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Children in their simplicity keep asking why. The person 
of understanding has given this up; every why, he has long 
found out, is merely the end of a thread that vanishes into 
the thick snare of infinity, which no one can truly unravel, 
let him tug and worry at it as much as he likes. 

W. Busch, The Butterfly, 
translated by W. Arndt 

A b s t r a c t .  Causality is a concept which is sometimes claimed to be easy to illustrate, 

but hard to explain. It is not quite clear whether the former part of this claim is as obvious 

as the latter one. I will not present any specific theory of causation. Our aim is much less 

ambitious; to investigate the formal counterparts of causal relations between events, i.e. to 

propose a formal framework which enables us to construct metamathematical counterparts 

of causal relations between singular events. This should be a good starting point to define 

formal counterparts for concepts like "causal law", "causal explanation" and so on. 
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1. P r e l o g i c a l  C o n s i d e r a t i o n s  

1 .1 .  C a u s a l  l o g i c ?  

Causali ty is a concept which is sometimes claimed to be easy to illustrate, but  
hard to explain. It is not quite clear whether the former par t  of this clMm 
is as obvious as the lat ter  one. However, one thing seems to be certain: 
the causM nexus is not a logical relation. If this is true, then what  does 
the title of the paper mean? In order to prepare the reader, this paper  

is neither about  "causality in logic" (which would be entire nonsense), nor 
about  the "logic of causation" (which doesn't  seem much bet ter) .  I will not 
present any specific theory of causation. Our aim is much less ambitions; to 
investigate the formal counterparts of causal relations between events,  i.e. to 
propose a formal framework which enables us to construct metamathemat ica l  
counterparts  of causal relations between singular events. This should be a 
good starting point to define formal counterparts  for concepts like "causal 
law", "causal explanation" and so on. 

By c a u s a l  l o g i c  we mean that  part of non-classicM logic which deMs with 
causal connectives in their interaction with classical proposit ional connec- 
tives. (I confine myself to propositional logic only, since the formal appara- 
tus which shall be developed subsequently will be remarkably complex. By 
the proposed simplification, I hope to improve the t ransparency of the con- 
sidered constructions. However, this is not a principal limitation: in almost 
all cases it is easy to obtain first-order variants of the regarded calculi of 
causal logic.) 
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Most naturally the question arises: what are causal connectives? The 
s tandard answer is this: "Take a definition of the causal nexus, formalize it, 
and call the upshot 'causal connectives'". However, it is not very helpful in 
the present case. The explications of the causal nexus which occur in the 
5terature are, in most cases, hardly precise enough for immediate logical 
formalization. Furthermore,  although there are a lot of definitions (almost 
each serious philosopher created at least one of them) there is a considerable 
shortage in the agreement of these definitions. 

It is of course possible to formalize (more or less adequately) concepts of 
causal nexus as stated by one or the other philosopher. It seems, however, 
much more interesting (and important  as well) to formalize causal terminol- 
ogy used in empirical sciences. On the other hand, in this case it is extremely 
difficult to obtain the object of formalization. 

Therefore, one has the following options: 

• to proceed with other things in logic until formalizable (i.e. precisely 
and uniquely defined) concepts of causal relations become available; 

to define artificiM objects and to call them "causal connectives", "cau- 
sal functors" or whatever, i.e. to give a nominal definition of formal 
counterparts of causal relations; or, 

to describe as precisely as possible the properties of causal relations, 
to formalize these properties in order to obtain thereby a frame of 
properties which the formal counterparts of causM relations should 
possess and to construct subsequently in stock connectives falling into 
this frame. 

The first option is not in keep with the importance of the problem. There 
seems to exist a great, and still rising need, for a formal-logical counterpart 
of causal nexus - -  think about so-called causal simulators in A.I. research. 
(Besides, causal calculi are themselves highly interesting objects of logical 
research.) 

The second way was chosen e.g. by LUKASIEWICZ in his famous paper 
"Analysis and Construction of the Concept of Cause" ([7]) - -  one of the 
very first papers on causal logic. It seems to me however, that  this choice 
merely postpones the problem instead of giving a solution. Let me briefly 
explain this. CansM logic in general is directed towards applications outside 
of logic, resembling in this respect e.g. discursive logic or deontic logic. Any 
appropriate formalization of (parts of) the language of empirical sciences 
makes the formal apparatus of these logical disciplines available in the con- 
sidered sciences, rendering thereby the formal analysis of definitions, test 
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procedures for argumentations,  etc. In this sense, causal logic can be un- 
derstood as "applied logic", i.e. as a service discipline for users outside of 
logic. 

Following the standard way in logical formalization, logicians begin with 
"cleaning up" the area they intend to formalize. They feel free to decide 
what the correct usage of the considered part  of the language is. Next, 
they elucidate the rules, how to speak "correctly". Unfortunately,  logic 
itself has almost no ability to bring its constructions into natura l  language, 
i.e. to execute obedience to the rules concerning the usage of these artificial 
linguistic creations. Therefore, the upshot of such an officious indoctr inat ion 
is sometimes a more or less elegant formal calculus which appears to be 
ra ther  uninteresting for the intended users of the formalization. They simply 
do not accept the metamathemat ica l  construction as an appropriate formal 
counterpart  of their language. In that  case, the formalization would be a 
failure, since the success of a logical formalization depends on whether  it 
meets the intuitive concept it intends to formalize. To that  purpose however 
one needs a precise description of the intuitive concept - -  and thus the 
circle is closed. (The linguistic creations of logic should be strictly limited 
to formal languages.) 

Hence, in order to formalize causal terminology of e.g., an empirical 
theory, it is necessary to proceed much more cautiously. One should describe 
as precisely as possible the real usage of language in the considered theory. 
Consequently, only the last way remains, and we shall follow this one. 

1.2.  P r e c a u s a l  c o n n e c t i v e s  

The following two lists of formulae schemes contain formalizations of general 
properties of causal relations between events as occurring in "real texts" - -  
without previously cleaning up the area. These sets of schemes are ment  to 
be an a t tempt  to characterize the causal frame mentioned before. Let the 
(connective) variable ¢--*k represent any two-argument sentential connective 
in a formal language of a logical system. 1 

H) 
(H ~--~k G) ~ H 
(H C) (H C) 

(H a A F) (H a) 

1By a logical system we understand an ordered pair consisting in a formal  language 
and a consequence operat ion in this language. 
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The first list L + contains the formalizations of those few properties which 
are rather commonly accepted. (I shall claim this with caution. It seems 
that even the schemes in L + may be attacked by sufficiently sophisticated 
counterexamples.) The elements of L + would be "natural candidates" for 
axioms of causal calculi. The absence of potential axioms makes it intelligible 
that there are almost no axiomatic calculi in causal logic. 

L - -  

(H ~--'k G) V (G ¢-'~k H) 

(H ~ k  a) -~ (~a  ~ k  ~H) 
(H ~ k  a)  ~ (H A r ~ k  a) 

( g  ~ k  (F ~ k  a ) ) -~  (F ~ k  (H ~ k  a) 
(H -~ a) -~ (H ~ k  a) 
(H A a)  ~ (H ~ k  a)  
-,H -~ (H ~ k  a) 
H --* (G ~--*k H) 

These listings are universal inasmuch as they do not refer to any specific 
area of causal terminology. Taking a specific kind of causality into consider- 
ation may result in additional positive properties and possibly reduces the 
number of rejected properties. This procedure allows a better approximation 
of the aspired formalization. 

Let L be any list of formula schemes containing the connective variable 
~>k and let ~ k  be any two-argument connective in the language of a logical 
system S. 

DEFINITION 1 The connective ~ k  meets a list L of formulae schemes (in 
the system S) [symb.: m(---*k, L), respectively (rn(---+k, L, S))] iff the substi- 
tution of ~--+k by ~ k  makes every element of L true (in S). 

DEFINITION 2 The connective ~ k  omits a list L of formulae schemes (in 
the system S) [symb.: o(~k,  L), respectively (o(-*k, L, S))] iff the substitu- 
tion of ~--~k by ~ k  makes no element of L true (in S). 

DEFINITION 3 The connective ~ k  respects a pair of lists (L, U} of formulae 
schemes (in the system S) [syrab.: r (~k ,L ,n ' )  ,respectively 
(r(-+k, L, L', S)) ] iff ---~k meets L and omits L' (in the system S). 
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DEFINITION 4 
r(~l¢, L +, L-) .  

The connective ~ k  is precausaI (in the system S) iff 

By no means should the above pair (L +, L - )  be understood as a suffi- 
cient characterization of a formal causal relation. Such a characterization, 
I guess, is impossible - -  at least if we ask for it in unrestricted general- 
ity. Maybe there are lists completely characterizing formal counterparts 
of some categories of e.g. juridical causation. If so, they are unknown at 
present. Therefore, the role of (L +, L - )  is merely to obtain a negative se- 
lection: whatever does not respect this catalogue will surely never be the 
formal counterpart of any kind of causal nexus. In other words: all causal 
connectives must be precausal. 

As already mentioned, a catalogue modified according to a considered 
type of causal nexus should allow a better characterization of the meta- 
mathematical  counterpart of this kind of causM connection than the charac- 
terization given by the manifold based on the catalogue (L +, L - )  and should 
thereby increase the chance that one of the "specialized precausal connec- 
tives" met an accepted formalization (i.e. a formalization accepted by the 
specialists working in the considered field). Somewhat optimistically I hope 
that  the appropriate catalogues would be established cooperatively between 
logicians and scientists from the empirical theory in question. (Perhaps one 
has to invite some philosophers to serve as translators.) 

It must be ensured however, that such an expansion produced a catalogue 
well-created in the following sense: there would then exist a formal system 
and a connective in the language of this system such that  no substitution 
instance of any scheme from the negative list is entailed by substi tution 
instances of formulae-schemes from the positive list (according to the conse- 
quence operation in the system). 

2. Precausa l  Functor ia l  Variables  

It seems quite obvious that there are no precausal connectives (sa defined 
above) within classical propositional logic, i.e. no Boolean function respects 
(L +, L- ) .  However, a slightly broader concept of what is classical propo- 
sitionM logic could be adopted: Let us call "classical" any propositional 
calculus which is two-valued and extensional Then doubtlessly, the ob- 
jects usually labelled "functor variables" belong to that  realm. It can be 
shown (see [18]), that none of the original functor variables (as defined by 
LUKASIEWICZ in [8] and investigated e.g. by STELZNEtt in [14]) is a pre- 
causM connective. However, MAX introduced a class of new classical objects 
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(see [9]), which he also calls functoriaI variables. Those objects are in fact 
modifications of the original construction. Surprisingly enough, two of them 
respect the above universal lists. That  gives evidence, by the way, that  the 
above listings L + and L -  are indeed well-created. 

Yet in general I am sceptical whether functorial variables are promising 
candidates for causal connectives. First of all, they are purely technical 
constructions with no deeper philosophical motivation. What is more, there 
seems to be no easy way to change the construction of precausal functorial 
variables according to considered enlargements of the above listings. In any 
case~ there are better areas in which to search for precausal connectives than 
classical propositional logic. (A preliminary overview can be found in [17], 
pp. 55-82, 119-147. The manifold of accounts, found in Mmost all realms 
of non-classical logic, can be hardly surveyed. A more detailed analysis of 
this issue will be a central part of our future work on causal logic.) 

Are there any criteria which allow one to select the promising techniques 
in constructing causal connectives? Imagine you are going to hit a target 
which is poorly visible. Under such conditions, it would seem to be much 
more efficient to throw a handful of pebbles rather than a single dart. This 
is a close analogy to our present situation. The vision of the target still 
remains somewhat fuzzy. Therefore one should strictly prefer constructions 
which produce manifolds of objects, rather than pointwise definitions. Those 
constructions should be flexible, as well as manipulatable, in order to allow 
the production of an outcome which meets all the gradually spelled out 
requirements. 

3. J a § k o w s k i - s t y l e  s y s t e m s  

3.1. Ja§kowski's original construction 

In the following three sections I will explain in more detail one example of a 
formal structure which seems to be highly appropriate to model causal rela- 
tions. The basic idea of the construction is due to STANISLAW JASKOWSKI 
(cf. [5]). Most of his highly original results in formal logic are directed to- 
wards applications outside of logic. In each case they belong to the earhest 
considerations in the field (e.g. his system of natural deduction 1932, an 
adequate semantic for the intuitionistic logic 1933, a system of paraconsis- 
tent logic 1948). His investigations on causal logic were stimulated by one of 
his teachers, STANISLAW LESNIEWSKI. During his lectures held at Warsaw 
University, LESNIEWSKI asked for the representability of causal connectives 
within an extensional framework. (In order to solve this problem JASKOWSKI 
was constrained to assume a rather exotic concept of extensionality.) 
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JASKOWSKI defined his causal connectives at the basis of two non-clas- 
sical systems: Q/ and Q*. The former one is called "calculus of factors" 
whilst the lat ter  one is called "calculus of chronological factor succession". 
The crucial point in each of the definitions is the use of so-called "dependent  
functorial variables". These objects were introduced into the l i terature by 
HEYTING (cf. [2]). JASKOWSKI gave the following explanation: 

Suppose that  the t ru th  of a sentence 7 ) depends on certMn factors 
which cannot be determined strictly: for instance, a person is to 
toss a coin, and the sentence 7) means 'during the game heads 
will turn up more times than tails will'. 

For a certain sequence of random events the sentence 7 ) will 
prove true, whereas for some other sequence it will prove false. 
Thus the sentence P may be assumed to be a function that  takes 
on the vMues: t ru th  and falsehood, according to the vMues of the 
variables that  stand for the random events. Since the functional 
relationship is not revealed by the notation,  a sentence of this 
kind may be represented by the dependent sentential variables 
introduced by Heyting [ . . .  ], in a way similar to that  in which in 
mathemat ics  the functions of the variable x are often represented 
by the letter y. ([4], p. 148) 

In a first step JASKOWSKI explains, for purely technical reasons, an aux- 
iliary calculus Q, which language contains independent sententiM variables 
(i.e. individual variables) and dependent sentential variables (i.e. quasi- 
functional variables with unfixed number of arguments) .  The set FORQ 
of formulae of Q contains nothing but the set of all dependent  variables 
p, q, r . . .  and the following chains of signs -~H, H A G, Vx : H (where x is an 
independent  variable) only if it contains H and G. Subsequently the class 
of Q-tautologies is established by means of a translation t from FORQ to 
FOR1, the language of first-order predicate calculus PC1: 

Let H E FORQ and let's assume, that  H contains exactly all indepen- 
dent variables X l , . . . , x n .  

t(H) =d/ H[p/P(x l , . . . , xn) , . . . ,q /Q(xl , . . . , xn) , . . . ]  

As usual one can define a logical calculus Q as Q =d/ (FORQ, CnQ} with a 
consequence relation CnQ : 2 FORQ ) 2 FORQ 

H CnQ(X) iffVF X(t(F) PC1 t(H) e PC1) 

or, as it is s tated in JASKOWSKI'S original paper [5] as a set of tautologies 
Q = CnQ(O). 
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The next step is the definition of the causal system QI" The set of 
formulae of Q/is  generated as usual by a denumerable set of (dependent) 
variables AT by means of one one-argument connective ~ and two two- 
argument connectives A and o i .  Formulae of the form E]/(H)G are to be 
read as "G is true for all vMues of factors of H ". In the calculus Q/ ,  it is not 
possible to state precisely, what these "factors of H " are - -  it can merely 
be indicated: "factors of H " are those individual variables of dependent 
variables of H, which assignment determines the value of H. (Although 
those variables do not occur explicitely in Q].) The precise meaning of this 
concept emerges together with its semantical explanation. 

3 .2 .  M u l t i d i m e n s i o n a l  f - o - f r a m e s  

The construction of Q/  allows a far reaching generalization. In order to 
demonstrate  this, we need a somewhat complex conceptual machinery. We 
hope however, that  the constructed systems appear to be interesting enough 
to pay off in this effort. 

Let S be a regular modal system in the modal language FORm, i.e. S 
contains all classical tautologies as well as the formula, Op h Qq ~ O(p A q) 
and S is closed w.r.t. Substitution, Modus Ponens and H -~ G/[]H -+ [:]G. 

By a first-order KRIPKE-frame If-o-frame, for short] let's understand a 
structure ~ =  (W,Q,R, II}, where Q c_ W # 0 and R C_ W 2 and II is 
closed w.r.t, set theoretical complementation, intersection, and the following 
operation 1R 

lR(V) =dl {w W; Vv W :  w R v v C V}, 

i.e. if V belongs to lI, then the set of all elements of the universe, such that  
whatever is accessible from one of these elements belongs to V, is itself an 
element of II. 

is f-o-frame for S if all S-theorems are 9~-tautologies, symb.: F]=m S. 
Let Ks  be the class of all f-o-frames for S. 

It is well known that  for any modal system S there is a class of f-o-frames 
,~, such that  the class of all S-theorems equals the class of ]~-tautologies, 
i.e. the intersection of all classes of 5~-tautologies, for 9~E ]C. Obviously, 
]C C ]C5. Since 

S C_ {H E FORm; Its l=m H} C {H E FORm; ~l=m H} = S 

we obtain that  Ks  is adequate for S. 
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DEFINITION 5 Let 9t'i = (Wi, Qi, Ri, Hi); i _< n be / ( : s - f rames .  

The s t ructure  9rl × . . .  × Un = (W, Q1, .-., Qn,7~I, ...,Ten,7 ))  is called n-di- 
mensional product of Ui ; i < n iff  

1 o 

2 ° 

3 ° 

4 ° 

W =  W1 x . . .  x W~; 

V i ~_ n : ~ i  = W1 x . . .  x W i _  1 x Qi  x W i + l  x . . .  x W~; 

V i <_ n : TQ = idl x . . .  x idi-1 x Ri x idi+l x . . .  x id,~; 

~:)= IX 1 X . . .  X II n. 

It is not hard to prove that  ~-n = ~-1 x . . .  x Y~ is a f-o-frame, too. In 
particular,  ~'~ fulfills all the required closure conditions. 

Let K;~ be the class of all n-dimensional products in h:s. In case n = 0 we 
appoint K:~ = {({0}, 0, 0, {0, {0}})} with a one-element universe and with- 
out relations. In the class/~} we interpret  the formal language L /  of the 
system Q].  

DEFINITION 6 The ordered pair (5 TM, v) is denoted by .M n and called 

n-dimensional model based on ~ = (W,  QI ,  "", Qn, ~r~l, ..., T~n, P )  i f f  
v : A T  ) 7 ~. 

DEFINITION 7 Let p E A T  ; H, F E F O R  ; ~ E )4;. We define the truth o f  
H in a point ~ of  the model M [M ~ I = H[x]] recursively. 

1 ° ,~4 ~ ~- p[&] if/' ~ E v(p); 

2 ° M t=  H[e] Cf M V= 
3 ° ./k/l n [= H A F[&] iff .A/[ '~ ]= HI2] and ~/I ~ ]= F[&]. 

In order to interpret  the remaining case of the non-classical operator  0 ]  some 
abbreviations are helpful. For all i _< n we use as technical signs diamonds 
Oi and boxes oi:  

M ~ ]= o~g[~]  i f f3~ e W: ~ TCi ~ a n d M  n [= g[~] 
and 

D i l l  :d.f ~ O i ~ H .  

DEFINITION 8 Let k _< n .  

f (k, H) =as A Ok-H). 

f~ (k ,  H)  is to be read as "k has influence on the truth-value of H"  or as 
"k is a factor of H" .  

DEFINITION 9 Let a = { k l , . . . , k m } C  { 1 , . . . , n } .  
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f'~(a, H) =d/ fn(kl,  H) A . . .  h f~(km, H) 
O,~H =d] Ok~H A ...  A Ok,~H . 

The definitions 8 and 9 completely explain the concept of the "set of 
factors of a formula in a point of a model": g C_ { 1 , . . . , n }  is the set of 
factors of H in the point ~ of the model s~4 ~, if and only if 

M ~ I = f~(g, H)[~:]. 

DEFINITION 10 Let H,G,n  and a be as before. 
[]n](H)G =dS G A A fn (a ,  H)  -+ O~G. 

C_{1...n} 

The formula O~¢H~G is to be read as "G is true and it is necessary for 
any set of factors of H ' .  

Now we are ready to define the case for the operator [:]1, left open in 
definition 7. 

DEFINITION 11 (continuation of definition 7) 

Let H, F E FOR/and  let ~ E W. We define the truth of Ol(F)H in a point 
of the model ,~4: 

4° M ~ t: %(.)c[~] iffM~ I: o~(H)c[~] 

The definitions 7 and 11 made clear what is meant  when stating that  a 
formula from FOR] is true in a point of a model. As usual one can now 
define the t ru th  of a formula in a model, in a frame, and, finally, in a class 
of frames. 

The acceptance relation explained in definitions 7 and 11 determines a 
consequence operation ,$s : P(FORI)  , P(FOR]) for each regular 
modal  system S. 

DEFINITION 12 Let X C_ FOR l , w denotes the set of naturM numbers.  

f f  s (X)  =dS 0 Y~(X) ,  
n e w  

where 

H C f f~(X)  i f f V ~  n = ( W , . . . , 7 ) )  E ]C~ Vv EHoM(AT,~P) V~ E W :  
(7~,  v) 1= x[~] ~ (j:n, v) I= HIll  

Let $5 be the well-known modal system of LEwis. $5 is obviously regular 
and therefore it determines a consequence operation ffSS" 

THEOREM 1 ([16]) ffS5(O)= Qf 
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The construction of the inference relation f l s  is based on a generaliza- 
tion of JAgKOWSKI's ideas. This fact, together with the result established in 
theorem 1, motivates the following definition: 

DEFINITION 13 Let S be a regular modal system. The set of formulae 
fls(O) is called the JAggOWSKI-style system designated by S. 

We shall write f l s  instead of fls(O) wherever this doesn't  lead to mis- 
understandings. 

3 .3 .  B a s i c  s y s t e m s  

For further investigations on the JAgKOWSKI-style systems we need a method  
which a~ows us to find the tautologies of these systems. It seems hopeless 
to test the validity of formulae ex definitione. Fortunately, there exists an 
appropriate method for a large class of modM systems. 

DEFINITION 14 The modal calculus S is called basic system iff 
(1) S C_ T R  2; 
(2) there is a class ]C of reflexive, full 3 KRIPZE-frames such that  

(i) S = {H e FOR.~; 1C~ H}; 
(ii) /(: is closed w.r.t, direct products 4. 

THEOREM 2 (REPRESENTATION THEOREM ( [ 1 7 ] ) )  

Let S be a basic system. 

VH E FOR] 3r(H) E w : H 6 J s  ~ ~rs(H) ~- H. 

The function r : F O R /  ) w is effectively computable. For any 
formula H the number log 2 r (H)  is not greater than the number  of different 
non-classical subformulae in H, (The precise definition of r(H) can be found 
in [17].) 

Furthermore, we have the following useful lemma. 

LEMMA 1 ([17]) Let H ,G and ~ be as before. 
.A/V ~ 1= f (n ,  H) ~ .?vl '~ 1= []](H)G ~ o,~G. 

2 T R  is the trivial modal logic, obtained by adding n l l  =- H to the modal system K. 
3~-= (W, Q, R, II> is called fu//KRIPKE-frame iff II = 2 W. 
4i.e. for 2:~ = (Wi,Qi,Ri)  E ~ ; i < n, their direct product ,  i. e. the following 

structure: F1 ® . . .  ® ~'n = (W, U Qi, s) ,  where ]4; and Qi are explained in definition 5 
i<n 

artd S is defined as (Xl . . . . .  z,~) S (yl . . . . .  y,~} i f fVi  < n : x~ R~ y~, belongs to h:, too. 
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Theorem 2, together with temma 1, allow us to generalize the well-known 
diagram method  for testing modal formulae for the multi-modal case. In 
general, however, such a method does not establish the decidability of the 
corresponding causal system. The topic is quite complicated for dimensions 
higher than 3 and will not be discussed here in further detail. Let me just  
notice that  the product  construction in definition 5 is a special case of the 
generalized product  defined in [1]. According to the fundamental  theorem of 
that  paper, the decision problem of the first order theory of the generalized 
product  can be reduced to the decision problems of the first-order theories 
of its factors. It is not hard to show that  for all n E ~  the system T ~ is 
decidable and so is fiT. However, $5 3 is not decidable - -  it follows from 
theorem 1 together with a result due to PIECZKOWSKI that  this system is 
a reduction class of the f-o predicate calculus ([11]) - -  and hence J S 5  is 
undecidable as well. 

The non-classical box-operator []1 can be used to define further connec- 
tives. 

DEFINITION 15 H --*f G -'=d] [:]](H)( H --+ G). 

On the other hand, -+1 can be used to define o f  as well. 

LEMMA 2 Let S be any basic system. 
O](H)G -- [:]f(H)(H "+ G) A Qy(H)(-aH ~ G) E f f  s(O). 

The connective --+f already has some interesting properties. Some of 
its other properties are, however, quite counterintuitive with respect to an 
intended causal interpretation. In any case, this connective is still a good 
starting-point for searching precausal connectives. To give just an example, 

O/(H)G A H --->1 G A ~OI(H)(~I(H)H ~ G) 
seems to be a good candidate. 

4. M o d i f i c a t i o n s  

There are lots of possible topics with which to proceed. One of them is 
the axiomatization of JAgKOWSKI-style systems. ([17] contains some partial 
results.) Furthermore,  as we mentioned above, the Entscheidungsproblem of 
these systems seems to be highly interesting. 

Nevertheless, our primary interest is devoted to the formalization of 
causal relations. According to NUTE's classification (cf.[10]) the JASKOWSKI- 
systems, al though numerous,  are situated rather close to each other. There- 
fore it makes sense to ask for further modifications of the construction. 
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4.1.  F i r s t  o r d e r  J a g k o w s k i - s t y l e  s y s t e m s  

In the introduction, we claimed that the limitation of our investigations to 
propositional languages only is not a principal one, but is merely to increase 
the transparency of the presented material. In the following, we demon- 
strate how to accomplish a first-order version of a system which is based on 
relational frames. 

Let V A R  be a denumerable set of individual variables x , y , z , . . ,  and 
let P R E  be a denumerable set of predicate symbols P , Q , R , . . .  of fixed 
arity at(P) etc. The set AT of atomic formulae consists of all sequences 
P(xi 1 , . . . ,  Xiar(P)), where P E P R E  and xi I , . . . ,  Xiar(P) are arbitrary indi- 
vidual variables. 

The set FOR1 of all formulae is defined to be the least set including 
AT and containing -~H as well as H A G, Oy(H)G and Yx : H,  whenever it 
contains H and G. Further connectives may be defined as usual. 

Next we interpret FOR1 in appropriately enlarged first-order frames. 
The construction goes along the way well known from modal logic (cf. e.g. 
[6], pp. 164-168). 

Let S be a normal basis system. The class/C~s consists in all structures 
thus defined: 

DEFINITION 16 The structure 9r] ~ = ()/V, Tgoa, . . . , '] '~n,7),/ .4/) is ca~ed enlarged 
n-dimensional product iff 
(1) <W,Tei , . . . ,n~,)  ~/C}; 
(2) 7) is a non-empty domain of individuals; 
(3) L/is an assignment such that 

(i) Vx e V A R  : H(x) e 7); 
(ii) VP e P R E  :Lt(P) c_C_ D ~(P) x )IV. 

On ~'~ we base the construction of an enlarged n-dimensionM model 
M e ,  by adding a valuation vl : AT ) 2 w explained as 

= e w ;  e u(P)). 
DEFINITION 17 We explain the acceptance of a formula H E FORt  in 
a point ~ of a model A4~ [A4~ I=a H[~], for short]. All Boolean cases are 
defined as usual. 

M~ t=, O/(H)G[Y:] iff M~ ]=, O~(H)G[k ], 
where O~(H)G is explained as in definition 11. Furthermore, 

.M~ [=1 'v'x : H[~] iyA/'~ [=1 H[:~], 
where Af~ differs from M e  at most in its value for H(x). 
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Now it should be obvious, how to go through the notion of acceptance 
in a model ,  in a frame,  in a class of frames up to a consequence operat ion 
5vl s in FOR1 and,  finally, to arrive at a first-order JAgKOWSKI-Style system 

4.2. Intuitionistic Ja§kowski-style systems 

A m o n g  all the systems of non-classical proposit ional logic, the intuit ionist ic 
calculi gained a dist inguished position. As the only non-classical system 
in tu i t ionism is accepted as a logical basis of metamathemat ics .  In this sense, 
intui t ionist ic  logic is the  only Mternative t o  classical proposit ional  calculus. 
Moreover,  constructivist ic a rgumenta t ion ,  based on intuit ionistic logic, can 
be met  outside mathemat ics  as well. For this reason, we should take a 
closer look at causal-logical systems connected in a way with the  basic ideas 
under lying intuit ionist ic logic. 

The  const ruct ion described in subsection 3.2. can be modified accord- 
ingly. We take as a s tar t ing point  the adequate  KRIPKE-semantic for the  
intuit ionist ic logic INT (cf. e.g. [13]). 

Let/Ci be the  class of all reflexive, transitive, and ant isymmetr ic  KRIPKE- 
frames.  Taking ~'1,.  • -, $'~ f rom/~i ,  we form an n-dimensional i - f rame .Pn = 
~1 × . . .  x F n  as described in definition 5. It 's easy to see tha t  .T n is reflexive, 
transit ive,  and  an t i symmetr ic  as well (i.e. all of its relations are of tha t  kind).  

On f in  we explain a n / - m o d e l  M '~ as an ordered pair consisting in .T ~ 
and a monoton ic  valuation vi : AT ~ 2 w.  Tha t  means vi has to fulfill 

Vp E A T  V&, ~ E }4] Yj <_ n : ~ TCj ~ and ~ E vi(p) ~ fl E vi(p). 

Next,  we define the acceptance of formulae from the language Li =dS 
(AT, ,-~ , + ,  -, ~-, DS, ~S) in a point  of an n-dimensional / -model .  The  sym- 
bols ,,~, + , .  and >- represent  the intuitionistic connectives while oS and ~S 
denote  two-argument  non-classical connectives. 

DEFINITION 18 Let H E FORi be a formula generated in the usual  way 
f rom AT by ,,~, + , . ,  ~-, o1  and Of.  The  acceptance of H in the point ~ of 
the model M n [All n [=i H[~], for short  ] is explained recursively: 

10 M 1=4 

2 0 M l=i  

3 0 M 

4 0 M [=i H .  G[£.] 

iff ~ E vi(p) for p E AT; 

iff AJ ~ ~=i H[t)] for all ~, such tha t  there 
is an j _< n with &TCj ~); 

iff M '~ [=4 H[~] or M '~ ]=i a [~ ] ;  

iff M s ]=i H[~] a n d M  ~ ]=4 G[~]; 
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5 0 M ~ I=~ H >- G[~] iff 3d n ]=i H[t)] > A/I n [=i G[~)]; for all ~, 
such that there is an 
j _< n with bOgj ~. 

The remaining cases of "modMized" formulae [~I(H)G and <)I(H)G shall 
be defined as correspondingly as possible to the classical case (cf. definition 
11). Again, some abbreviations will be helpful. Quite similarly as in the 
case of the classical acceptance relation, I=, we introduce n pairs of technical 
signs ink, O~:; k < n. 

3 / /n  I=i nk(H)[~] iff V~t e W: 2T4k T/===> 34 n ]=i H[*)] 
and 

M ~ ]=i Ok(H)[~] iff 3~1E W: ~T4kfland.M • ]=i H[~)]. 

As one could have expected, O k and Ok are no longer interdefinable in 
/-models. (There exist two-dimensional countermodels.) Therefore, besides 
the abbreviations stated in definition 8 and 9 we arrange: £>~ is short for 
Ok~, . . . ,  Ok~, in case of t¢ = { h i , . . .  , kl}. 

Now the missing cases can be easily supplied. 

DEFINITION 19 (continuation of definition 18) 
Let fn(~,  H) be as explained in definition 9. 
6 ° M n I=i V'lf(H)G i f f M  n l=i a A h fn(~, H) --* O~G[2] ; 

g{1...,~} 
7 ° M '~ I=i OI(H)G i f f M  ~ l=i G V V fn(g,  H) A O,~G[~]. 

C_{1 ...n} 

We proceed as usual and arrive finally at the following definition. 

DEFINITION 20 Let X C FORi. 

Yi(X)  :uS 0 Y:~(X), 
new 

where 
H E f f~(X)  iffVJ T M  : (W, T41..., T~n) E ~ Vvi V~ E }42 : 

(.r,,, vO > (.r n, vO H[2] 

ffi(O) is called the intuitionistic JASKOWSKI-styIe system and represented 
symbolically by J I N T .  It follows immediately from the above definitions 
that all Li-substitutions of intuitionistically invalid formulae fail to be the- 
orems of ,JINT.  Thus, to take an example, 

(Of(p)q) q- ~., ([]f(p)q) ~. J I N T ,  

On the other hand, all intuitionistic tautologies belong to O~INT . 

INT c_ ,.~INT. 
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For fur ther  investigations of the system JINT, the most  impor t an t  ques- 
t ion is whether  there  exists a me thod  for testing formulae. Fortunately,  one 
cem modify  the  proof  of theorem 2 to obtain the following corollary: 

T.EOP.r~M 3 ([18]) 

V H  E F O R i  3 r ( H )  C w : H E ,) ' tNT ~ J~ri(H) l=i H .  

We skip all the  technical details here and ment ion only tha t  the core 
of the  induct ive  proof  is the evidence for the monotonici ty  of the induced 
valuat ion funct ion in the considered m-dimensionai  model.  This proper ty  
can be shown as follows: 

For m < n let g be a, function from { 1 , . . . , n }  onto { 1 , . . . , m } .  Let 
)1,4 = = 0 4;, T~I, ...,7~=, v) be an n-dimensional  model. We define an m-di-  

m mensional  model  A4g as follows: 

DEFINITION 21 M ~  =d] 0 / V m , $ 1 , . . . , $ ~ , v g ) ,  where for i , j  <_ m 

'~ {~1,. . . ,5: ,~) Si (:01,-. . ,~m} i f fV j  # i ( ~cJ = ~J A 
vk < n :  Rk ); 

( 2  vg(p)-~- {(X1,...,27m) e )¥m; (~(1),...,~g(n)) e v(p)}. 

LEMMA 3 v~ is monotonic,  provided that v is also monotonic.  

PI~OOF. 
Assume that (&l,...,~m I C vg(p)and that (&l ...,~m} Si (~1,...,.~} for 
a given i <_ m. 

F rom the above definition we obtain 

(:~g(1),. • .,:~gn(n)) e v(p) [i] 
and 

Vj ~ i  : .~J =~J  [Bi] 
as well a,s 

Yk _< n :  :~ R~ ~ [B2] 

Let { j l , . . .  , j l}  be the set g - l ( i )  in its natural  ordering. Then it follows from 
[B2] 

~c i. ~c g(jl) and ~:i. R -i -g(Jl) -i 31 jl ~1 Jl YJl and = -'- YJl Y J1 

5: i. = &g.(J*) and ~i. o .  # and :,a(J,) -i J~ 3l Jt *~3t ~j~ YJz = YJ~" 
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As stated above, j l  is the smallest number s.t. g( j l )  = i. Therefore [B1] 
entails: 

" " " ~ " " " ' " V j l  ' " ~ j l + l  ' . . . .  

We proceed with j2 etc. until we finally arrive at jl,  which is the greatest 
number  with this property: 

, , . . . ,  

Because of [A], and of the first of the above lines, the monotonicity of v 
yields that  

(~g(1) . ~ g ( J l - - 1 )  ~ . q ( J l )  ~,g(jl+l) ~gn(n)) 
' ' "  ' Jl '/]Ji ' j14-1 ' ' * ' '  ~ v(p),  

Procceding step by step on this way the last of the above lines leads us to 

(~1(1),. .  ,, yn g(n)) e v ( p )  

which means 
9 TM) e yap).  " 

4.3. Paraconsistent  Ja§kowski-style sys tems 

Paraconsistent systems (as long as paraconsistency is interpreted in a ra~io- 
hal, that  means non-dialethical, way) are of great methodological interest. 
They seem to be suitable to formalize e.g. discourse situations as occur- 
ring in rational discussions. Thus, paraconsistent systems may be useful 
as metamathematical  background for considerations on the methodology of 
empirical sciences, i.e. a field of application which they share with causal 
logic. Therefore it may be interesting to look for a possible amalgamation 
of both of these accounts. 

Beside JAgKOWSKI'S construction of causal systems there is another highly 
original construction by this author which received slightly more at tent ion in 
history (however, still not as much as it deserves) - -  his discussive logic D2. 
The calculus/)2 was one of the earliest contributions to what is called today 
paraconsistent logic and it was, in fact, the first formalized paraconsistent 
system. 

Here is a short description reformulated in modern symbolic language. 
Let FORd be the set of an formulas freely generated from a denumerable set 
of propositional variables by means of some Boolean complete set of propo- 
sitional functors and two additional two-argument "discussive" connectives: 
the discussive conjunction hd and the discussive implication --*d- Next we 
explain a transformation 7 : FORd ) FORm from FORd to propositionM 
modal language FORm. r leaves unchanged propositional variables as well 
as the Boolean connectives. Let (5 be the $5 possibility operator. Then we 
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establish: 
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(1) r ( H )  
(2) v(-~H) 
(3) v (H A G) 
(4) r(H AdG) 
(5) v(H ---~dG) 

=dr H, for H E AT; 
=d/ -~r(H); 
=d] "c(H) h r(G);  
=dS r(H) A <St(G); 
=all ~ ' r (H)~  r ( e ) .  

The above transformation explains JASKOWSKI'S original somewhat "obli- 
que" connectives - -  they can be easily exchanged with more familiar ones 
without losing anything essential. 

DEFINITION 22 D2 =d] {H E FORd; ~r(H) ES5 ). 

JASKOWSKI'S idea can be generalized in several directions: It is possible 
to use a large class of modal systems, among them even non-normal ones, 
to obtain interesting discussive cMculi. Furthermore, keeping in mind that  
JASKOWSKI'S construction is a Polish one, it seems more natural  to take 
in discussive logic in the traditional Polish style as a logical system (i.e. a 
consequence operation in a formal language) rather than merely as a set of 
formulae. For each modal calculus S containing $3, we are able to define 
an inference operation, 79s, in the discussive language FORd and to give 
a direct semantical characterization for the system (FORd, 7)s) in terms of 
KRIP Kt~-frames 5. 

THEOREM 4 7)S5(0)= D2. 

For all calculi S containing $3, the following deduction theorem holds 
true: 

THEOREM 5 VS VX C FORd VH, G E FORd 
(H -+d G) E 79s(X) ~ G E 79s(X U {H}). 

Usually we interpret the deduction theorem as a characterization of the 
implication within the considered system. But now it goes the other way 
around: the discussive implication possesses all the properties expected from 
a discussive inference operation. By theorem 4 they are t ransmit ted to the 
consequence relation. Moreover, the original JA~KOWSKI system, D2, is 
one of the above defined systems. For these reasons, we call the calculi 

5119] contains some more details. 
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(FORd, l)s) discussive JA~KOWSKI-systems. Each of them generates a class 
of higher-degree discussive systems. It turns out, however, that JASKOWSKI'S 
original construction was remarcably stable: for normal basic systems S the 
whole manifold of higher-degree discussive calculi collapses into D2. Some 
further properties of these calculi are dicussed in [19]. 

First we observe that FORd can be redefined as a part of FOR]. Indeed, 
~E]](F)-~F -~ G serves as a definition for F --~d G, and nothing else is needed, 
because FAd G can be defined in terms of the remaining FORd-connectives 
a s  

Let us note one further possible generalization of definition 22. Let 
FORm(,~) be the n-modal language containing n pa~rs of modal operators 
{oi,  <>i} i < n instead of merely ~ and <>. Then, the above transforma- 
tion v induces straightforwardly the following 7"n : FORd ) FORm(,q: 
instead of the <> in (4) and (5) of the definition of r ,  we place everywhere 
~ 1 , . . . ,  ©~. Thereby we obtain a multi-modal inference relat ion/)3 instead 
of mono-modal / )s .  

At present such a generalization is quite spurious: all modal operators [] 
and <> are substituted by complete strings of modal operators O l , . . . ,  [~= and 
~ l , . . . , © ~ ,  respectively. Of course, nothing essential has changed: /)~ = 
/)s.  However, the knack shall be useful after a while. 

The most important properties of the /)s  for our present purposes is 
their definability in terms of classes of KRIPK~-frames. This will enable us 
to accomplish the amalgamation we hoped for. 

DEFINITION 23 Let X C_ FOR] ,  w denotes the natural numbers. 

Y V s ( X )  =dJ N YV~(X),  
n e w  

where 
H e J D ~ ( X ) i f f V ~  n = ( W , . . . , P )  e )C~ Vv e HOM(AT,  P)V~ e )4;: 

(7 v)]= v)]= 

The systems constructed that way turn out to be both paraconsistent 
and causal. 

THEOREM 6 For all S containing $3: 
J s  c_ J ~ s .  

PROOF. [straightforward] 

We need the following lemma 5 in order to establish the connection be- 
tween / ) s  and J / ) s .  In the proof of lemma 5, we make use of a fact proved 
in [17]: 
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LEMMA 4 
(a) 
(b) 

For all H E F O R  s we have 
1 ~  I = rnl(H)H -- Q 1 . . . Q ' ` H  

K~ [= OI(-,H)H -- [:]I(H)H 

LEMMA 5 Let I=.~ be the usual multi-modal logic turnstile. 
H E F O R d  we obtain: 

Jc} I=~ ~,~(H) ~ t:} I= H. 

PROOF. [by induction on formula-length] 
The only interesting case is H := F ~ d  G. 

v34 '~ c ~c} w (34" 

v34 ~ e Jc} w (34'~ 

v34"  e K;} w (34"` 

v34 '~ e ]c} w (34~ 

v34 ~ c ~c~ w (34"` 

v M  '~ e E }  w : 34'~ l= F -'+d G[~] .: 

E }  ?- F --~d G. 

Then for all 

I=ra ~ l . . . ~ n T n ( F ) [ x ]  =t" M n I=m vn(G)[Y:]) < > 

[for some ~) e n l . . . nn ( [x ] ) ]  

I= F[9] ~ 34"` I= Viii) ¢=,  
[by induction hypothesis] 

l: ~'1,. . . ,  +nF[x] ::~ ./~n l= G[x]) 

I= %(F)F[~] ~ 34~ 1= a[~]) ¢=~ 
[by lemma 4] 

m 

Now we can easily prove the following 

THEOREM 7 J~DS(0) f'l F O R d  = 7)s(O). 

What is more, for paraconsistent causal systems designated by basic 
systems, we again obtain a representation theorem similar to theorem 2 and 
thereupon a formulae-testing method for these systems. 

5. Generalized Ja~kowski-style systems 

5.1.  B a s i c  d e f i n i t i o n s  

There was one more causal system created by JASKOWSKI, namely Q*. We 
shall first reformulate JAgKOWSKFS original definition (see [5]) in multi- 
modM terminology and subsequently try to generalize his construction. The 
language of Q* arises from Lf by adding two fllrther two-argument non- 
classical connectives c], and [:]d. In order to interpret FOR* in points of 
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n-dimensional  models we have to explain the interpreta t ions  of those addi- 
tional connectives. 

DEFINITION 24 Let k = 1, . . . ,  n.  

c~(k,H) =dr Dk . . .D~H V Dk.. .D~-~H. 

cn(k, H) is to be read as "the t ru th  of H does not depend on k , . . . ,  n".  
The  signs cn(0, H)  and cn(n + 1, H) are t reated as empty.  

DEFINITION 25 Let k = 0,..., n. 
e ~ ( k , H ) = d / - , c n ( k , H ) A c n ( k  + 1, H).  

e~(k, H) can be read as "the t ru th  of H doesn ' t  depend on k + 1 , . . . ,  n, 
it depends however on k , . . . ,  n ' ,  or "k is the efficient factor of H" .  The  set 
k, k + 1 , . . . ,  n is called the definitive set of H.  

The  following definitions will establish the meaning of the concepts "ef- 
t~cient factor of H in the point ~ of the model 2¢1" [e(H, M n, ~), for short] 
and "definitive set of H in the point ~ of the model M "  [d(H, M ~, ~) ]: 

Let k _< n , n  = { k , . . . , n } :  

e(H, fl4'~,~) = k iff ]~4 n I= er'(k,H)[&] 
as well as 

d(H,M'~, 5c) : ~ iff .Mn I= e~(k, H)[~] • 

As in the case of JhgKOWSKi-style systems we confine ourself to reflexive 
s t ructures  only. 

DEFINITION 26 Let n be any natural  number .  
D',,..,G =dl A e'~( k, H) ~ % G  

et,'l ) 
O<k<n 

and 
M I = iyM  e t n )  

The  above definition is in good accordance with JASKOWSKI'S intuit ions:  
n~(s)G expresses the t ru th  of G for all values of H ' s  efficient factor - -  if 
en(k ,H)  holds in a situation &, then G is t rue in all s i tuations differing 
from & only by the value of their k th component ,  being the efficient factor 
of H under  those circumstances. Definition 26 meets JASKOWSKI~S original 
definition, i.e. 

u]n(H)G =dr M V']kG A en(k,/t): 
l < k < n  

This can be shown by proving the following lemma.  
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LEMMA 6 Let F ~ be a n-dimensional reflexive f-o-frame, 
i.e. Vi ~ n : ~ E )'Y\Qi ~ ~TQ~. 
Then 

V [3kGAe~(k ,U)  -- A e ~ ( k , g ) - * [ 3 k  G. 
l<_k<n o<_k<_~ 

Thereby, the efficient factor of H may be understood as the factor finally 
determining the value of H under the given circumstances. JAgKOWSKI 
pointed out that  the efficient factor of a real event is its cause in the sense 
of ROMAN INGARDEN (cf. [5]): INGARDEN claimed that  the cause is 

[ . . .]  not the entire sufficient condition of its effect, but  merely 
an event being the final factor completing the already existing 
circumstances into the entire, active, complete condition of its 
effect. ([3], p. 76) 

INGARDEN'S concept of a cause is not subject to the construction of 
causal connectives in JigKOWSKI-style systems. It is not even expressible 
in the language L* - -  it does not fit into any syntactical category. Nev- 
ertheless, JAgKOWSKI'S remark is interesting; at least with respect to the 
subsequent construction of generalized JhgKOWSKI-style systems. We will 
show that  multi-dimensional KRIeKE-structures provide an adequate seman- 
tic framework for Q*. On the other hand, those structures do not contain 
any temporal  elements. Hence it comes out that  INGARDEN'S concept of 
a cause can be formalized by means of a semantic framework without any 
temporal  relations. Therefore the questions arises, whether the assumption 
of temporal  orderings in the course of events is essential in INGARDEN's defi- 
nition, or whether the temporal  ordering could be left out. Keeping in mind 
IN GAttDEN's enormous difficulties with the problems of temporal succession 
in singular cause-effect-relations (cf.[3], pp. 44 ft.) such a modification would 
be highly desirable. 6 

Before proceeding with an outline of the completeness of Q* w.r.t, ap- 
propriate classes of multidimensional KRIPKE-frames, we have to complete 
the remaining cases of interpretation. []d(H)G means that  G is true for all 
values of H's  definitive set. Our notation transforms JA~KOWSKI~S original 
formalization into 

Dnd(H)e =dr QnG A A 
l < k < n - 1  

c~(k + 1 ,H)- - ,  Ok . . .O~G.  

6JA~KOWSKI ' s  formalization, trying to be adequate, achieves thereby a position from 
which can be asked relevant and possibly important  questions concerning the original 
philosophical issue - -  a nice example of how logic and philosophy can interact.  
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According to PIECZKOWSKI, the meaning of the symbol defined above is 
entirely clear: G is true for all values of the components belonging to the 
definitive set of H ([12], p. 172). One can hardly agree with his claim. The 
connection between JASKOWSKI'S intuitions on the one hand,  and the above 
definition on the other, seems somewhat fuzzy. Even if one (assumed a print- 
ing mistake and therefore) substituted cn(k + 1, H) by en(k + 1, H)  - -  or 
even by c~(k, H) - -  one would not obtain any bet ter  accordance. 7 It seems 
however that  the following definition fits in with JASKOWSKI'S intuitions: 

DEFINITION 27 Let H, G and n be as before. 

[]~d(H)G =dI A e~(k,H) + Qk . . .D~G. 
l</~<n 

In reflexive n-dimensional structures (3 n Gis  weaker thanO ~ G The d(H) d(H) " 
remaining acceptance condition can now be stated as follows: 

DEFINITION 28 J~4 ~ l = [3d(H)G[,~ ] ill.A4 n I = [3~(H)G[& ]. 

Definitions 7, 10, 26 and 28 altogether establish the acceptance of a 
formula of L* in a point of a n-dimensional model. 

In any class of f-o-frames [3H - .  H is a tautology and hence belongs 
to the modal  system designated by this class. On the other  hand,  any class 
of f-o-frames adequate for a regular modal system containing DH + H is 
reflexive. Therefore we will label each regular system containing []H -~ H 
"Regular system" (with capital R). 

The acceptance relation ~ defined in K}, for n E w establishes a conse- 
quence operation in FOR*. 

DEFINITION 29 Let S be a Regular modal system. 

.~}(X) =dI {H e FOR* : K} I= X ~ ~ }  ~ H} 
and 

 s(X) =ds N 
nE~ 

A transformation of FOR* into FORm(n) which treats JA~KOWSKI'S con- 
nective E]d as the n-modal  connective 5]~ leads to the identi ty between 
JASKOWSKI'S original calculus Q* and the system JASKOWSKI'S .~$5(~) de- 

r jAgKOWSKI  had elaborated this topic in the late thirties. Almost all of his manu- 
scripts burnt  in the Warsaw Uprising in 1944. After the war he reproduced only a part of 
them. Although fragments of his scientific inheritance are preserved in the Mathematical 
Institute of Torufi University, t was not able to find any further comments concerning the 
definition. So perhaps this matter will remain in the dark. 
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fined above. The proof of this fact runs analogously to the proof of Theorem 
1. 

Yet interpreting Od according to definition 27 we lose this identity. One 
can show that 

Od(Hv--,H)G --+ [3.f(G)G e -,~5(0) \ Q*. 

Hence "~S is not a straightforward generalization of JASKOWSKI's calculus 
Q*. Despite of this fact JASKOWSKI's intuitions concerning Od(H)G justify 

DEFINITION 30 We call ~S(O) the general JASKOWSKI-style system desig- 
nated by S. 

5.2 .  S o m e  m o r e  c o n n e c t i v e s  

Definition 30 seems justified because the underlying construction obviously 
generalizes JASKOWSKI's original attempt and because, in spite of the fact 
that .~$5(0) ~ Q*, the system .~S5(O) fits JASKOWSKI~s intuitions better 
than his own calculus Q*. 

JASKOWSKI'S aim in creating Q* was to achieve more adequate coun- 
terparts of causM relations than were obtainable in the Q/-system. All the 
constructions of what he called "causal connectives" can be restated in any 
general JA~KOWSKI-style system. 

The sets of .~s5-theorems vary for different designating Regular modal 
systems. Therefore we obtain slightly varying properties of a given connec- 
tive in different general JAgKOWSKI-style systems, or - -  if one likes to say 
so - -  whole classes of connectives are obtained for each single connective 
defined in Q*. Having once defined a causal connective as closely as pos- 
sible to our intuitions, allows finetuning of its properties by choosing the 
appropriate designating system. Hence, by generalizing JAgKOWSKI's con- 
struction, we accomplish a large number of potential formal counterparts of 
causal relations. 

All definitions of formal connectives stated in JAgKOWSKl-style systems 
can be reformulated in general JAgKOWSKI-style systems. Given any basic 
system all properties of the L/--connectives remain unchanged when passing 
from i t s  to --~8. However, the enlarged language L* offers new possibilities 
for defining precausal connectives. 

First of all, in perfect analogy to definition 15, one may explain two 
further non-classical implications connected with O~ and Od respectively 
(cf. lemma 2). 



576 Max Urchs 

LEMMA 7 Let S be any basic system. 
Di(H)G =_ (H --+i G) A (-~H --*i G) E ~8, for i E {f ,  e, d, }, 

Hence it would be possible to work within an equivalent language, which 
would be generated by adding ~ / ,  ~¢ ,  and ~ d  to classical propositional 
language. 

Here are some of JAgKOWSKI'S examples of causal-logical connectives (cL 
[5], pp. 89-90): 

H ~ - i G  
H = i F  
H AiG 
H --~d AdF 
H ~-e A~G 

=d] ~H -+i ~G , for i E {f, e, d} ; 
= d / ( g  ~ i  G) A (H ~-~ G) , for i e { f ,e ,d}  ; 
=d$ H A G A Oi(H)(-~H A -~F) , for i ~ {f, e, d) ; 

(H G) ^ (H ^d G) ; 
=dj (H G) ^ (H G). 

According to JASKOWSKI~ the last connective fits as the formal counter- 
part to the contemporary notion of causality in jurisprudence. 

5.3.  A s e r i o u s  t e c h n i c a l  p r o b l e m  

The box-operator D, defined as OH =4/ O](H)H, has in JA~KOWSKI-style 
systems the intuitive meaning of the usual necessity-operator: DH can be 
read as "H is necessary" (cf. [17]). 

The connectives {:]~ and o d do not have the same "definitorial power": 

De(H)H ~ D](H)H ~ [:]d(H)H, in all -~s. 

This fact has far reaching consequences. It can be shown that in general 
JASKOWSKI-style systems the representation theorem (theorem 2) has no 
analogue. In fact, just the addition of even one of the connectives D~, Dd, 
or E]d to Lf results in this effect. 

That results in enormous problems in practical theorem-testing within 
general JAgKOWSKI-style systems. Under these circumstances we have the 
following possibilities: 

1) to find a modified concept of basis-system, such that there is an 
analogue to the representation theorem provable for the resulting 
class of JAgKOWSKI-style systems. 

2) to search for a recursively computable function r*, such that 

VH e FOR* : r*(H) > r(H) and H e ~s(0)- :  :" l ~  *(H) ~- H. 

However, both possibilities seem to be somewhat problematic. It comes 
out that each appropriate modification of the concept of basis-system must 
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exclude at least all modal  logics containing $4. The class of remaining sys- 
tems would diminish regrettably. If there is, on the other hand,  any natura l  
number  r* with the required properties, then the computational  effort in 
testing the validity of formulae would increase considerably. 

Be tha t  as it may, as long as there is no method for theorem-proving 
available, generalized JAgKOWSKI-style systems are useless for causal-logical 
purposes (whereas they may  well be - -  and in fact are - -  interesting for 
purely logical investigation). 

6. N o  F u r t h e r  O u t l o o k  

At the present  state of our work one should avoid further outlooks: the ac- 
count contains obviously many  more open problems then solved ones. But 
even when the logical work is done, almost all interesting problems remain 
open. Logic can make propositions - -  the choice of a specific causal connec- 
tive as the formalization of the considered kind of causal nexus is not the 
business of pure logic alone. 
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