
ANDI~ZEJ SENDLEWSKI Axiomatic  Extensions of 
the Constructive Logic 
with Strong Negation and 
the Disjunction Property 

Abstract .  We study axiomatic extensions of the propositional constructive logic with 
strong negation having the disjunction property in terms of corresponding to them varieties 
of Nelson algebras. Any such variety V is characterized by the property: 
(PQWC) if A, B E V, then ,4 x B is a homomorphic image of some well-connected algebra 
of V. 

We prove: 

• each variety V of Nelson algebras with PQWC lies in the fibre rr -1 (W) for some 
variety W of Heyting algebras having PQWC, 

• for any variety W of Heyting algebras with PQWC the least and the greatest 
varieties in c~ -1 (W) have PQWC, 

® there exist varieties W of Heyting algebras having PQWC such that ~r -1 (W) con- 
tains infinitely many varieties (of Nelson algebras) with PQWC. 

The proposit ional  construct ive logic with strong negation (CLSN) has natu-  
rally arised as a result of omit t ing  the non-construct ivi ty  of the intuit ionist ic 
negation. It is a conservative extension of the intuit ionistic logic (INT) by 
adding a new unary  connective ,-~ and some new axioms involving ~,, (see [6], 
[8]~ [9], [10] for details). By an axiomatic extension of CLSN we mean  any 
subset of the  set of all formulas built up in the  usual way by means of the  
connectives: V, A, -% -~ (intuitionistic connectives: disjunction, conjunction, 
implication, negation) and ~ (strong negation) which contains CLSN and is 
closed under  the  subst i tut ion and Modus Ponens rule. Similarly we mean 
axiomatic extensions of INT which are called in termedia te  logics (whenever 
the set of all formulas is excluded). 

An algebraic counterpar t  of CSLN is the  variety N A  of Nelson algebras 
(see [9] or [10], where Nelson algebras are called N-latt ices and quasi pseudo- 
Boolean algebras, respectively),  while of INT is the  variety H A  of Heyting 
algebras (Heyting algebras are often called pseudo-Boolean algebras, see 
[10]). Wi th  each logic L being an axiomatic extension of CLSN (INT) there 
is assigned a variety of Nelson algebras (Heyting algebras) which consists of 
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those algebras in which all formulas from L are true. On the other hand, 
with each variety V of Nelson algebras (Heyting algebras) there is assigned 
a logic being an axiomatic extension of CLSN (INT) formed by all formulas 
which are true in every member of V (the content of V). The assignments 
are inverse one to another and establish a dual lattice isomorphism between 
the lattice of axiomatic extensions of CLSN (INT) and the lattice Lv(NA) of 
all varieties of Nelson algebras (the lattice Lv(HA) of all varieties of Heyting 
algebras). 

The systematic investigation of the interconnections between Lv(NA) 
and Lv(HA) has been started in [12] (see also [13]). It is known that there 
are three lattice homomorphisms ~ :Lv(NA) ---+Lv(HA) and ~_, ~ :Lv(HA) 

~Lv(NA) such that among others the following hold: 

0" 2 = cr~ = i d L v ( t t A  ) , 

for any WELv(HA)  the fibre o'--l(w) coincides with the interval 
[ g W ) ,  ~(W)] of Lv(NA) 

if VEo'-I(W) then the ~-free fragment of the logic corresponding to 
V coincides with the logic corresponding to W (the converse is also 
true when V is generated by its finite members). 

These homomorphisms have been successfully applied (see [11], [12], [3]) 
to find and describe the axiomatic extensions of CLSN with a given property 
under the assumption that an algebraic equivalent of the property is known. 
Let us quote some characteristic results of this kind. Let V be a variety of 
Nelson algebras and L be the corresponding logic. Then the following hold 
true: 

. 

. 

. 

. 

V is finite (L is tabular) iff V E a - I ( W )  for some finite variety W of 
Heyting algebras ([11], [12]). 

V is locally finite (L is locally tabular) iff VE a - l ( W )  for some locally 
finite variety W ([12]). 

V is minimal in the family of non-finite varieties (L is pretabular) 
iff V =  rl(W) for W minimal in the family of non-finite varieties of 
Heyting algebras ([11], [12]). 

V is primitive (L is structurally complete in the finitary sense with 
respect to Modus Ponens)iff V =  r l (W)  for some primitive W ([11], 
[12]). 
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5. V has the Amalgamation Property (L has the Craig Interpolation 
Property) iff V =  r/(W) or V =  ~(W) for some W havig the Amalga- 
mation Property (proved independently in [3] and [12]). 

In this paper we investigate varieties of Nelson algebras that correspond 
to logics with disjunction property, that is, to logics L such that for all 
formulas a,/5 : aV/5 E L implies a E L or/5 E L. This property is equivalent 
to the constructivity of the strong negation in L, i.e. ~ (aA/5) EL iff ~ a EL 
or ~/5 EL. 

1. B a s i c  n o t i o n s  a n d  f ac t s  

Nelson algebrs are considered in the language with binary operations: V 
(join), A (meet), ---, (weak relative p,eudocomvlementation), unary opera- 
tions: ~ (weak pseudocomplementation), ..~ (De Morgan negation), and two 
constants 0, 1; while Heyting algebras with operations: V, A, ~ (relative 
pseudoeomplementation), - (pseudocomplementation) and constants 0, 1. 
Between Nelson and Heyting algebras there exists a close connection (see 
[12], [13], comp. [1], [2], [3], [11], [14]). Let us recall fundamental facts. 

For any Heyting algebra B= (B, V, A, =>, - ,  0, 1) and Boolean congruence 
O of B (® is Boolean if the quotient algebra B/O is a Boolean algebra), the 
algebra 

No(B) = (No(B), V,A, -+,-,, ~,  (0, 1), (1, 0)), 

where 

No(B) := {(a, b) E B × B; a A b = 0 and a V b =- 1(0)} 

and for all (a,b),(c,d) E N(B):  

(a,b) V(c,d) := (aVc, bAd), 
(a,b) A(c,d) := (aAc, bVd), 

(a,b)-+(c,d) := (a::>c, aAd), 
--(a,b) := ( - a , a ) ,  

,~(a,b) := (b,a), 

is a Nelson algebra. Each Nelson algebra .4 is up to isomorphism of the 
form No(B), for some B and O. Necessary B can be taken to be the Heyting 
algebra of the form 

A* = (A*, V*, A*, ::>*, 0, 1), 
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where 
A* := {a*; a E A} (a*abbreviaties ~ -~a), 

aV*b : =  (aVb)*(-=aVb), 
aA*b := (aAb)*, 

a~*b := (a--* b)*, 
- * a  : =  

and, for any a, b E A*: 

While O is the restriction to the set A* of the congruence on ,4 generated 
by {(-~a, ~ a); a E A}. In this case the quoted isomorphism establishes the 
map A ~ a t  ~ (a*,(~ a)*) E No(A*). On the other hand, each Iteyting 
algebra B is isomorphic to No(B)*, for any Boolean congruence O of B, via 
the m a p B  ~ b ,  > (b , -b)  E N o ( B ) .  

Among Boolean congruences on an arbitrary Heyting algebra there are 
two distinguished congruences, namely, the greatest one which is a full 
congruence and the least one being an intersection of all Boolean congru- 
ences. When O is the greatest congruence and when O is the least congru- 
ence, instead of h%(g) we write N(B) and N(B),  respectively. Note that 
N(B) = {(a,b) E B × B;a A b = 0} and N(B) = {(a,b) E B x B;(a =~ 
b) A (b =~ a) = 0}. Nelson algebras isomorphic to algebras of the form X(B) 
win be called regular (in [3], they are called normal). The class of an regular 
Nelson algebras forms a variety (equational class), denoted by R N A .  

The operators ( )* , N and N can be naturally extended to functors: 
( )* :NA---~ HA,  N_N, N :HA-- - .NA.  In [13] it has been proved the follow- 
ing 

TI~EOI~EM 1.1. The functor ( )* is topologiealwith N and-N as left and right 
adjoint functors, respectively. Moreover, each of the functors ( )*, N and 
N, preserves injective and surjective homomorphisms and direct products of 
algebras. 

For any class g of algebras, I(g) ,  H(g) ,  S(K) and P(K) denote, respec- 
tively, the classes of isomorphic images, homomorphic images, subalgebras 
and direct products of members of K. If K is a class of Nelson algebras and 
L is a class of geyting algebras, then we define: 

K* := { A * ; A E K } ,  
: =  

: =  
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The following hold true (see [12], [13]) 

THEOREM 1.2. (i) For any class K of Nelson algebras, HSP(K*) = HSP(K)*. 
Hence, if K is a variety of algebras then K* is a variety of Heyting algebras. 

(ii) For any class L of Heyting algebras, HSP(N__(L)) = ](N__(HSP(L))) 
and HSP(N-(L)) = IS(N-(HSP(L))). 
Hence, if L is a variety, then the varieties of Nelson algebras generated by 
N(L) and N(L) are equal to [(N(L)) and [S(N-(L)), respectively. 

Let cr :Lv(NA) ..... ~Lv(HA) and r/,~ :Lv(HA) ....... )Lv(NA) be maps 
defined by the formulas: 

¢ ( v )  := v *, 
:=  

:= 

Basic properties of a, ~ and ~ summarizes the following theorem proved in 
[19.] (see also [13]). 

TnEOItEM 1.3. The maps cr,~ and ~ are complete lattice homomorphisms 
(they preserve joins and meets of arbitrary non-empty families of algebras) 
such that (r~ = cr~ = idL~(HA) . 
Moreover, for any varieties W ,  U of Hefting algebras there hold: 

( i)  The fibre coincides with the interval of 
Lv(NA) ,  in particular a - I ( H A )  = [RNA, NA]. 

(ii) I f  W C U then the map e w v  : a - l ( W )  .... > a - l ( U )  defined by 
e w u ( V )  = V V ~_(U) is a complete lattice embedding. 

(iii) The map ew : Lv(W) ~ cr- l(W) defined by ew(V)  = ~(W) V 
~(V) is a complete lattice embedding. 

(iv) The map i w :  Lv(~(W)) - ~ Lv(W) × a - l ( W )  defined by iw(V)  = 
(V*, V V ~(W)) is a complete lattice embedding. 

An algebra is subdirectly irreducible if its congruence lattice has exactly 
one atom. A Heyting algebra B is subdirectly irreducible iffin the set B\{I~} 
there exists the greatest element. For Nelson algebras we have the following 
(see [1], [11], [12]). 

PP~OPOSITION 1.4. Let A be a Nelson algebra. The following are equivalent: 
( i) ,4 is subdirectly irreducible, 
(i i) A* is subdirectly irreducible, 
( iii) .In the set A \ {1A} there exists the greatest element. 
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Using the properties of the characteristic formula of a finite subdirectly 
irreducible Heyting (see [16]) or Nelson algebra (in view of the above propo- 
sition it can be defined analogously as in the case of Heyting algebras) we 
h a v e  

COROLLARY 1.5. For any class K of Heyting or Nelson algebras the finite 
subdirectly irreducible members of HSP(K) belong to HS(K). 

2. R e m a r k s  o n  v a r i e t i e s  w i t h  P Q W C  

A Heyting or Nelson algebra is said to be well-connected if for any of its 
elements a and b, a = 1 or b = 1 whenever a V b  = 1. Note that  any 
subdirectly irreducible Heyting or Nelson algebra is well-connected and the 
converse also holds in the case of finite algebras. 

THEOREM 2.1. Let V be a variety of Heyting or Nelson algebras. The fol- 
lowing conditions are equivalent: 

( i) The logic corresponding to V has DP. 
( ii) There exists a class K such that V = HSP(K) and the direct product 

A1 × A2 of any members A1, .A2 of K is a homomorphic image of some 
well-connected algebra from V.  

(iii) For any class K with V = HSP(K), the direct product A1 × 2,2 of 
any members A1, A2 of K is a horaomorphic image of some well-connected 
algebra from V.  

(iv) The direct product ,41 × ~42 of any members A1, ,4~ of V is a ho- 
momorphic image of some well-connected algebra from V.  

( v) Each member of V is a homomorphic image of some well-connected 
algebra from V .  

Moreover, in the case when V is a variety of Nelson algebras each of the 
above conditions is equivalent to 

( vi) The strong negation ,,~ is constructive in the logic corresponding to 
V .  

Pt~OOF. In case when V is a variety of Heyting algebras the equivalence 
of (i), (ii), (iii) and (iv) follows by the Maksimova's theorem (Theorem 1 
in [7]), and the fact t ha t  the contents of a class K C V  and the variety V 
coincide iff V = HSP(K). The equivalence of (iv) and (v) is obvious. In 
the case when V is a variety of Nelson algebras the same arguments also 
work, and the equivalence of (i) and (vi) is an immediate consequence of De 
Morgan laws and the double negation law for strong negation which hold in 
any Nelson Mgebra. • 
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If a class K of Heyting or Nelson algebras satisfies one of the equivalent 
conditions of the above theorem, then we say that products of members of 
K (the variety HSP(K)) are quotients of well-connected algebras (PQWC 
for short). 

LEMMA 2.2. ( i) A Nelson algebra A is weU-connected iff the Heyting algebra 
A* is well-connected. 

( ii) For each Heyting algebra B and each Boolean congruence O on B the 
algebra Ne(]3) is well-connected iff B is well-connected. 

PROOF. (i) is a consequence of the fact that for any element a of a 
Nelson algebra, a = 1 iff a* = 1. And (ii) follows from (i) because Ne(B)* 
is isomorphic to/~. [] 

LEMMA 2.3. Let K be a class of Nelson algebras. If the product A1 × A2 of 
any algebras ~41,Jt2 E K is a homomorphic image of some well-connected 
algebra from HSP(K), then the product B1 x B2 of any algebras J31, B2 E K* 
is a homomorphic image of some well-connected algebra from HSP(K*). 

PROOF. Let Bi = A* for some Ai E K, i = 1, 2. By the assump- 
tion there exists a well-connected algebra A in HSP(K) and a surjective 
homomorphism h : A ~ A1 x A2. Since the functor ( )* preserves sur- 
jective homomorphisms and direct products, the algebra (A1 x A2)* is a 
homomorphie image of the algebra A* with respect to the homomorphism 
h* and is isomorphic to B1 x B2. Therefore /~1 x B2 is a homomorphic 
image of the algebra A* E HSP(K)*. But, by Theorem 1.2, HSP(K)* = 
HSP(K*). Moreover, by Lemma 2.2, A* is well-connected which completes 
the proof. [] 

LEMMA 2 . 4 . .  Let L be a class of Heyting algebras and let N denote N or--N. 
If the product B1 x B2 of any algebras B1, B2 E L is a homomorphic image 
of some well:connected algebra from HSP(L), then the product A1 x .A2 of 
any algebras A1, A2 E N(L) is a homomorphic image of some well-connected 
algebra from HSP(N(L)). 

PROOF. Apply the arguments from the proof of the previous lemma and 
the ibllowing facts: both N__ and N- preserves surjective homomorphisms and 
direct products of algebras (Theorem 1.1); the algebras N(B) and N-(B) are 
well-connected whenever B is well-connected (Lemma 2.2); N_(HSP(L)) C 
HSP(N(L)) and N(HSP(L)) C HSP(N(L)) (Theorem 1.2(ii)). [] 

As an immediate consequence of Theorems 1.3, 2.1 and Lemmas 2.3 and 
2.4 we have 
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TttEOttEM 2.5. (i) Each variety V of Nelson algebras with PQWC belongs 
to the fibre ~r-l(W) for some variety W of Heyting algebras having PQWC. 

(ii) For any variety W of Heyting algebras having PQWC the varieties 
of Nelson algebras being the bounds of the fibre cr- l (W) have PQWC. 

Taking into account the well-known results concerning intermediate logics 
(see [7], pp. 70, 71) in virtue of Theorems 1.3 and 2.5 we also have 

COROLLARY 2.6. (i) Each non-trivial variety of Nelson algebras with PQ WC 
contains the variety ~(Z)), where 79 is the variety of Heyting algebras corre- 
sponding to the Dummett~s logic. 

( ii) There exist continnum non-trivial varieties of Nelson algebras with 
as welt as without PQ WC. 

( iii) The least non-trivial variety of Nelson algebras with PQWC does 
not exist. 

(iv) The variety V of Nelson algebras is minimal in the family of all 
non-trivial varieties with PQWC iff V = ~(W) for some variety W ,  that 
is minimal in the family of non-trivial varieties of Heyting algebras having 
PQWC. 

3. T h e  f ib re  ~r- l (M) 

Let M be the variety of Heyting algebras corresponding to the intermediate 
logic which was defined in [7] and used to prove that  the Gabby-de Jong logic 
of finite binary trees is not maximal among logics with DP. In this section we 
prove that in the fibre a - l ( M )  there are infinitely mzmy varieties of Nelson 
algebras with PQWC. In the proof we shall use the poset technique (Kripke 
semantics), so to be precise, let us recall some principM notions. A subset Q 
of a poser 7 ) = (P, ~<) is increasing if x E Q and x ~< y implies y E Q. With 
each poset 7) there is associated the Heyting algebra HA(7)) of all incre~sing 
subsets ofT). If 7)t_l Q is a disjoint union of posets then algebras HA(7)U Q) 
and HA(7)) x HA(Q) are isomorphic. For any subset Q of 7), the relation 
O(Q) defined by 

a - b ( O ( Q ) )  i f f  a N Q = b N Q ,  

for all a, b increasing in 7 ), is a congruence on HA(7)) if and only if Q is 
increasing in 7). In this case, HA(7))/O(Q) is isomorphic to HA(Q), where 
Q is a subposet of 7) with underlying set Q (the order is inherited from 
7)). The congruence O(Q) is Boolean iff Q is ~ subset of the set Max(7)) 
of all maximM elements in P. For finite poset 7), HA(7)) is well-connected 
(equivalently, subdirectly irreducible) iff 7) has the least element. For any 
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poset 7 ) and any subset S of Max(79) we use the symbol Ns(79) to denote 
the Nelson algebra No(s)(HA(P)). Note that N0(79 ) = -N(HA(P)) and 

= N(HA(79). 

LEMMA 3.1. (see [11], [13]) (i) Let Q be increasing in 79, and let S be a 
subset of Max(79). Then the Nelson algebra NsnQ( Q) is a hornomorphic 
image of the algebra Ns(79). 

(ii) Let 7 9 and Q be disjoint posets and let S C Max(P), T C Max(Q). 
Then the Nelson algebras N(SuT)(79U Q) and Ns(79) x ?IT(Q) are isomorphic. 

Let n denote the poser {0, 1, 2, . . . , n -  1} with the natural ordering of 
numbers; and let 79~ be a subposet of the product n x n  with the underlying 
set I~  = { ( i , j ) ; i  + j < n}. For any posets 79,~ and 79~ define the poset 
79,~ (9 79~o whose underlying set is the disjoint union of underlying sets of 
79,~, 79~ and m × n ,  and whose order is indicated by the diagram on the 
figure 1. 

m n 

...... . , %  2, 
r ~ f 

# , ," 

m x n  " 

Figure 1. 

Clearly, for any m, n < w, the subsets Pm and P~ are disjoint and in- 
creasing in 79m • 79~. Hence their union is also increasing. Moreover, the 
poser 79),.° ® 79~ is isomorphic to 79,~+~. This, by Theorem 2.1, guarantees 
that the variety 

M := HSP({IIA(79~);n < w}) 

has PQWC (see [7], Theorem 3). 
For each poser 79~, let M~ = Max(79..) and let ~ : P~ ~ P~ be a map 

defined by the formula ( i , j ) '  = (j, i). This map is an automorphism of the 
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poser )O.. Moreover, the following simple fact holds true 

LEMMA 3.2. For any S C Mn, n < co, the Nelson algebras Ns(T)n) and 
gs,()on) (where S' is the image of S under the automorphism ') are isomor- 
phic. 

To define a required sequence of varieties of Nelson algebras in the fibre 
a - l ( M )  we need some definitions. An element x E M~ is said to be a corner 
element of )O~ if there exists only one element in )O~ covered by x (z is 
covered by x, equivMently, x covers z iff z ~< x and z ~< u ~< x implies u = z 
or u = x). For any S C M~, elements x, y E M~ \ S are said to be conjugate 
if x = y or there is z E P~ covered by x and y. Let p be a transitive closure 
of the conjugate relation on the set M~ \ S. Obviously, p is an equivalence 
relation on the set M~ \ S. We say that  the set S has a partit ion index k if 
k = max{I[x]pl;x E M~ \ S}. Now, for any n and m, let K!2) be a class of 
all Nelson algebras of the form Ns()O~) with S containing exactly one corner 
element of P~ and having a partition index ~< m. Define 

K,~ := [_J{K~);n < co} 

V,~ := HSP(K~). 

TttEOt~EM 3.3. For all m < aJ, the varieties V ~  have PQWC and form 
co-chain in the fibre a - l ( M )  "whose join is ~(M) . 

PI~OOF. By the definitions Km C K~+I ,  hence V,~ C gin-l-1. By 
Lemma 3.1 (i), the algebra NO()Om+I) E H(Ns()O,~+2)), where S is a single- 
ton of a corner element of )O,~+;. Obviously, Ns()O,~+2) E K~+I .  Hence 
N~()O,~+I) E V,~+I. On the other hand, N~(P~+I) ~ Vm. Indeed, by 
Proposition 1.4 NO(Pro+l) is subdirectly irreducible. Therefore, if 
N$(P,~+I) E Vm then, by Lemma 1.5, NO()Om+I) E HS(Km) which is im- 
possible. This proves V ~  ¢ Vm+l.  

Clearly, for every S C Mm, NS()Om) is a subalgebra of N~()O~¢). There- 
fore Vm C ~(M) for every m. Moreover, since ~(M) is generated by algebras 
No()orr~), where m < w, and N¢()Om) E V~ ,  the lattice join of all varieties 
Vm is equal to ~(M). 

To prove V ~  has PQWC, observe that  for any two algebras from K~ ,  
say N s ( P n )  and NT(Pk) (a.ssume Pn F/Pk = 9), at least one the of algebras 
NSuT( )On @ Pk ) or NS,uT( )O~ @ Pk ) belongs to Kin. If I~¢'SuT( )O~ O )Ok ) E Kin, 
then, since Pr~ U lPk is increasing in )on ® )ok, the algebra NSuT()On U )ok) is a 
homornorphic image of NSuT()OnO)Ok) (Lemma 3.1 (i)). But by Lemma 3.1 
(ii), NSuT()O~ U )ok) is isomorphic to Ns()O~) x NT()Ok). Thus, by Theorem 
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2,1, Vm has PQWC. The case Ns, ur(7)~ ® Pk) E K ~  implies PQWC for 
V ~ ,  goes in virtue of Lemma 3.2, by the same argument. • 

R e m a r k .  The method used to prove a - l ( M )  has infinitely many varieties 
with PQWC Mso works in many other fibres over varieties of Heyting alge- 
bras with PQWC which are generated by finite algebras. For example, the 
most interesting fibre c r - l (HA)  = [RNA,  NA] (by Theorem 1.3 (iii) it has 
cardinality 2 ~0) also has this property. To prove this fact it sufficies to take a 
family of posers determining the well-known Jagkowski's Mgebras generating 
the variety H A .  This family contains posers fin, n < ~, where 3"1 is a one 
element poset, while ff~+l is a disjoint union of n copies of ff~ with a new 
smallest element adjoined. Then choosing subsets S in Max(J~) (n < ~) 
majorized by an appropriate parameter related with natural number m, it 
is routine to define classes Rm, and whence varieties HSP(Rm), which form 
a co-chain of varieties with PQWC in the considered fibre. The join of this 
chain is the variety N A .  
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