supply of further examples. For example, if Q1 

11Equivalently, we can view Q as a functional relation which with each M associates a 
class Q M  of quantifiers of type r on M.  

12This is then an extended concept of a generalized quantifier.  W h a t  constra ints  does 
it obey? Some proposals are discussed in Krynicki and Mostowski 1993. 
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and Q2 are second-order definable, so are Br(Q1,Qu) and Ramk(Q1), and 
hence they can be axiomatized by the same methods. 13 

Yet another class of ambiguous quantifiers are the so-called relational 
quantifiers; cf. Krynicki (1994a,b). Using models of the form (M, R), where 
R is a binary relation on M, let Qx~(x)  mean 3a e M Vb E M(aRb ~ ~(b)). 
Here the ambiguity lies in the choice of R, and Krynicki gives completeness 
results for various classes of models of this form. The motives for studying 
these quantifiers have been mostly technical, but there also seem to exist 
affinities with modal  logic - -  cfi section 8 for a general exploration of the 
analogies between quantifiers and modal operators. 

A final proposal for capturing most (due to Krynicki and Mostowski) is 
via using a measure in the sense of a function # from M to [0,1] which is 
finitely additive and homogeneous in that  #({a}) = #({b}) for a, b E M. 
Then on each ( M , # )  one interprets most as usual but using the measure 
instead of cardinality. Does this give an axiomatizable logic? TM 

6. C o m p u t a t i o n a l  s e m a n t i c s  

Intuitively, quantifiers may be viewed in two different ways. On the one 
hand, they express static quantitative relationships that  may hold between 
predicates of individuals. But on the other hand, we can also think of 
them through their associated semantic procedures. This theme has already 
emerged briefly in section 3, during the discussion of generalized quantifiers 
and query languages in computer science. It will also occupy most of section 
7 on 'dynamic semantics'.  At least in the more linguistic tradition, how- 
ever, the first computational  analysis of this kind had to do with so-called 
'procedural semantics' ,  thinking of expressions as coming with certain algo- 
r i thms for their successful evaluation. E.g., van Benthem 1986 introduced 
'semantic au tomata '  for generalized quantifiers. In a more mathematical  
setting, Moschovakis 1991 even proposes to equate evaluation algorithms 
with Fregean 'senses', as opposed to the earlier-mentioned static 'reference' 
of quantifier expressions. This general perspective turns out to be firmly 
related to a long technical tradition. 

Qnantifiers on finite structures can be coded as sets of words. This is 
particularly simple in the monadic case. A binary word wl. • .wn corresponds 

a3Note that the 'second-order version' of an ordinary quantifier Q is sensitive to the 
choice of defining formula - -  equivMent formulas may yield versions with different prop- 
erties. When are they the Same? 

14A similar proposal was made in Colban 1991 using a different notion of measure, 
which however (as Colban noted) reduced to a universal property of Q and hence was 
axiomatizable by the result of Doets mentioned earlier. 
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to an n element s t ructure  with one unary predicate: a 1 is in the predicate,  
a 0 is not .  So a type (1) quantifier Q corresponds to a set ( language) WQ of 
such words. Similarly, an arbitrary monadic quantifier Q corresponds to a 
set WQ of k-letter words for a suitable k. Note tha t  since we assume ISOM 
here these languages will be permutation-closed: the order inside a string 
does not  mat te r .  

We can try to classify familiar classes of quantifiers in terms of the com- 
puta t iona l  complexity of the corresponding languages. Or, in the o ther  di- 
rection, we can try to find logical characterizations in terms of quantifiers of 
familiar complexity classes. Here are the known results in the monadic  case: 

(a) (van Benthem 1987) Let Q be a type (1) quantifier, or a type  (1,1) 
quantifier satisfying conservativity and extension, is Then,  (i) WQ is 
recognized by an acyclic finite au tomaton  iff Q is first-order definable; 
(ii) WQ is recognized by a push-down au to ma to n  i f f s  definable (as a 
binary relation between natural  numbers)  in addit ive ar i thmetic .  

(b) (M. Mostowski 1993a) Let Q be a monadic quantifier, or a resumpt ion  
of one. Then  WQ is recognized by a finite a u t o m a t o n  iff Q is definable 
in L~o~(D), where D is the class of divisibility quantifiers Dn,n = 
2 , 3 , . . . ( D n A  ¢~ IAI is divisible by n). 

For non-monadic  quantifiers one can use another  representat ion,  with ternary 
words. For example, a type (2) quantifier corresponds to a set of words 

W 1 1 . . . W I n # W 2 1 . . . W 2 n # . . . # W n l . . . W n n  

(wij is 0 or 1, # is a separator).  This word encodes a binary s t ruc ture  with 
universe [ 1 , . . . ,  n] and with the predicate that  holds of (i, j ) i f f  wij = 1. For 
this representat ion order does seem to mat te r ,  and in fact the order in which 
the elements of the universe are presented to the recognizing device mus t  be 
a par t  of the structures in the quantifiers for some of the characterizat ion 
results in the following list (those marked with *): 

lSEquivMently, a relativization of a type (1) quantifier. 
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quantifier Q 

• first-order definable 

,definable by transitive 
closure quantifiers 

,definable in fixed point 
logic FP 

definable in first-order 
logic with extra predi- 
cates (S l l  definable) 

definable in first-order 
logic with extra predi- 
cates and sorts 

definable and co-defi- 
nable in first-order logic 
with extra predicates 
and sorts 

language WQ 

computable with con- 
current parallel random 
access machine in con- 
stant time 

Turing computable in 
non-deterministic LOG- 
SPACE 
Turing computable in 
PTIME 

Turing computable in 
non-deterministic 
PTIME 

partially Turing compu- 
table (recursively enu- 
merable) 

Turing computable (re- 
cursive) 

by 

Immermann 1989 

Immermann 1989 

Immermann 1986 
and Vardi 1982 

Fagin 1974 

(Trakhtenbrot 1950) 

(Trakhtenbrot 1950) 16 

Makowsky and Pnueh 1993, 1994 provide a general framework for studying 
computable quantifiers and logics on finite structures, and further character- 
ization results can be found there. From the latter paper we also quote the 
following result (for ordered structures): If a logic L captures a complexity 
class D then L(Q), where Q consists of all relativized resumptions of Q (cf. 
section 3), captures the class DQ where Q is viewed as an oracle. 17 

We noted in section 3 that the use of ordered structures is not really 
motivated from a logical point of view, and that it is an interesting research 
problem to try to find corresponding characterizations without the order. 
(Nevertheless, from a hnguistical or psychological point of view, the idea of 

~6The idea for this and the previous result can be found in Trakhtenbrot 1950, though the 
specific conclusion about definability with extra predicates and sorts is due to V ~ n £ n e n  
and was communicated to us by him. 

17D has to be one of certain familar complexity classes, and various constraints apply 
to L(Q) and the account of oracle computation chosen. 
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some arbitrary but inevitable semantic 'surveying trajectory'  is not without 
its attractions.) Going in the other direction, there are several classes of 
quantifiers that one might want to characterize computationally, for example, 

(i) classes of type (1 / quantifiers determined by some set of natural num- 
bers, such as the class of Pn, n = 2, 3 , . . . ,  where P n A  ¢=~ IAI is a power 
ofn .  

(ii) Henkin quantifiers 

(iii) more generally, for some class of upward monotone quantifiers, its clo- 
sure under branching. 

The connection between definability of a quantifier and the computational 
complexity of the corresponding language thus seems to deserve more sys- 
tematic investigation. For instance, the analysis can be extended to count- 
ably infinite models. A quantifier consisting of countable models corresponds 
to a 'language' which is a set of infinite binary words, i.e., of reats. The known 
results include 

quantifier Q 'language ' WQ by 

definable in the countable A-recursive 
admissible fragment LA 

Barwise 1969 

definable in L~I~ hyperarithmetic in a real Barwise 1972b 

This can even be continued to uncountable models by considering set theo- 
retic criteria on the 'language'. 

7. Q u a n t i f i e r s  in  d y n a m i c  s e t t i n g s  

Computational aspects of natural language have inspired a more general 
move towards what is currently called 'dynamic semantics', where one em- 
phasizes~ instead of traditonal ~truth conditions'~ the changes in human in- 
formation states brought about by processing/understanding various linguis- 
tic expressions. Dynamic features have been investigated most extensively 
in connection with anaphora (cL Kamp 1984, Heim 1983, Groenendijk and 
Stokhof 1991), defaults (Vettman 1991) and presuppositions (Beaver 1994): 
cf. van Benthem, Muskens and Visser 1994 for an extensive survey of sys- 
tems, results and issues. This line is actually one instance of a more general 
move in cognitive science: cfl the theory of informational updates and belief 
revision in G£rdenfors 1988. In this light, it seems natural to ask which 
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dynamic aspects (if any) naturally occur with generalized quantifiers. There 
are at least three levels where one can look for these. 

First and most traditionally, the dynamics of anaphora naturally in- 
volve quantified NPs, and hence, a marriage between dynamic semantics for 
anaphora and generalized quantifier logics seems an obvious project. There 
have been several proposMs for achieving this, starting with Chierchia 1991 
and Kamp and Reyle 1993, and continuing with van den Berg 1991, 1994, 
van Eyck and de Vries 1992, Kanazawa 1994a,b and Fernando 1994. It 
should be emphasized that  no single preferred format has emerged yet. To 
give an illustration, consider one approach to adding generalized quantifiers 
to Groenendijk and Stokhof's dynamic version of predicate logic. Here the 
basic semantic value of a formula 99 relative to a model M is no longer the 
set [99]M of assignments satisfying it, but instead a binary transition relation 
[[99]]M between assignments such that  [99]M = dom([[99]]M). Now a wealth of 
new logical operators, various (more or less) dynamic variants of the familiar 
ones, become available. For example, in addition to ordinary conjunction 

s[[99AO]]Mg iff s = s '  and ~E[99]MN[O]M 

we have serial conjunction 

for s o m e  and 

Likewise, one dynamic version of implication is 

8[[99 ~ ¢]]M St iff .S = S' and for all s"(s[[99]]M#' implies S" e [~)]M) 

wheras dynamic existential quantification is defined by 

s[[Ex99]]MS' iff for some aEM, s(a/x)[[99]]MS' 

These are examples, and a general concept of a logical constant in this con- 
text,  in particular a viable concept of a dynamic generalized quantifier, re- 
mMns to be made clear. But following hints from the semantics of anaphora 
one often restricts at tention to quantifiers that  (in contrast with E) yield 
tests, i.e., if 99 = Qx(¢ ,  X) then [[99]]M is the identity relation restricted to 
[99]M. is Also, it is natural  to consider quantifiers that  can be defined from or- 
dinary static quantifiers and the new dynamic operators. If Q is a type (1,1) 

lSThis makes Qx(¢, x) 'externally static' but allows it to be 'internally dynamic' so that 
assignments made by a dynamic existential quantifier Ey in ¢ may be passed on to free 
occurrences of y in X. 
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static quantifier, two canonical dynamic versions (first proposed in Chierchia 
1991 and Kamp and Reyle 1993) of it (its 'weak'  and 's trong'  readings) are 

Q W x ( ¢ ,  )c) ++ Qx(¢ ,  ¢; x)  

QSx(¢, x) ++ Qx(¢, 

In the weak case, for example, this means that  we have 

s[[QWx(¢,X)]]MS ' iff s =  s' and 

Q M { a e M  : .s(a/x)e[~b]M} 

{ a E M  : s (a / x )E[¢;X]U)  19 

A natural  question in this context is what becomes of the earlier denotational  
constraints in the static case, such as Conservativity or various forms of 
Monotonicity. Pr ima facie, these can now fail (this was even the original 
point of the famous 'donkey sentences' from Geach 1968, which have inspired 
so much research in this area). Kanazawa 1994a finds that  Conservativity 
can actually occur in three plausible dynamic vet sions, which still collapse 
in the static case. And he shows how dynamic monotonic ity serves to prune 
the possible range of dynamic quantifiers corresponding to a given static 
one: in fact, under plausible assumptions, certain common monotonici ty  
pat terns entail that  the dynamic quantifier corresponding to Q is one of 
QW and Qs,  so these definitions are tess ad hoc than it might seem at 
first. Such observations are instances of a general ' t ransfer theory '  tha t  
one would like to see. In the same realm, Kanazawa 1994b characterizes, 
amongst  others, those dynamic quantifiers for which the so-called 'proport ion 
problem' cannot arise. 

A similar technical question on the agenda right now is if dynamic  gener- 
alized quantifiers be obtained from the s tandard theory via systematic  'dy- 
namic lifts', say in the style of Dekker 1993. Also, there are many  more stan- 
dard logical questions of axiomatization and expressive power to be asked 
in connection with a mathematical  marriage between generalized quantifiers 
and dynamic logic, yielding systems of the form 'PDL(Q) '  (cf. H a r d  1984). 

But quantifiers can also interact with other dynamic phenomena in com- 
positional interpretation. One example are the polyadic constructions of 
section 4. Intuitively, there are various processing strategies for quanti- 
fied components in a sentence, some :more 'sequential '  (leading to s tandard  
Fregean iterations) and others more 'paraUel', leading to branching or other 

19For example, Most farmers who own a donkey beat it can now be formalized (in the 
weak case) by mostWz(Fx A Ey(Dy A Oxy), Bxy), which (cf. the previous note) says that 
most of those farmers who own some donkey beat at least one of the donkeys they own. 
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genuinely polyadic constructs. So far, there has been no systematic dynamic 
analysis of polyadics with any explanatory value, which might provide a 
deeper underpinning for the mathematical possibilities that we found in the 
above. Another form of dynamics in interpretation is the changing of con- 
texts or 'local domains of quantification' during the evaluation of sentences. 
What  a noun phrase like "all girls" refers to may be subject to continuous 
contextual modification. This phenomenon was signalled in the logical tra- 
dition in Westerst£hl 1984, and some proposals for a corresponding dynamic 
logic of 'domain change' may be found in van Benthem and Cepparello 1994. 
(Note, for instance, how the usual Conservativity for determiners may be un- 
derstood dynamically as an instruction constraining general domain change.) 
Similarly, recent work on anaphora and quantification aiming to formalize 
the notion of an E-type anaphor (Lappin and Francez 1994, Jackson 1994, 
van der Does 1993, 1994b) also engages in 'domain dynamics', whereby each 
occurrence of a quantifier is restricted by an appropriate context set. This 
can be modelled using dependent objects, e.g., variables labelled by formu- 
las. The problem is to account for the dependency among domains and the 
interaction of this dependency with the binding properties of quantitiers. 
For example, should free variables in the labels always be brought under 
the scope of the relevant quantifiers, or can dependencies be resolved in a 
different way? 

Finally, quantified expressions may also trigger actual changes in the 
construction of semantic models (the preceding form of dynamics merely 
concerned 'zooming in' on certain parts of a fixed domain). For instance, an 
existental quantifier some A may be an instruction to add a new object to 
the domain satisfying this or that property, much as in the construction of a 
Beth-style semantic tableau. Again, no systematic theory of the latter form 
of quantifier dynamics exists so far. What would probably be needed is a 
more principled account of various functions served by linguistic utterances: 
model checking, model construction, querying, etcetera. 

8. Q u a n t i f i e r s  a n d  m o d a l  logic  

There are many analogies between quantitiers and modal operators, as has 
often been pointed out. Notably, modal diamonds are like existential quanti- 
tiers and modal boxes like universal ones. This fact underlies the usual trans- 
lations from modal logic to standard logical formalisms (cf. van Benthem 
1984a). But there is more to this analogy. For instance, in its present-day 
manifestation, Modal Logic is a very general theory of (restricted) quantifier 
patterns with their model theory and proof theory (cf. Venema 1991, de 
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Rijke 1993). And hence, many more analogies have emerged. For instance, 
van der Hoek and de Rijke 1993 use modal techniques to find direct axioma- 
tizations and definability results for numerical quantifiers at least n, as well 
as most, within a syllogistic context. The latter paper also suggests applica- 
tions of 'small' generalized quantifier formalisms to so-called 'terminological 
languages' in the field of knowledge representation. 

Likewise, Ben-Shalom 1994b shows how the central modal semantic in- 
variance of 'bisimulation' may be discerned underneath notions and results 
in the standard theory of unary quantifiers. For this purpose, she analyzes 
the following general definition schema: 

M , s  I = OQp iff Qw{s'lsRs'}{s'lM ,s' I = c2}. 

Various equivalences then turn out to hold between standard modal results 
and quantifier properties. For instance, the modality [:]Q is invariant under 
bisimulation if and only if the generalized quantifier Q is a Boolean combi- 
nation of the first-order quantifiers 3 and V. Evidently, this is just the start 
for a more extensive elaboration of analogies between generalized quantifier 
theory and modal logic. For instance, what would be a preservation theorem 
w.r.t, bisimulation for the whole language EL(Q)? 

Perhaps a deeper contact between the two perspectives has arisen in 
recent work on generalized semantics for first-order quantifiers, inspired by 
the earlier tradition of cylindric algebra (cf. the cylindric modal algebra of 
Venema 1991 and the 'modal state semantics' of van Benthem 1994). Here, 
the general pattern of interpretation for quantified expressions becomes as 
follows: 

M, a l= Qx~o iff there exists an assignment b such that 

(1) Rxab and (2) M,b  ~- ~o 

More generally, assignments may become abstract states here, while the re- 
stricting relations Rx can vary too. This semantics produces a decidable 
minimal base logic, on top of which different kinds of quantifiers may be 
defined (which would all be collapsed to 3 in the standard semantics). For 
instance, combinations QxQy~ will not be equivalent to QyQx~9, and nei- 
ther of them is equivalent to the binary tuple quantifier Qxy~. (All these 
equivalences would express existential conditions on the behaviour of the re 
stricting relations, and the availability of states in the universe). Thus, one 
can model many classes of generalized quantifiers by varying the behaviour 
of these restriction models, where exact correspondences may be obtained 
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using techniques from Modal Logic. For instance, simple principles suppress- 
ing 'vacuous quantification' like QxQx~ ~ Qx~ or Qx,Qx~  ~ ~Qx~ will 
now become modal S5-axioms stating that Rx is a Euclidean relation. 

Current questions in this area concern the choice of natural sets of defin- 
ing conditions for quantifiers, and obtaining logics with desirable combina- 
tions of meta-properties (including decidability). Moreover, on the modal 
analogy, one may define quantifiers of higher arities, such as variants of 
temporal since and until, and study their properties in a similar vein. 

Fina~y, a somewhat similar relational semantics with a modal-style ax- 
iomatization has been proposed for first-order quantifiers in Alechina 1993, 
1995 and van Benthem 1993, but this time, with a dependence relation di- 
rectly on objects, rather than between assignments. Here, one sets 

M,  a l , . . . , a k  I = Qxf(x ,  y l , . . . , yk)  iff there exists some object a 
such that Ra, a l , . . . ,  ak with 
M, a, a l , . . .  , ak ]= ~(x, y l , . . . ,  y~) 

The precise connection with the preceding view is not yet dear,  but will 
probably involve invariance principles destroying the individual identity of 
variables. Alechina 1993 extends this analysis to binary generalized quanti- 
tiers, enlarging the modal analogy to one with Conditional Logic, and pro- 
viding applications to default reasoning. Precise reductions and questions of 
axiomatization remain to be explored. 

9. P r o o f  t h e o r y  of  g e n e r a l i z e d  q u a n t i f i e r s  

Generalized quantifiers are usually thought of as a typically semantics-ge- 
nerated notion, but historically, their first use was in systems of inference, 
namely, in the traditional Syllogistic. And also more generally, reasoning 
with quantifiers has served as a paradigm for what may be called natural 
logic in human languages (cf. Sanchez Valencia 1991). Thus, the technical 
issues of axiomatization for quantifier logics raised in previous sections are 
very much to the point. Nevertheless, there are further aspects here. For 
instance, natural inferential divisions in human languages need not coincide 
with those found in the usual generalized quantifier formalisms (which take 
all of first-order logic for granted at the outset), and a more careful hierarchy 
of 'sub-mechanisms' may be found in van Benthem 1993, asking for separate 
descriptions of, e.g., pure syllogistic, Boolean monotonicity reasoning, and 
higher forms of quantified inference. 

Another relevant topic from the earlier theory of unary generalized quan- 
tification retains its relevance too (van Benthem 1984b). When doing so- 
cMled inverse logic, one starts from some inferential patterns (potentially) 
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occurring in natural language, and then asks whether any generalized quan- 
tifiers exist exemplifying these, or just these. Questions of inverse logic have 
been studied extensively for unary quantifiers (cf. Westerst£hl 1989), but 
they remain largely unexplored for polyadics or collectives. 

But one can also strike out from inside the core of mathematical  logic. 
Generalized quantifiers have traditionally posed a challenge to the famous 
Brouwer-Heyting-Kolmogorov view of logical Proof Theory. Unlike the usual 
(constructive) connectives and first-order quantifiers, quantifiers like most or 
even exactly one do not seem to admit of perspicuous adequate introduction- 
and elimination-rules. (For some authors, this has even been a strong ar- 
gument  against their logical worthiness, witness Sommers 1982.) Indeed, 
there exist characterization results by Zucker, Prawitz and Schroeder-Heister 
which seem to imply that only the first-order standard quantifiers are amen- 
able to this style of analysis, which would make generalized quantifiers proof- 
theoretic oddities. This challenge has been met in several ways. One is that  
of Sundholm 1991, where the usual set-theoretic t ruth  conditions for gener- 
alized quantifiers are transcribed into a Martin-LSf-style type theory, whose 
rules for the standard quantifiers 3, V employed in those definitions will then 
provide an indirect proof-theoretic t reatment after all. (Ranta  1991 applies 
a more elaborate proof-theoretic program in this vein to natural  language.) 
A more radical innovation in the proof-theoretic t reatment  of generalized 
quantifiers may be found in recent work by van Lambalgen 1991. 

In its current manifestation, the latter approach may be characterized 
by the slogan "generalized quantifiers from substructural logics". The usual 
sequent calculi for predicate logic have a hidden structural rule (usually 
inside the introduction rule for the universal quantifier), to the effect that  
variables do not have an identity of their own, but serve to mark positions 
only. One can make this structural rule explicit, and then consider proof 
systems where it is absent, allowing variables to have a separate identity. Of 
the many ways in which this can happen, one of particular importance to 
generalized quantifiers is the case where variables depend on other variables. 
Such systems yield complete Gentzen axiomatizations for the quantifiers 
for many, for uncountably many and for almost all (in Friedman's sense). 
Moreover, van Lambalgen has shown that only certMn of these logics lead to 
systems that  allow of Cut Elimination, thereby providing a new angle upon 
what might be considered 'natural '  generalized quantifiers. The  resulting 
range of questions will be clear. Basically, all of classical Proof  Theory may 
be rethought in the presence of generalized quantifiers in a rule format with 
appropriate variable restrictions. It seems plausible that  this viewpoint is 
closely related to the semantic use of 'assignment restrictions' mentioned in 
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the modal perspective of section 8. (For instance, by leaving out certain 
assignments in a model, one can force variables to 'work together' and hence 
become 'dependent'.) It might also be usefully applied to the dependent 
objects needed for the dynamic formalizations of E-type anaphora mentioned 
in section 7. Likewise, there seem to be interesting connections with systems 
of cylindric algebra, but the precise situation is not yet dear. 

10. F u r t h e r  t o p i c s  

The preceding sections have identified the main loci of current research. 
Nevertheless, there are still various other linguistic issues that mac" drive 
logical research in the area. We conclude by mentioning a few. 

(1) In natural language, there are still other forms of quantification be- 
sides those over individuals and collectives. In particular, there is a perva- 
sive duality between so-called 'count nouns' calling for the above counting 
quantifiers, and so-called 'mass terms' calling for measuring quantifiers (cf. 
Lcnning 1994). No systematic theory of the latter form of quantification has 
been developed so far. 

(2) Moreover, it is well-known that the standard determiner pattern of 
quantification is not the only quantificational tool of natural languages. Even 
in English, quantification may also be expressed by adverbial constructions, 
such as "the boys all played the game" or "the boys mostly played the game". 
In many languages of the world, the latter type of construction is indeed 
the dominant one. Very little mathematical analysis of these alternative 
possibilities has taken place yet. 

(3) Many types of lexical expression exhibit behaviour which is closely 
related to quantifiers, such as conditionals, temporal adverbials, or even dy- 
namic connectives (cfl van Benthem 1986, LSbner 1987, ter Meulen 1994, 
Lapierre 1991, van Benthem and Cepparello 1994). The resulting model- 
theoretic and proof-theoretic analogies have hardly been touched systemat- 
ically. 

(4) Linguistic quantifiers do not operate in isolation. One can study 
their contacts with various other linguistic mechanisms. A case in point 
is the pervasive semantic phenomenon of partiality. There is a relatively 
mechanical generalization from the standard theory to the case of partial 
models, but also some more intriguing questions. (CL van Benthem 1988, 
van Eyck 1991 for some first explorations.) 

(5) More generally, the contribution of generalized quantifiers to sentence 
meanings arises in interaction with various compositional mechanisms. Ex- 
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amples of these are anaphora (cf. section 7 on dynamic semantics), various 
operators switching between collective and distributive predicates (cf. van 
der Does 1992), or monotonicity and general Boolean inference (Sanchez 
Valencia 1991, van Benthem 1991). In each ease, one wants a combined 
account telling us how the two systems cooperate in order to produce the 
correct sentence meanings. One example of this is the 'monotonidty calcu- 
lus' of van Benthem 1986, which predicts polarity of predicate occurrences 
in complex sentences, at least, assuming standard Fregean iteration. No ex- 
tensions have taken place yet to the various forms of polyadic composition 
mentioned in section 4. Moreover, no simple calculi have been found yet for 
other semantic properties of interest, such as Conservativity. 

(6) The preceding perspective also leads to clear-cut mathematical ques- 
tions. One may study generalized quantifiers in richer logicM environments 
than the usual first-order bases, notably, that of a Boolean typed lambda 
calculus (cf. van Benthem 1991). As it turns out, many open technical 
questions emerge then. For instance, in order to prove not just 'soundness' 
but also 'completeness' for a natural monotonicity calculus with arbitrary 
generalized quantifiers, one would need a Lyndon Theorem for positive oc- 
currences with respect to upward monotonicity in this setting. So far, only 
partial results in this direction have been found (van Benthem 1992, Spaan 
1993). More generally, the model theory of generalized quantifiers in Boolean 
typed lambda calculus remains to be developed, as a more realistic reflection 
of how natural languages function. 

(7) Our presentation has largely presupposed standard semantics for gen- 
eralized quantifiers. But of course, there are other styles of modelling, at 
least in principle, which might carry their own particular insights. Two such 
examples are algebraic semantics (cf. Ngmeti 1991) and game-theoretical 
semantics (cf. Hintikka and Kulas 1984). 

(8) Although generalized quantifiers belong to the latest technical tool kit 
of modern logic, they also reflect one of the most traditional subjects in the 
field, being syllogistic subject-predicate structure, dating back long before 
the Boolean and Fregean Revolution. There are a few historical studies in the 
field (cf. Sanchez Valencia 1991, and recently Hodges 1993 on monotonicity 
reasoning), but much more remains to be explored. 

R e f e r e n c e s  

[1] N. ALECHINA, 1993, Binary quantifiers and relational semantics, Report LP-93-13, 
Institute for Logic, Language and Computation, University of Amsterdam. 



Directions in generalized... 

[2] N. ALECHINA, 1995, Modal quantifiers, dissertation, Institute for Logic, Language 
and Computation, University of Amsterdam. 

[3] N. ALECHINA and J. VAN BENTHEM, 1993, Modal quantification over structured do- 
mains, Report ML-93-02, Institute for Logic, Language and Computation, University 
of Amsterdam. (To appear in: M. de Rijke (ed.), Second Yearbook of Modal Logic.) 

[4] J. BARWISE, 1969, Infinitary logic and admissible sets, Journal of Symbolic Logic 34, 
226-252. 

i5] J. BARWISE, 1972a, The ttanfnumber of second-order logic, Journal of Symbolic Logic 
37, 588-594. 

I6] J. BAKWISE, 1972b, Absolute logics and Loo~, Annals of Mathematical Logic 4, 309- 
340. 

[7] J. BAI~WISE and S. FEFERMAN, (eds.), 1985, Model-Theoretic Logics, Springer-Verlag, 
New York. 

[8] D. BEAVER, 1994, Presupposition, to appear in: van Benthem and ter Meulen 1995. 

[9] D. BEN-SHALOM, 1994a, A tree characterization of generalized quantifier reducibility, 
in: Kanazawa and Pinon 1994, 119-145. 

[10] D. BEN-SHALOM, 1994b, Natural language, generalized quantifiers and modal logic, 
Department of Linguistics, University of California, Los Angeles / Centre for Math- 
ematics and Computer Science, Amsterdam. 

[111 J. VAN BENTHEM, 1984a, Correspondence theory, in: D. Gabbay and F. Guenthner 
(eds.), Handbook o] Philosophical Logic, vol. II, Reidel, Dordrecht, 167-247. 

[12] J. VAN BENTHEM, 1984b, Questions about quantifiers, Journal o] Symbolic Logic 49, 
443-466. 

[13] J. VAN BENTHEM, 1986, Essays in Logical Semantics, Reidel, Dordrecht. 

[14] J. VAN BENTHEM, 1987, Semantic automata, in: D. de Jongh et al. (eds.), Studies in 
the Theory of Generalized Quantifiers and Discourse Representation, Foris (GRASS 
series, vol. 8), 157-181. 

[15] 3. VAN BENTHEM, 1988, A Manual of Intensional Logic, CSLI Lecture Notes, vol. 1, 
Chicago UP, Chicago. 

[16] J. VAN BENTHEM, 1989, Polyadic quantifiers, Linguistics and Philosophy 12, 437-464. 

[17] J. VAN BENTHEM, 1991, Language in Action. Categories, Lambdas and Dynamic 
Logic, North-Holland, Amsterdam, (Studies in Logic, vol. 130). 

[18] J. VAN BENTHEM, 1992, Quantifiers in the world of types, to appear in: J. van der 
Does and J. van Eyck (eds.), Generalized Quantifier Theory and Applications, CSLI 
Lecture Notes. [Original version: Report LP-92-09, Institute for Logic, Language and 
Corn pu tation, University of Amsterdam.] 

[19] J. VAN BENTHEM, 1993, Quantifiers and inference, to appear in: Krynicki, M. 
Mostowski and Szczerba 1994, 413-432. 



414 J. van Benthem,  D° Westerstdhl 

[20] J. VAN BENTHEM~ 1994, The sources of complexity: content versus wrapping, Report 
X-9~-01, Institute for Logic, Language and Computation, Univ. of Amsterdam. To 
appear in: M. Marx and L. Pol6os (eds.), Logic@Work, Oxford UP. 

[21] J. VAN BENTHEM and J. BERGSTRA, 1993, Logic of transition systems, Report CT- 
93-03, Institute for Logic, Language and Computation, University of Amsterdam. 
Appared in Journal of Logic, Language and Information, vol. 3:4, 247-283. 

[22] J. VAN BENTHEM and G. CEPPARELLO, 1994, Tarskian variations: dynamic parame- 
ters in standard semantics, Centre for Mathematics and Computer Science, Amster- 
dam. 

[23] J. VAN BENTHEM, 1~. MUSKENS and A. VISSER, 1994, Dynamic semantics, to appear 
in: van Benthem and ter Meulen 1995. 

[24] J. VAN BENTHEM and A. TER MEULEN. (eds.), 1985, Generalized Quantifiers in 
Natural Language, Foris, Dordrecht, (GRASS Series vol. 4). 

[25] J. VAN BENTHEM and A. TER MEULEN (eds.), 1995, Handbook of Logic and Language, 
Elsevier Science Publishers, Amsterdam, to appear. 

[26] M. VAN DEN BERG, 1991, Dynamic generalized quantifiers, in: J. van der Does and J. 
van Eyck (eds.), Generalized Quantifier Theory and Applications, Institute for Logic, 
Language and Computation, Amsterdam, 223-244. 

[27] M. VAN DEN BERG, 1994, A direct definition of generalized dynamic quantifiers, in: 
P. Dekker and M. Stokhof (eds.), Proceedings of the 9th Amsterdam Colloquium, 
Institute for Logic, Language and Computation, Amsterdam, 121-140. 

[28] J. CAI, M. FURER and N. IMMERMANN, 1992, An optimal lower bound on the number 
of variables for graph identification, Combinatorica 12, 389-410. 

[29] A. CHANDRA and D. HAREL, 1982, Structure and complexity of relational queries, 
J. Comput. System Sci. 25, 99-128. 

[30] C. CHIERCttIA, 1992, Anaphora and dynamic binding, Linguistics and Philosophy 15, 
111-183. 

[31] E. COLBAN, 1991, Three Studies in Computational Semantics, dissertation, Dept. of 
Mathematics, Univ. of Oslo. 

[32] L.J. CORREDOR, 1986, it El reticulo de las logieas de primer orden con quantificadores 
cardinales, Revista Colombiana de Mathematieas 20, 1-26. 

[33] A. DAWAR, 1993, Generalized quantifiers and logical reducibilities, to appear in: 
Journal of Logic and Computation. 

[34] P. DEKKER, 1993, TranssententiaI Meditations: Ups and Downs in Dynamic Seman- 
tics, ILLC Dissertation Series 1993-1, Institute for Logic, Language and Computation, 
University of Amsterdam. 

[35] J. VAN DER DOES, 1992, Applied Quantifier Logics, Dissertation, Department of Philos 
ophy, University of Amsterdam. 



Directions in generalized... 

[36] J. VAN DER DOES, 1993, The dynamics of sophisticated laziness, in: J. Groenendijk 
(ed.), Plurals and Anaphora, Dya~a-2 defiverable R2.2.A, Part 1. 

[37] J. VAN DER DOES, 1994a, On complex plural noun phrases, in: Kanazawa and Pinon 
1994, 81-115. 

[38] J. VAN DER DOES, 1994b, Formalizing E-type anaphora, in: P. Dekker and M. Stokhof 
(eds.), Proceedings of the 9th Amsterdam Colloquium, Institute for Logic, Language 
and Computation, Amsterdam, 229-248. 

[39] K. DOETS, 1991, Axiomatizing universal properties of quantiflers, The Journal of 
Symbolic Logic 56, 901-905. 

[40] J. VAN EYCK, 1991, Quantification and partiality, Report CS-R9152, Centre for 
Mathematics and Computer Science, Amsterdam. 

[41] J. VAN EYCK and F.J.  DE VRIES, 1992, Dynamic interpretation and Hoare deduction, 
Journal of Logic, Language and Information 1, 1-44. 

[42] R. FAGIN, 1974, Generalized first-order spectra and polynomial time recognizable 
sets, in: C. Karp (ed.), Complexity of Computations, SIAM-AMS Proc. 7, 43-73. 

[43] T. FERNANDO, 1994, Generalized quantifiers as second order programs - -  'dynami- 
cally' speaking naturally, in: P. Dekker and M. Stokhof (eds.), Proceedings of the 9th 
Amsterdam Colloquium, Institute for Logic, Language and Computation, Amsterdam, 
287-300. 

[44] H. FRIEDMAN, 1974, On the existence proofs of Hanf numbers, Journal of Symbolic 
Logic 39, 318-324. 

[45] P.G.~RDENFORS, 1988, Knowledge in Flux. Modelling the Dynamics of Epistemic 
States, The MIT Press, Cambridge (Mass.). 

[46] P. GEACH, 1968, Reference and Generality, Cornell University Press, Ithaca (N.Y.). 

[471 J. GROENENDI3K and M. STOKtlOF, 1991, Dynamic predicate logic, Linguistics and 
Philosophy 14, 39-100. 

[48] D. HAREL, 1984, Dynamic logic, in: D. Gabbay and F. Guenthner (eds.), Handbook 
of Philosophical Logic, vol. II, Reidet, Dordrecht, 497-604. 

[49] I. HEIM, 1982, The Semantics of Definite and Indefinite Noun Phrases, Dissertation, 
Department of Linguistics, University of Massachusetts, Amherst. 

[50] L. HELLA, 1989, Definability hierarchies of generalized qu~ntifiers, Annals of Pure 
and Applied Logic $3, 235-271. 

[51] L. HELLA, 1992, Logical hierarchies in PTIME, Proceedings of the 7th IEEE Sympo- 
sium on Logic in Computer Science, 360-368. Full version submitted to Information 
and Computation. 

[52] L. HELLA and K. LUOSTO, 1992, Finite generation problem and n-ary quantifiers, to 
appear in: Krynicki, M. Mostowski and Szczerba 1994. 



416 J. van Beathem, D. Westerst£hl 

[53] L. HELLA, K. LUOSTO and J. V.~AN~.NEN, 1994, The Hierarchy Theorem for gener- 
alized quantifiers, ms., Dept. of Mathematics, Univ. of Helsinki. 

[54] L. HELLA, J. VA~.N~,NEN and D. WESTERST~HL, 1994, Definability of polyadic lifts 
of generalized quantifiers, forthcoming. 

[55] J. HIGGINBOTHAM and R. MAY, 1981, Questions, quantifiers and crossing, The Lin- 
guistic Review 1, 41-79. 

[56] J. HINTIKKA and J. KULAS, 1984, The Game of Language, Reidel, Dordrechto 

[57] W. HODGES, 1993, A defence of the doctrine of distribution, Dept. of Mathematics, 
Queen Mary's College, London. 

[58] W. VAN DER HOEK and M. DE RIJKE, 1993, Generalized quantifiers and modal logic, 
Journal of Logic, Language and Information 2, 19-58. 

[59] J. HOEKSEMA, 1983, Plurality and conjunction, in: A. ter Meulen, ed., Studies in 
Model-Theoretic semantics, Foris, Dordreeht, (GRASS Series, vol. 1), 63-83. 

[60] N. IMMERMANN, 1986, Relational queries computable in polynomial time, Informa- 
tion and Control 68, 86-104. 

[61] N. IMMERMANN, 1989, Descriptive and computational complexity, in Proceedings of 
Symposia in Applied Mathematics, vol 38. 

[62] E. JACKSON, 1994, Donkey sentences, descriptions and quantification, ms., Stanford 
University. 

[63] TH. JANSSEN, 1994, Compositionality, to appear in: van Benthem and ter Meulen 
1995. 

[64] H. KAMP, 1984, A theory of truth and semantic representation, in: J. Groenendijk 
et al. (eds.), Truth, Interpretation and Information, Foris, Dordrecht, 1-41. 

[65] H. KAMP and U. REYLE, 1993, From Discourse to Logic, Kluwer, Dordrecht. 

[66] M. KANAZAWA, 1994a, Dynamic generalized quantifiers and monotonicity, in: 
Kanazawa and Pinon 1994, 213-249. 

[67] M. KANAZAWA, 1994b, Weak versus strong readings of donkey sentences and mono- 
tonicity inference in a dynamic setting, Linguistics and Philosophy 17, 109-158. 

[68] M. KANAZAWA and C. PINON (eds), 1994, Dynamics, Polarity and Quantification, 
CSLI Lecture Notes, Stanford. 

[69] E. KEENAN, 1987, Unreducible n-ary quantifiers in natural language, in: P. 
G•rdenfors, ed., Generalized Quantifiers: Linguistic and Logical Approaches, Reidel, 
Dordrecht, 109-150. 

[70] E. KEENAN, 1992, Beyond the Frege boundary, Linguistics and Philosophy 15, 199- 
221. 

[71] E. KEENAN, 1993, Natural language, sortal reducibility and generalized quantifiers, 
The Journal of Symbolic Logic 58, 314-325. 



Directions in generalized... 

[72] E.  KEENAN and D. WESTERST~IL, 1994, Generalized quantifiers in linguistics and 
logic, to appear in: van Benthem and ter Meulen 1995. 

[73] J.  KEISLEI~ and W. WALKOE, 1973, The diversity of quantifier prefixes, The Journal 
of Symbolic Logic 38, 79-85. 

[74] PH. KOLAITIS and J. VAANANEN, 1992, Generalized quantifiers and pebble games 
on finite structures, Proceedings of the 7th IEEE Symposium on Logic in Computer 
Science, 348-359. Full version to appear in: Annals of Pure and Applied Logic. 

[75] M. KRYNICKI, 1994a, Quantifiers determined by classes of binary relations, to appear 
in: Krynicki, M. Mostowski and Szczerba 1994. 

[76] M. KRYNICKI, 1994b, Relational quantifiers, to appear in: Dissertationes Mathemat- 
ieae. 

[77] M. KI~YNICKI, A. LACHLAN and J. VAANANEN, 1984, Vector spaces and binary quan- 
tifiers, Notre Dame Journal of Formal Logic 25, 72-78. 

[78] M. KRYNICKI and M. MOSTOWSKI, 1993, Ambiguous quantifiers, ms., Dept. of Phi- 
losophy, Univ. of Warsaw. 

[79] M. Kt~YNICKI, M. MOSTOWSKI and L. W. SZCZERBA, (eds.), 1994, Quantifiers, 
Ktuwer, to appear. 

[80] M. KRYNICKI and J.  VAMqANEN, 1982, On orderings of the family of all logics, Arch. 
Math, Logik Grundlag. 22, 141-158. 

[81] M. VAN LAMBALGEN, 1991, Natural deduction for generalized quantifiers, to appear 
in: J. van der Does and J. van Eyck (eds.), Generalized Quantifier Theory and Ap- 
plications, CSLI Publications, Stanford. 

[82 t S. LAPIERRE, 1991, Analogies between quantifiers and conditionals, in: J. van der 
Does and J. van Eyck, Generalized Quantifier Theory and Applications, Institute for 
Logic, Language and Computation, Amsterdam, 155-174. 

[83] S. LAPPIN and N. FRANCEZ, 1994, E-type pronouns, I-sums, and donkey anaphora, 
Linguistics and Philosophy 17, 391-428. 

[84] P. LINDSTROM, 1966, First order predicate logic with generalized quantifiers, Theoria 
32, 186-195. 

[85] P. LINDSTROM, 1992, personal communication. 

[86] S. Lt)BNER, 1987, Quantification as a major module of natural language semantics, 
in: J. Groenendijk et al. (eds.), Studies in Discourse Representation Theory and the 
Theory of Generalized Quantifiers, Foris, Dordrecht, 53-85. 

[87] J .T.  LONNING, 1994, Plurals and collectives, to appear in: van Benthem and ter 
Meulen 1995. 

[88] K. LUOSTO, 1994, personal communication. 

[89] J.  MAKOWSKY and Y. PNUELI, ]993, Computable quantifiers and logics over finite 
structures, to appear in: Krynicki, M. Mostowski and Szczerba 1994. 



418 J. van Benthem, D. Westerstghl 

[90] J. MAKOWSKY and Y. PNUELI, 1994, Oracles and quantifiers, to appear in E. BSrger, 
Y. Gurevich and K. Meinke Springer (eds.), Selected Papers from CSL'93, Lecture 
Notes in Computer Science. 

[91] J. MAKOWSKY, S. SHELAH and J. STAVI, 1976, A-logics and generalized quantifiers, 
Annals of Mathematical Logic 10, 155-192. 

[92] A. TEt¢ ~IEULEN, 1994, Representing time in natural language: the dynamic interpre- 
tation o] tense and aspect, The MIT Press, Cambridge (Mass.). 

[93] J. DE t~{EY, 1990, Determiner Logic or the Grammar o] the NP, dissertation, Depart- 
ment of Linguistics, Rijksuniversiteit Groningen. 

[94] Y. MOSCHOVAKIS, 1991, Sense and re]erence as algorithm and value, Manuscript, 
Department of Mathematics, University of CMifornia, Los Angeles. 

[95] M. MOSTOWSKI, 1993a, The logic of divisibility, to appear in: the Journal of Symbolic 
logic. 

[96] M. MOSTOWSKI, 1993b, Quantifiers definable by second-order means, to appear in: 
Krynicki, M. Mostowski and Szczerba 1994. 

[97] I. NI~METI, 1991, Algebraizations of quantifier logics, an introductory overview, Studia 
Logica 50, 485-569. 

[98] A. RANTA, 1991, Intuitionistic categorial grammar, Linguistics and Philosophy 14, 
203-239. 

[99] M. DE RDKE, 1993, Extending Modal Logics, Dissertation ILLC-93-4, Institute for 
Logic, Language and Computation, University of Amsterdam. 

[100] V. SANCHEZ VALENCIA, 1991, Studies on Natural Logic and Categorial Grammar, 
Dissertation, Institute for Logic, Language and Computation, University of Amster- 
dam. 

[101] G. SHER, 1990, Ways of branching quantifiers, Linguistics and Philosophy 13, 393- 
422. 

[102] G. SHER, 1991, The Bounds of Logic, The MIT Press, Cambridge (Mass.). 

[103] F. SOMMERS, 1982, The Logic o] Natural Language, Cambridge University Press, 
Cambridge. 

[104] M. SPAAN, 1993, Parallel quantification, ILLC Report LP-93-01, Institute for Logic, 
Language and Computation, University of Amsterdam. 

[105] G. SUNDHOLM, 1991, Constructive generalized quantifiers, in: J. van der Does and 
J. van Eyck, Generalized Quantifier Theory and Applications, Institute for Logic, 
Language and Computation, Amsterdam, 175-186. 

[106] B.A. TRAKHTENBROT, 1950, The impossibility of an algorithm for the decision prob- 
lem for finite models, Dokl. Akad. Nauk. SSR 70, 569-572. 

[107] J. VAANANEN, 1986, A hierarchy theorem for Lindstr5m quantifiers, in: M. Furberg 
et al. (eds.), Logic and Abstraction, Gothenburg University, 317-323. 



Directions in generalized... 

[108] 

[109] 

[110] 

[111] 

[1t21 

[113] 

[114] 

[1151 

[1161 

J.  VAANANEN, 1994, Unary quantifiers on finite structures, forthcoming. 

M. VARDI, 1982, The complexity of relational query languages, Proceedings of the 
14th Symposium on Theory of Computing, 137-146. 

F. VELTMAN~ 1991, Defaults in update semantics, Report LP-91-02, Institute for 
Logic, Language and Computation, University of Amsterdam. Also to appear in: 
Journal of Philosophical Logic. 

Y. VENEMA, 1991, Many-Dimensional Modal Logic, Dissertation, Institute for Logic, 
Language and Computation, University of Amsterdam. 

D. WESTERSTAHL, 1984, Determiners and context sets, in: J. van Benthem and A. 
ter Meulen (eds.), Generalized Quantifiers in Natural Language, Foris, Dordrecht, 
45-71. 

D. WESTERSTAHL, 1989, Quantifiers in formal and natural languages, in: D. Gabbay 
and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. IV, Reidel, Dordrecht, 
1-131. 

D. WESTERST]~HL, 1994, Iterated quantifiers, in: Kanazawa and Pinon 1994, 173- 
209. 

E. ZIMMERA4ANN, 1993, Scopeless quantifiers and operators, Journal of Philosophical 
Logic 22, 545-561. 

F. Z~¥ARTS, 1986, Categoriale Grammatica en Algebraische Semantiek, dissertation, 
Nederlands Instituut, Rijksuniversiteit, Groningen. 

J.F.A.K. VAN BENTItEM 
INSTITUTE FOR LOGIC, LANGUAGE 
AND COMPUTATION 
UNIVERSITY OF AMSTERDAM 
PLANTAGE MUIDERGRACI~IT 24 
1018 TV AMSTERDAM 
THE NETHERLANDS 

D. WESTERST]~IIL 
DEPARTMENT OF PHILOSOPHY 
UNIVERSITY OF STOCKHOLM 
106 91 STOCKHOLM, SWEDEN 

Studia Logica 55, 3 (1995) 


