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I. Let C and Lp, |~Tp<oo, be spaces of 2~-periodic functions [:~-~ with the corre ~ 
sponding norms iI'[Ic and !I'IIL~ = II'Ilp. We denote by L~, r = ],2 .... ; l~p~ oo, the space of func- 

tions/6C, having a locally absolutely continuous derivative F-~)(f i~ ----f) and such that ]~<~6Lp. 

As usually, let W~={fEL~:][/')[Iv~I}. Further, if ~(f, t) is the modulus of continuity of a 

function [EC, and ~(t) is a given modulus of continuity, then by WrH ~, r = i, 2,..., we de- 
note the class of functions fCC such that /oEC and ~(~r~,t)<oQ) for every t > O. 

For a function fELl we denote by f the function that is conjugate to f (see, for ex- 

ample, [i]) and we set W~={f:[EW~}, W'H~=([:f6W~H~}. 

Presently, one knows the exact solution of several extremal problems of the theory of 
approximations on the classes L~, W~, and WrH ~ (see, for example, [2-4]). Substantially less 
sharp results are known for the classes of conjugate functions [5-7]. In this paper, with 
the aid of some known results for usual classes of functions and with the aid of the theorem 
of Stein and Weiss ([8], see also [9], Theorem i.i0), we have obtained a series of new re- 
sults regarding the exact solution of extremal problems on classes of conjugate functions. 

We introduce the following notations. If f ELI and f~ 0 almost everywhere, then P(f, t) 
is the decreasing rearrangement (see, for example, [3, pp. 92, 93]) of the restriction of f 
to the period. For any function [E LI we set 1] ~, t)= P ~+, 0--P (~-, 2~- 0, where fi(t) = 
max {if(t), 0}. If [, g6 L~, [, g ~ 0 almost everywhere and if for every x E [0, 2.~] we have 

x 

i p(e't)dt<  i er 
o 

then we shall write g ~< f. 

We denote by q0n.r, n, r = i, 2,..., the r-th periodic integral with zero mean value on 
a period of the function ~n.0 (t)= sign cos nt. Instead of %,r we shall write %or. More generally, 
if ~, ~ are positive numbers, then by ~n,r;a.~ we denote the r-th periodic inteRral with zero 

m e a n  v a l u e  o n  a p e r i o d  o f  t h e  f u n c t i o n  c p ~ 0 . ~ ( O - - - - - ~ s i g n  cos  n t  - -  cos - -  ~ - - f 3 s [ g n  c o s n t - - c o s  • 
] " '  

a -6 l~s_ " I n s t e a d  o f  ~,~..,~ we s h a l l  w r i t e  %;=,~. 

Let ~(t) be an upwardly convex modulus of continuity. We denote by fn,r(t) = fn,r(~; t) 
the r-th period integral with zero mean value on a period of the odd 2~/n-period function 
fn,0(t) such that fn,0(t) = Z-~m(it) for t~[0,~/2n] and [~.0(t)=2-~(2(m/n--0) for 16[~/in, m/~]. 

2. The following statement is fundamental in this paper. 

THEOREM i. Assume that the functions f,g~ C are such that [,gE C;[~0 and f ~ 0 almost 
2x 

everywhere, I sign } (0 dt = 0, and 

1171t  = f P (I f 1, P o (1) 
0 

In this case if I g I < I l l ,  then llgll, ~< I17 ll,- 
Remark i. The conditions imposed in Theorem 1 on the function f are satisfied for n, 

r = i, 2 .... by the above defined functions ff~ and fn,r(m). This circumstance and the pres- 
ence in many cases of inequalities of the typeldl~<Ifl stipulates a large collection of ap- 
plications of Theorem i. 
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Proof. Assume first that ~ ~ 0 almost everywhere. We have 

~" 12~ (t))~dt ll~gll1= j g(t)signg(t)dt= ~g(t)(signg ~2iP(lgl, t)P(t(sign'g)-l,t)dt. 

Taking i n t o  a c c o u n t  c o n d i t i o n l g l - < l f l  o f  t h e  theorem and P r o p o s i t i o n  5 . 4 . 7  from [ 3 ] ,  we o b t a i n  

2 g  

Ilg{ll <~ f P(Ifl, t) P(l(signg)-l,t)dt. 
0 

From t h e  t heo rem of  S t e i n  and Weiss ( [ 8 ] ;  s ee  a l s o  [ 9 ] ,  Theorem 1 . 1 0 ) ,  t a k i n g  i n t o  a c c o u n t  
2~ 

t h e  c o n d i t i o n s  t " sign~(t)dt = 0 a n d  ? ~ 0 a l m o s t  e v e r y w h e r e ,  t h e r e  f o l l o w s  e a s i l y  t h a t  P • 

0 

(l(sign-g)-l,t)~P(i(sign[)-l,t)for any /E[0,2~]. Therefore, taking into account also condition 
(i), we find 

2n 

]]g{I, ~<f P({ [ { ,O P ( ] (sign S~ ], t) dt = 117[11, 
0 

and, in the given case, the theorem is proved. 

Assume now that ~ ~ 0 but ~ = 0 on a set of positive measure. We note that the operator 
of taking the conjugate function acts continuously from C into L l so that there exists K l > 0 

x 

S such  t h a t  i f  g, h6C a n d l l g - - h l l c < e ,  t hen  I l g - - h I { ~ K ~ e  f o r  any ~ > 0. F u r t h e r ,  s i n c e  P • 
0 

(If[,Odl i s  a n o n d e c r e a s i n g ,  upward ly  convex ,  p o s i t i v e  f u n c t i o n ,  t h e r e  e x i s t s  K 2 > 0 such t h a t  
x 

x ~ K ~  P(l[I,t) dt f o r  anyx6[072~1.  
0 

We c o n s i d e r  an a r b i t r a r y  e > 0 and we f i n d  a n o n c o n s t a n t  t r i g o n o m e t r i c  p o l y n o m i a l  T such  

thatllg--Tllc<e. Then T ~ 0 almost everywhere, {Ig--TIII~KIe and for all xC[0,2~] we have 
X X X X 

~ P({Tl, t)dt < ~ P([g[,t)dt + S P({g--T[ , f )  dt <o( P( l f l , t  dt + sx 
0 0 0 o 

P(lfl, t)dt + K2~ ~ P(Ifl, t)dt<~ ~ P((1 + g2~)lf[,t)dt. 

Consequently, according to what has been proved, IIf Ill <~ (| @ K2 ~) II f{I1. But then }[ g {I~ ~< [I # I[I-5 

]g--Tli1~K~e-5(l~-K2e) ll~ll~and, by virtue of the arbitrariness of e > O, we have llgll~<~-ll}-lll. 
The theorem is proved. 

We give an other statement of the type of Theorem i. 

THEOREM 2. Assume that the functions [, gEC are such that [, gEC; f = 0 and f ; 0 al- 
2~ 

most everywhere, I signT(t)at = O, and 

II 711, = I n (f, t) n ((sign 7)-, t) dr. ( 2 ) 
0 

In t h i s  case, i f  (g--~)+ ~([--~)+_ fo r  any k ~ ,  then I1~II~ ~<II [I1~. 
Remark 2. The aond i t ions  imposed in  Theorem 2 on the func t i on  f are s a t i s f i e d  fo r  a l l  

n = i, 2,... and r = 2, 4,... by the function ~,.r;~.~, ~,~>0. 

Proof. As in the proof of Theorem l, we can assume that ~ = 0 almost everywhere. We 
have 

IIgtl~ : ~ g(Osign'g(O d l = -  f g(O(signg(O)~dL (3) 
o o 

With the aid of the known properties of rearrangements, it is easy to prove that for any F 6 1 ~  
2~ ~ 

and any function [6 L~ , with zero mean value on the period, we have ~ ~ ~(0 F (0 dt <~_ I II ([, t) II (F, 0 dt 
0 0 
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Taking also into account that from the already mentioned theorem of Stein and Weiss there follows 
the equality Il(--(signg)~,t)=II((sign~)~,t), from (3) we obtain 

2~ 

1I g Ih ~< f n (g, t) n ((sign g)-, t) dt. (4) 
o 2n 

Again from the theorem of Stein and Weiss there follows, taking into account condition [ sign• 

f(t)dt = 0, that for any ~6~ we have ((sign g)---~)+~(((signf)~--~)• Taking into condition 
tg -- k) • < ([ -- %) • of the theorem and also Proposition 5.4.7 from [3], we can prove the inequal- 
ity 

I rl (g, t) II ((sign g)~, t) dt ~ I rI (fi, t) II ((signT) - ,  t) dt. (5) 
0 0 

Combining (4), (5), and (2), we conclude the proof. 

3. We proceed to applications. Inequalities for the norms of the derivatives of the 
type of the Kolmogorov inequality (see [3, Sec. 6.2]) are well known and play an important 
role in the theory of approximations. We prove sharp inequalities for the norm of the deriva- 
tives of conjugate function. 

THEOREM 3. Let r = 2, 3 .... and let [6L'~. Then for k = 1 ..... r - 1 we have 

fi$,_.ll, Ii 7 <~' Ih ~< I~ ; ~  11 ~ It'~-~'" I1 f<'> I1~". (6) 

Inequality (6) is sharp on L r. It turns into an equality for the fucntions [=a~.,, a{~7, 
n = i, 2, .... 

Proof. Let fEL~, f~const, and let Ilf<"ll~<~I. We select b > 0 so that [IfIl~=brII%iI=, i.e., 

b= (llfIl~/[]%ll~) ~/'. Then, by virtue of theorem of Korneichuk and Ligun (see [3], Theorem 5.5.1), 

for any k = 1 ..... r - 1 we have Ifc~li<b'--k[%_ki. From here, taking into account Remark 1 and 

Theorem i, we derive li~~ ~) I11 ~< b'-kil Sr-k lh, or 

II 7<~> 1t~ < ~ ,_,,-----~ It f Ii~ -~i'. ( 7 ) 
i t  "Vr Iloo 

Lr Applying for every fE ~ the inequality (7) to the function FIIf">ll~, we obtain (6). 
rem i s  p r o v e d .  

COROLLARY 1 .  I f  f E L 2 ,  r = 2 ,  3 . . . . .  a n d  k = 1 . . . . .  r - ! ,  t h e n  

~.~ V (%-~+~) 
0 

V (7 (~-'>) ~ -lt-~711W~/, tl l l lk-~/'l l f'~ liD'" 
0 

The theo- 

The inequality is sharp on L r. 

Now we prove the asymmetric analogue of Theorem 3 (regarding the known "asymmetric" 
inequalities for the norms of derivatives, see [3, Sec. 6.2], [I0~ II]). Let E(O=in[II/--~[l= 

~,ETR 
and II [II~.=,~ ----- fief+ ~- ~f- il~, where ~, ~ are positive numbers. 

THEOREM 4. Let fEL~, r = I, 2,...; k = i, 2 ..... r - i; k -= r(mod2); let ~, ~ be posi- 
tive numbers. Then 

tl 7-,~ h E 0~') '-k/ ' tl f <'> ki, I 117<~>11~ ~ 77< ~'-~"' ~ :~;~-~'~- (8) 

Inequality (8) is sharp on L r. 

For ~ = 13 = 1 we obtain inequality (6). Let Br(x ) ----2 ~.~ k -~ cos(kx--.~r/21 be the Bernoulli 

functions. Taking into account that E(~r;i.p)-~E(Br)and ][~r_k.1.p!:-~llBr--klll for ~-+oo; E(%,=.i)-+ 
-- - ]I 

E(B r) and II q~r-k.=aI!~-~ i] Br-~ih for ~ + 0~ we obtain the following corollary. 
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COROLLARY 2. Under the assumptions of Theorem 4 we have the sharp inequality 

II b,-k I[, E (h ~-~/~ q(~) 
E (Br) l-kIt 

Proof of Theorem 4. Let fCL~ and l[ /(r) [[~;~--L~--l~ I. We select b > 0 from the condition 

E(O=b~E(~,:=,~. Then, in view of Theorem i from [7], for every %C~ we have ([(~--%)~-<b r-# • 
(qt_~;=.~--%)• Taking into account Remark 2 and Theorem 2, we obtain for k ~ r (mod2) 

,_~/, E . (9)  

If ~6L~ is arbitrary, then applying (9) to the function [lli / t)  ~.~_L~_ ~, we obtain inequality 

(8). Equality in (8) is attained for the functions [=a~n.r;=.~, n= 1,2 .... ; a>0. 

The applications of the inequalities of Kolmogorov type include (see [3], Chap. 6) re- 
sults regarding the best approximation of one class of functions by another, inequalities 
for the upper bounds of seminorms, etc. Similar applications have the inequalities from 
Theorems 3 and 4. We give only an estimate of the approximation in the space L~ of the class 
W$ by the class NW[, N > 0, whose proof can be carried out similarly to the proof of Theorem 
6.1 from [12]. 

THEOREM 5. Let r = 2, 3 .... ; k = l,...,r - i; N > 0. Then 

: - - k - i l r / < , - ~ > ( k ) k / < ' - ~ '  sup inf li[--gi{~ ~ ---7"-- II~h rgl l  %11~ " 

S 4. We denote by H2n,r, n = i, 2 .... ; r = 0, 1 ..... the set of 2~-periodic polynomial 
splines of order r and defect 1 with nodes at the points k = 0, • • .... 

, �9 H2~.: we have the inequality It is known ([4] Theorem 2 6.7) that for the splines sE s 

I!sJl~ 1 ~k~l, k =  I, . ,r.  

Taking into account Remark I, we can see that Theorem 1 can be applied to the functions s (k) x 

(x) and !Isll~ !I~n.t [l~ I ~ (x) I �9 Therefore, the following theorem holds. 

THEOREM 6. Let s C HS 2n.r, r = i, 2 ..... Then 

The inequality is sharp. 

Theorem 1 has other applications of a similar type. Regarding the known inequalities 
for the derivatives of conjugate trigonometric polynomials, see [13, 14]. 

S 5. Let o2~r(f,t) be a spline from H2n,r, interpolating ~6C at the zeros of the function 
tP,.r+1(t-i-~/2n). It is well known (see, for example, [4], Theorem 5.1.2) that if /6W~ +I, then 

! [ (t) -- ~,, ~, t) 1 <~-lq~ (t i- zt/2n) [ at each point t. From here there follows 

[ f - -U2 ' , , r ( f ) [ '< [q ) . , r+ , l ,  r =  1,2 . . . . .  ( 1 0 )  

Further, from Lemma 5.1.18 [4] there follows easily that 

Taking into account the relations (i0), (ii) and Remark i, we can see that to the pairs of 
functions [--o2~.r(h, cP~.r+1 and ~'--fr~,,r(D, cPn,r we can apply Theorem i. Thus, the following theo- 
rem holds, similar to Theorem 5.1.7 from [4]. 

THEOREM 7. We have the equalities 

sup I [ f - - ' ~  r =  1,2 . . . .  : 
fEVr r ~ t  
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r+ i  

The comparison of Theorem ; and Theorem 5 from [7] shows that  the set 3 L  r =   :s ftLt} 
has fo r  the c lass ~ + 1  the same approx imat ion  p r o p e r t i e s  as the set  of  t r i g o n o m e t r i c  po l y -  
nomials of  o r d e r ~ n - - 1  and the set H~.~, ~ r  + 1. Moreover, i n  Theorem 7 we have a l i n e a r  
approx imat ion method. 

Assume now that ~2~.i(~ CH~,.I is an interpolational polygonal line for [6WIH ~. 

THEOREM 8. If m(f) is an upwardly convex modulus of continuity, then 

~W1H m 

Indeed, from Lemma 5.2.8 of [4] there follows that I~--o2,.1(~i~]~.i(~)j. Therefore (taking 
into account Remark I), Theorem 1 can be applied to the pair of functions f - O2n,1(f) and 
fn,1(~). 

In conclusion we give one more inequality of the type of the Jackson inequality, unim- 
provable on the space C l of continuously differentiable 2~-periodic functions. This inequal- 
ity can be also obtained with the aid of Lemma 5.2.8 from [4] and Theorem I. 

THEOREM 9. Let fCC I, n = i, 2, .... Then 

The inequality is sharp on C I. 
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