SHARP INEQUALITIES FOR THE NORMS OF CONJUGATE FUNCTIONS AND THEIR APPLICATIONS

V. F. Babenko UDC 517.5

1. Let C and Lp, $1 \leq p \leq \infty$, be spaces of 2 π -periodic functions $f: \mathbb{R} \to \mathbb{R}$ with the corresponding norms $\|\cdot\|_C$ and $\|\cdot\|_{L_p}=\|\cdot\|_p$. We denote by $L_p,~r=1,2,...$; $l\leqslant p\leqslant \infty$, the space of functions/6C, having a locally absolutely continuous derivative $f^{\prime-}{}^{\prime\prime}(f^{\prime\prime\prime}=f)$ and such that $f^{\prime\prime}\in L_p$. As usually, let $\overline{W}_p'=\{f\in L_p':\|f^{(r)}\|_p\leqslant 1\}$. Further, if $\omega(f, t)$ is the modulus of continuity of a function $f \in C$, and $\omega(t)$ is a given modulus of continuity, then by $W^{T}H^{\omega}$, $r = 1, 2,...$, we denote the class of functions $f \in C$ such that $f^{(r)} \in C$ and $\omega(f^{(r)}, t) \leq \omega(t)$ for every $t > 0$.

For a function $f\in L_1$ we denote by f the function that is conjugate to f (see, for example, $[1]$) and we set $W_p = \{f: f \in W_p\}$, $W'H^{\omega} = \{f: f \in W'H^{\omega}\}$.

Presently, one knows the exact solution of several extremal problems of the theory of approximations on the classes $L_{\rm D}^{\rm F}$, W_D, and W^rH^{*u*} (see, for example, [2-4]). Substantially less sharp results are known for the classes of conjugate functions [5-7]. In this paper, with the aid of some known results for usual classes of functions and with the aid of the theorem of Stein and Weiss ([8], see also [9], Theorem i.i0), we have obtained a series of new results regarding the exact solution of extremal problems on classes of conjugate functions.

We introduce the following notations. If $f \in L_1$ and $f \ge 0$ almost everywhere, then P(f, t) is the decreasing rearrangement (see, for example, [3, pp. 92, 93]) of the restriction of f to the period. For any function $f \in L_1$ we set Π $(f, t) = P (f_+, t) - P (f_-, 2\pi - t)$, where $f_{\pm}(t) =$ max { $tf(t)$, 0}. If $f, g \in L_1$, $f, g \ge 0$ almost everywhere and if for every $x \in [0, 2\pi]$ we have

$$
\int\limits_{0}^{x} P(g, t) dt \leqslant \int\limits_{0}^{x} P(f, t) dt,
$$

then we shall write $g < f$.

We denote by $\varphi_{n,r}$, n, r = 1, 2,..., the r-th periodic integral with zero mean value on a period of the function $\varphi_{n,0}$ (t) = sign cos nt. Instead of φ_1 , we shall write φ_r . More generally, if α , β are positive numbers, then by $\varphi_{n,r;\alpha,\beta}$ we denote the r-th periodic integral with zero mean value on a period of the function $\varphi_{n,0;\alpha,\beta}(t) = \alpha \operatorname{sign} \left(\cos nt - \cos \frac{\pi t}{\alpha + \beta} \right)_{+} - \beta \operatorname{sign} \left(\cos nt - \cos \frac{\pi t}{\alpha + \beta} \right)$ $\frac{1}{\alpha + \alpha}$. Instead of $\varphi_{t,r;\alpha,\beta}$ we shall write $\varphi_{r;\alpha,\beta}$.

Let $\omega(t)$ be an upwardly convex modulus of continuity. We denote by $f_{n,r}(t) = f_{n,r}(\omega; t)$ the r-th period integral with zero mean value on a period of the odd $2\pi/n$ -period function $f_{n,0}(t)$ such that $f_{n,0}(t) = 2^{-i}\omega(2t)$ for $i\in[0,\pi/2n]$ and $f_{n,0}(t)=2^{-i}\omega(2(\pi/n-t))$ for $i\in[\pi/2n, \pi/n]$.

2. The following statement is fundamental in this paper.

THEOREM 1. Assume that the functions $f, g \in C$ are such that $\tilde{f}, g \in C; f \neq 0$ and $\tilde{f} \neq 0$ almost everywhere, $\int_{0}^{2\pi}$ sign $\int_{0}^{2\pi}$ (t) $dt = 0$, and

$$
\|\widetilde{f}\|_1 = \int\limits_0^{2\pi} P\left(\frac{f}{f}, t\right) P\left(\frac{\sin \widetilde{f}}{\widetilde{f}}\right)^{\sim}, t \, dt. \tag{1}
$$

In this case if $|g| < |f|$, then $\|\tilde{g}\|_1 \le \|\tilde{f}\|_1$.

Remark 1. The conditions imposed in Theorem 1 on the function f are satisfied for n, $r = 1, 2, \ldots$ by the above defined functions $\varphi_{n,r}$ and $f_{n,r}(\omega)$. This circumstance and the presence in many cases of inequalities of the type $|g|<|f|$ stipulates a large collection of applications of Theorem i.

Dnepropetrovsk University. Translated from Ukrainskii Matematicheskii Zhurnal, VoI. 39, No. 2, pp. 139-144, March-April, 1987. Original article submitted August 20, 1986.

Proof. Assume first that $\tilde{g} \neq 0$ almost everywhere. We have

$$
\|\widetilde{g}\|_1=\int\limits_{0}^{2\pi}\widetilde{g}(t)\operatorname{sign}\widetilde{g}(t)\,dt=\left|\int\limits_{0}^{2\pi}g(t)\left(\operatorname{sign}\widetilde{g}(t)\right)^{\sim}dt\right|\leq \int\limits_{0}^{2\pi}P\left(\mid g\mid, t\right)P\left(\mid\left(\operatorname{sign}\widetilde{g}\right)^{\sim}\mid, t\right)dt.
$$

Taking into account condition $|g| \leq |f|$ of the theorem and Proposition 5.4.7 from [3], we obtain

$$
\|\widetilde{g}\|_{1} \leqslant \int_{0}^{2\pi} P\left(|f|, t\right) P\left(|\left(\operatorname{sign} \widetilde{g}\right)^{\sim}|, t\right) dt.
$$

From the theorem of Stein and Weiss ([8]; see also [9], Theorem 1.10), taking into account the conditions $\int\limits_0^{2\pi} \text{sign}(\widetilde{f}(t)) dt = 0$ and $\widetilde{f} \neq 0$ almost everywhere, there follows easily that P \times $(|(\text{sign}\ \breve{g})\ \tilde{g})|,t)\leqslant P(|(\text{sign}\ \tilde{h})\ \tilde{g})$, $t)$ for any $t\in[0,2\pi]$. Therefore, taking into account also condition (1) , we find

$$
\|\widetilde{g}\|_{1} \leqslant \int_{0}^{2\pi} P\left(\frac{f}{f},t\right) P\left(\frac{f}{\left(\frac{\pi}{2}\right)}\widetilde{f}\right)^{-1}, t\right) dt = \|\widetilde{f}\|_{1},
$$

and, in the given case, the theorem is proved.

Assume now that $\tilde{g} \neq 0$ but $\tilde{g} = 0$ on a set of positive measure. We note that the operator of taking the conjugate function acts continuously from C into L_1 so that there exists $K_1 > 0$ x such that if *g*, $h \in C$ and $\|g - h\|_{C} < \varepsilon$, then $\|g - h\|_{1} \leqslant K_{1}\varepsilon$ for any $\varepsilon > 0$. Further, since $\int\limits_{0}^{h} P(x) \, dx$ $(|f|, t)$ *dt* is a nondecreasing, upwardly convex, positive function, there exists $K_2 > 0$ such that $x \leq K_2 \int t^2 P(|f|, t) dt$ for any $x \in [0, 2\pi]$. 0

We consider an arbitrary $\varepsilon > 0$ and we find a nonconstant trigonometric polynomial T such that $||g-T||_c < \varepsilon$. Then $\tilde{T} \neq 0$ almost everywhere, $||g-T||_1 \leqslant K_1 \varepsilon$ and for all $x \in [0, 2\pi]$ we have

$$
\int_{0}^{x} P(|T|,t) dt \leq \int_{0}^{x} P(|g|,t) dt + \int_{0}^{x} P(|g-T|,t) dt \leq \int_{0}^{x} P(|f|,t) dt + \varepsilon x
$$
\n
$$
\leq \int_{0}^{x} P(|f|,t) dt + K_{2} \varepsilon \int_{0}^{x} P(|f|,t) dt \leq \int_{0}^{x} P((1+K_{2}\varepsilon)|f|,t) dt.
$$

Consequently, according to what has been proved, $\|\tilde{T}\|_1 \leq (1 + K_2 \varepsilon) \|\tilde{f}\|_1$. But then $\|\tilde{g}\|_1 \leq \|\tilde{T}\|_1 +$ $\|\tilde{g}-\tilde{T}\|_{1}\leqslant K_{1}\epsilon+(1+K_{2}\epsilon)\|\tilde{f}\|_{1}$ and, by virtue of the arbitrariness of $\epsilon>0$, we have $\|\tilde{g}\|_{1}\leqslant\|\tilde{f}\|_{1}$. The theorem is proved.

We give an other statement of the type of Theorem 1.

THEOREM 2. Assume that the functions f , $g \in C$ are such that \tilde{f} , $\tilde{g} \in C$; $f \neq 0$ and $\tilde{f} \neq 0$ almost everywhere, $\int\limits_0^{2\pi} \text{sign}\widetilde{f}(t)\,dt=0$, and

$$
\|\widetilde{f}\|_{1} = \int_{0}^{2\pi} \Pi(f, t) \Pi((\text{sign}\,\widetilde{f})\,\widetilde{}, t) \, dt. \tag{2}
$$

In this case, if $(g-\lambda)_\pm \langle (f-\lambda)_\pm \rangle$ for any $\lambda \in \mathbb{R}$, then $\|\tilde{g}\|_1 \leq \|\tilde{f}\|_1$.

Remark 2. The conditions imposed in Theorem 2 on the function f are satisfied for all $n = 1, 2,...$ and $r = 2, 4,...$ by the function $\varphi_{n,r;\alpha,\beta}, \alpha, \beta > 0$.

Proof. As in the proof of Theorem 1, we can assume that $\tilde{g} \neq 0$ almost everywhere. We have

$$
\|\tilde{g}\|_{1} = \int_{0}^{2\pi} \tilde{g}(t) \operatorname{sign}\tilde{g}(t) dt = -\int_{0}^{2\pi} g(t) (\operatorname{sign}\tilde{g}(t)) \tilde{d}t.
$$
 (3)

With the aid of the known properties of rearrangements, it is easy to prove that for any $F\in L_1$ and any function $\mathfrak{f}\in L_{1}$, with zero mean value on the period, we have $\mathop{\left\langle} \limits^{2\pi}\int f(t)\,F\left(t\right)dt\leqslant \mathop{\left\langle} \limits^{2\pi}\Pi\left(\mathfrak{f},t\right)\Pi\left(F,t\right)dt\right.$ 0 0

Taking also into account that from the already mentioned theorem of Stein and Weiss there follows the equality Π (--(sign g)^{\sim}, t) = Π ((sign g) \sim , t), from (3) we obtain

$$
\|\tilde{g}\|_{1} \leqslant \int_{0}^{2\pi} \Pi(g, t) \Pi\left(\left(\text{sign}\,\tilde{g}\right)^{-}, t\right) dt. \tag{4}
$$

Again from the theorem of Stein and Weiss there follows, taking into account condition \int sign_x $\tilde{f}(t)dt = 0$, that for any $\lambda \in \mathbb{R}$ we have $((\text{sign } \tilde{g})^{\sim} - \lambda)_t \prec ((\text{sign } \tilde{f})^{\sim} - \lambda)_t$. Taking into condition $(g - \lambda)_\pm < (f - \lambda)_\pm$ of the theorem and also Proposition 5.4.7 from [3], we can prove the inequality

$$
\int_{0}^{2\pi} \Pi(g, t) \Pi\left((\text{sign}\,\widetilde{g})^{\sim}, t\right) dt \leq \int_{0}^{2\pi} \Pi\left(f, t\right) \Pi\left((\text{sign}\,\widetilde{f})^{\sim}, t\right) dt. \tag{5}
$$

Combining (4) , (5) , and (2) , we conclude the proof.

3. We proceed to applications. Inequalities for the norms of the derivatives of the type of the Kolmogorov inequality (see [3, Sec. 6.2]) are well known and play an important role in the theory of approximations. We prove sharp inequalities for the norm of the derivatives of conjugate function.

THEOREM 3. Let $r = 2, 3, ...$ and let $f \in L'_{\infty}$. Then for $k = 1, ..., r - 1$ we have

$$
\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\tilde{\phi}_{r-k}\|_{1}}{\|\tilde{\phi}_{r}\|_{\infty}^{1- k/r}} \|f\|_{\infty}^{1-k/r} \|f^{(r)}\|_{\infty}^{k/r}.
$$
 (6)

Inequality (6) is sharp on $L_{\infty}^{\mathcal{F}}$. It turns into an equality for the fucntions $f=a\varphi_{n,r}$, $a\in\mathbb{R}$, $n = 1, 2, \ldots$

<u>Proof.</u> Let $f \in L_{\infty}^r$, $f \neq \text{const}$, and let $||f''||_{\infty} \leq 1$. We select $b > 0$ so that $||f||_{\infty} = b' ||\varphi_r||_{\infty}$, i.e., $b = (||f||_{\infty}/||\varphi_r||_{\infty})^{1}$. Then, by virtue of theorem of Korneichuk and Ligun (see [3], Theorem 5.5.1), for any $k = 1, \ldots, r - 1$ we have $|\underline{f}^{(k)}| < b'^{-k} |\varphi_{r-k}|$. From here, taking into account Remark 1 and Theorem 1, we derive $\|\tilde{f}^{(k)}\|_1 \leq b'^{-k} \|\tilde{\phi}_{r-k}\|_1$, or

$$
\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\tilde{\phi}_{r-k}\|_{1}}{\|\tilde{\phi}_{r}\|_{\infty}^{1-k/r}} \|f\|_{\infty}^{1-k/r}.
$$
 (7)

Applying for every $f \in L_{\infty}^r$ the inequality (7) to the function $f / \| f^{\vee\prime}\|_{\infty}$, we obtain (6). The theorem is proved.

COROLLARY 1. If $f \in L'_{\infty}$, $r = 2, 3, \ldots$, and $k = 1, \ldots, r - 1$, then

$$
\bigvee_{0}^{2\pi} (\widetilde{f}^{(k-1)}) \leqslant \frac{\widetilde{V}(\widetilde{\varphi}_{r-k+1})}{\|\varphi_{r}\|_{\infty}^{1-k/r}} \|f\|_{\infty}^{1-k/r} \|f^{(r)}\|_{\infty}^{k/r}.
$$

The inequality is sharp on L_{∞}^{r} .

Now we prove the asymmetric analogue of Theorem 3 (regarding the known "asymmetric" inequalities for the norms of derivatives, see [3, Sec. 6.2], [10, II]). Let $E\left(I\right) = \min\limits_{\lambda \in \mathbb{R}}\|I - \lambda\|_{\infty}$ and $||f||_{\infty,\alpha,\beta} = ||\alpha f_{+} + \beta f_{-}||_{\infty}$, where α , β are positive numbers.

THEOREM 4. Let $f \in L'_{\infty}$, $r = 1$, 2,...; k = 1, 2,..., r - 1; k = r(mod 2); let α , β be positive numbers. Then

$$
\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\varphi_{r-k;\alpha,\beta}\|_{1}}{E\left(\varphi_{r;\alpha,\beta}\right)^{1-k/r}} E\left(f\right)^{1-k/r} \|f^{(r)}\|_{\infty;\alpha^{-1},\beta^{-1}}^{k/r}.
$$
\n(8)

Inequality (8) is sharp on L_{∞}^{r} .

For $\alpha = \beta = 1$ we obtain inequality (6). Let $B_r(x) = 2 \sum_{k=1}^{\infty} k^{-r} \cos(kx - \pi r/2)$ be the Bernoulli functions. Taking into account that $E(\varphi_{r,i,\beta})\to E(B_r)$ and $\|\tilde{\varphi}_{r-k;1,\beta}\|_1\to \|\tilde{B}_{r-k}\|_1$ for $\beta\to\infty$; $E(\varphi_{r;\alpha,1})\to$ $E(B_r)$ and $\|\bar{\varphi}_{r- k; \alpha, \ell}\|_1 \to \|\bar{B}_{r-k}\|_1$ for $\alpha \to \infty$, we obtain the following corollary.

COROLLARY 2. Under the assumptions of Theorem 4 we have the sharp inequality

$$
\|\widetilde{f}^{(k)}\|_{1} \leq \frac{\|B_{r-k}\|_{1}}{E(B_{r})^{1-k/r}} E(f)^{1-k/r} \|\left(f^{(r)}\right)_{\pm}\|_{\infty}^{k/r}.
$$

<u>Proof of Theorem 4.</u> Let $f \in L^r_\infty$ and $||f^{(r)}||_{\infty;\alpha^{-1},\beta^{-1}} \leq 1$. We select $b > 0$ from the condition $E(f) = b'E(\varphi_{r,a,\beta})$. Then, in view of Theorem 1 from [7], for every $\lambda \in \mathbb{R}$ we have $(f^{(k)} - \lambda)_t \prec b^{r-k}$ \times $(\varphi_{r-k;\alpha,\beta}-\lambda)_\pm$. Taking into account Remark 2 and Theorem 2, we obtain for $k \equiv r \pmod{2}$

$$
\|\tilde{f}^{(k)}\|_{1} \leqslant b^{r-k} \|\tilde{\phi}_{r-k;\alpha,\beta}\|_{1} = \frac{\|\phi_{r-k;\alpha,\beta}\|_{1}}{E\left(\phi_{r;\alpha,\beta}\right)^{1-k/r}} E\left(f\right)^{1-k/r}.
$$
\n(9)

If $f \in L_{\infty}$ is arbitrary, then applying (9) to the function $f/\|f^{\vee}\|_{\infty,\alpha-1, \beta-1}$, we obtain inequality (8). Equality in (8) is attained for the functions $f=a_{\Psi_n,r;\alpha,\beta},\;n=1,2,...$; $a\!\geq\!0.$

The applications of the inequalities of Kolmogorov type include (see [3], Chap. 6) results regarding the best approximation of one class of functions by another, inequalities for the upper bounds of seminorms, etc. Similar applications have the inequalities from Theorems 3 and 4. We give only an estimate of the approximation in the space L_1 of the class \tilde{W}_{∞}^{k} by the class NW_{1}^{k} , N > 0, whose proof can be carried out similarly to the proof of Theorem 6.1 from [12].

THEOREM 5. Let $r = 2, 3, ...; k = 1, ... , r - 1; N > 0$. Then

$$
\sup_{\mathbf{v}\in\tilde{\mathbf{w}}_{\infty}^k}\inf_{g\in N\mathbb{W}_1^r}\|f-g\|_{1}\leqslant\frac{r-k}{r}\,\|\tilde{\phi}_k\,\|_1^{r/(r-k)}\bigg(\frac{k}{rN\,\|\phi_r\|_{\infty}}\bigg)^{k/(r-k)}\,.
$$

4. We denote by $H_{2n,r}^S$, $n = 1, 2, \ldots; r = 0, 1, \ldots$, the set of 2π -periodic polynomial splines of order r and defect 1 with nodes at the points $k = 0$, $\pm i$, $\pm 2, \ldots$.

It is known ([4], Theorem 2.6.7) that for the splines $s \in H_{2n,r}^S$ we have the inequality

$$
|s^{(k)}| < \frac{\|s\|_{\infty}}{\|\varphi_{n,r}\|_{\infty}} | \varphi_{n,r}^{(k)}|, \quad k = 1, \ldots, r.
$$

Taking into account Remark 1, we can see that Theorem 1 can be applied to the functions $s^{(k)} \times$ (x) and $\frac{||S||_{\infty}}{||\psi_{n} ||_{\infty}} | \psi_{n,r}^{(k)}(x) |$. Therefore, the following theorem holds.

THEOREM 6. Let $s \in H_{2n,r}^S$, $r = 1, 2, \ldots$. Then

$$
\|\tilde{s}^{(k)}\|_{1} \leq \frac{\|\varphi_{n,r}^{(k)}\|_{1}}{\|\varphi_{n,r}\|_{\infty}} \|s\|_{\infty}, \quad k=1,\ldots,r-1.
$$

The inequality is sharp.

Theorem 1 has other applications of a similar type. Regarding the known inequalities for the derivatives of conjugate trigonometric polynomials, see [13, 14].

5. Let $\sigma_{2n,r}(f,t)$ be a spline from $H_{2n,r}^S$, interpolating $f \in C$ at the zeros of the function $\varphi_{n,r+1}(t+\pi/2n)$. It is well known (see, for example, [4], Theorem 5.1.2) that if $f\in W_\infty$, then $| f(t) - \sigma_{2n,r}(f,t) | \leqslant | \varphi_{n,r+1}(t + \pi/2n) |$ at each point t. From here there follows

$$
|f - \sigma_{2n,r}(f)| < |\varphi_{n,r+1}|, \quad r = 1, 2, \dots.
$$
 (10)

Further, from Lemma 5.1.18 [4] there follows easily that

$$
|f - \sigma'_{2n,r}(f)| < |\varphi_{n,r}|, \quad r = 1, 2, \dots.
$$
 (11)

Taking into account the relations (i0), (ii) and Remark i, we can see that to the pairs of functions $f-\sigma_{2n,r}(f)$, $\varphi_{n,r+1}$ and $f'-\sigma'_{2n,r}(f)$, $\varphi_{n,r}$ we can apply Theorem 1. Thus, the following theorem holds, similar to Theorem 5.1.7 from [4].

THEOREM 7. We have the equalities

$$
\sup_{f \in W_{\infty}^{r+1}} \| \tilde{f} - \tilde{\sigma}_{2n,r}(f) \|_1 = \| \tilde{\varphi}_{n,r+1} \|_1, \quad r = 1, 2, ...;
$$

$$
\sup_{\mathbf{f}\in\mathbb{W}_{\infty}^{r+1}}\|\widetilde{f}'-\widetilde{\sigma}'_{2n,r}\left(f\right)\|_{1}=\|\widetilde{\phi}_{n,r}\|_{1},\quad r=2,3,\ldots.
$$

The comparison of Theorem 7 and Theorem 5 from [7] shows that the set $\widetilde{H}_{2n,r}^S = \{s : s \in H_{2n,r}^S\}$ has for the class \tilde{W}_{∞}^{+1} the same approximation properties as the set of trigonometric polynomials of order $\leq n-1$ and the set $H_{2n,\mu}^S$, $\mu \geq r+1$. Moreover, in Theorem 7 we have a linear approximation method.

Assume now that $\sigma_{2n,1}(\hat{f}) \in H_{2n,1}^S$ is an interpolational polygonal line for $\hat{f} \in W^1 H^{\omega}$. THEOREM 8. If $\omega(f)$ is an upwardly convex modulus of continuity, then

$$
\sup_{f\in W^1H^{10}}\|\widetilde{f}-\widetilde{\sigma}_{2n,1}(f)\|_1=\|\widetilde{f}_{n,1}(\omega)\|_1,\quad n=1,2,\ldots.
$$

Indeed, from Lemma 5.2.8 of [4] there follows that $|f-\sigma_{2n,1}(f)|<|I_{n,1}(\omega)|$. Therefore (taking into account Remark I), Theorem I can be applied to the pair of functions $f = \sigma_{2n+1}(f)$ and $f_{n,1}(\omega)$.

In conclusion we give one more inequality of the type of the Jackson inequality, unimprovable on the space \bar{C}^1 of continuously differentiable 2π -periodic functions. This inequality can be also obtained with the aid of Lemma 5.2.8 from [4] and Theorem I.

THEOREM 9. Let $f \in C^1$, $n = 1, 2, \ldots$. Then

$$
\|\widetilde{f}-\widetilde{\sigma}_{2n,1}\left(f\right)\|_{1}\leqslant\frac{\|\widetilde{\phi}_{1}\|_{1}}{2n}\omega\left(f',\pi/n\right).
$$

The inequality is sharp on C^1 .

LITERATURE CITED

- i. N. K. Bari (N. K. Bary), A Treatise on Trigonometric Series, I and II, Macmillan, New York (1964).
- 2. N. P. Korneichuk, Extremal Problems of Approximation Theory [in Russian], Nauka, Moscow (1976).
- 3. N. P. Korneichuk, A. A. Ligun, and V. G. Doronin, Approximation with Constraints [in Russian], Naukova Dumka, Kiev (1976).
- 4. N. P. Korneichuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).
- 5. N. I. Akhiezer (N. Achyeser) and M. G. Krein (M. Krein), Sur la meilleure approximation des fonctions périodiques dérivables au moyen de sommes trigonométriques," Dokl. Akad. Nauk SSSR, 15, No. 3, 107-111 (1937).
- 6. S. M. Nikol'skii, "Approximation of functions in the mean by trigonometric polynomials," Izv. Akad. Nauk SSSR, Ser. Mat., iO, 207-256 (1946).
- 7. V. F. Babenko, "Inequalities for rearrangements of differentiable periodic functions, approximation problems, and approximate integration," Dokl. Akad. Nauk SSSR, 272, No. 5, 1038-1041 (1983).
- 8. E.M. Stein and G. Weiss, "An extension of a theorem of Marcinkiewicz and some of its applications," J. Math. Mech., 8, No. 2, 263-284 (1959).
- 9. B. V. Khvedelidze, "The method of Cauchy type integrals in discontinuous boundary value problems of the theory of holomorphic functions of a complex variable," Soy. Probl. Mat., $7, 5-162 (1975).$
- 10. L. Hörmander, "A new proof and a generalization of an inequality of Bohr," Math. Scand., $2, 33-45 (1954).$
- 11. V. F. Babenko, "Nonsymmetric extremal problems of approximation theory," Dokl. Akad. Nauk SSSR, 269, No. 3, 521-524 (1983).
- 12. V. G. Doronin andA. A. Ligun, "Best one-sided approximation of some classes of functions," Mat. Zametki, 29, No. 3, 431-454 (1981).
- 13. A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Pres (1959).
- 14. L. V. Taikov, "A generalization of an inequality of S. N. Bernshtein," Trudy Mat. Inst. Akad. Nauk SSSR, 78, 43-47 (1965).