SHARP INEQUALITIES FOR THE NORMS OF CONJUGATE FUNCTIONS AND
THEIR APPLICATIONS
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1. Let C and Lp, I<<p<C o, be spaces of 2n-periodic functions f:R—>R with the corre-
sponding norms [[flc and |-z, =(|[,. We denote byLj, r=1,2,..; I<p<oo, the space of func-
tions f€C, having a locally absolutely continuous derivative f~"(f® =/ and such that [P¢L,,
As usually, let W, ={feL,:||f”|l,<1}. Further, if w(f, t) is the modulus of continuity of a
function f€C, and w(t) is a given modulus of continuity, then by WHY, r =1, 2,..., we de-
note the class of functions f€C such that f7¢C and o(f”,)<w(H for every t > 0,

For a function f€L, we denote by f the function that is conjugate to f (see, for ex-
—~ S —
ample, [1]) and we set W, = {f:fe W}, WH = {[:[€W'H"}.

Presently, one knows the exact solution of several extremal problems of the theory of
approximations on the classes L}, Wp, and W'H” (see, for example, [2-4]). Substantially less
sharp results are known for the classes of conjugate functions [5-7]. 1In this paper, with
the aid of some known results for usual classes of functions and with the aid of the theorem
of Stein and Weiss ([8], see also [9], Theorem 1.10), we have obtained a series of new re-
sults regarding the exact solution of extremal problems on classes of conjugate functions.

We introduce the following notations. If f€L, and [ >0 almost everywhere, then P(f, t)
is the decreasing rearrangement (see, for example, [3, pp. 92, 93]) of the restriction of £
to the period. For any function f€ L; we set I (f, /) = P (f+, H— P (f—, 2n — 1) , where f4(t) =
max {tf(t), 0}. Iff, g€ Ly f, 2> 0 almost everywhere and if for every x€ 0, 21] we have

x
P(g,:)dtggP(f,t)dt,
é

[CYS,

then we shall write g< /.

We denote by ¢nr, n, r = 1, 2,..., the r-th periodic integral with zero mean value on
a period of the functionm g, (f) = sign cosnf. Instead of ¢, we shall write ¢,. More generally,

if a, B are positive numbers, then by Prrap W€ denote the r-th periocdic integral with zero

mean value on a period of the function Py g ) =:asign(cosnt-cos i?ﬁ) ——ﬁsign(cosnt~—cos %
B a I i}
a;?% ) . Instead of @ .5 we shall write @ ,. N

Let w(t) be an upwardly convex modulus of continuity. We denote by f5 (t) = £, ,(uw; t)
the r-th period integral with zeroc mean value on a period of the odd 2rm/n-period function
fn,0(t) such that fn,0(t) = 27%(2¢) for {€(0,n/2n] and foo @ =202 (/in—1) for {€[n/2n, n/n].

2. The following statement is fundamental in this paper.
THEOREM 1. Assume that the functions [, g€ C are such that ﬁ éE C:f#0and £ # 0 almost

on -
everywhere,( sign [ (f) dt =0, and

o

0 2n

IFlh= (PUFOPUsignh™ 0 de. -

0
In this case if |g!<|f|, then ”é“;igilfﬂr

Remark 1. The conditions imposed in Theorem 1 on the function f are satisfied for n,
r =1, 2,... by the above defined functions .. and f, p(w). This circumstance and the pres-
ence in many cases of inequalities of the type|g|<|f| stipulates a large collection of ap-
plications of Theorem 1.
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Proof. Assume first that § # 0 almost everywhere. We have

[N

2n
[Pl P (|(signg) |0 dt.

0

14

[ e sign g @) dt) <
0

Vel = 5 2 (t)sign g (t) dt=l
1]

Taking into account condition |g|<|f| of the theorem and Proposition 5.4.7 from [3], we obtain

2n

gl <§PUFLOP Ui LD

i}

From the theorem of Stein and Weiss ([8]; see also [9], Theorem 1.10), taking into account
2n ~ . ’
the conditions S signf()dt=0 and f # 0 almost everywhere, there follows easily that P x

8
(Isigng)" L, H <P (iGignf)" L, t)for any t€(0,2n] . Therefore, taking into account also condition
(1), we find

2n

Vgl <{P(FLOP(sign 7L d =l

[
and, in the given case, the theorem is proved.

Assume now that § # 0 but § = 0 on a set of positive measure. We note that the operator

of taking the conjugate function acts continuously from C into L; so that there exists K; > O
x

such that if g, h€C and ||g—hllc<<e, then | é—ﬁ“lélﬂe for any € > 0. Further, since S P x
0

(|f,9)dt is a nondecreasing, upwardly convex, positive function, there exists K, > 0 such that

.’chng(ffl,t)dt for any x€{0, 2n).
¢

We consider an arbitrary € > 0 and we find a nonconstant trigonometric polynomial T such
that |g—T|c<<e. Then T # 0 almost everywhere, [[g—T|, <K and for all x¢[0, 2a] we have

gp(grg,t)dtggpugi,t)dt+§P(|g—rl,t)dt<fp(m,t dt + ex
0 0 0 it

0115 n

P(IfL0dt+Ke [Pl df< [P+ Kp)|Fl, ) dt.
0 [1]

Consequently, according to what has been proved, HTH1<(1 4+ Kye) ”fﬂl But then || é|l1\[[f’[[1

|g —THh <K+ (1 4+ Kg) llleand by virtue of the arbitrariness of ¢ > 0, we have ngl<|\fﬂ1
The theorem is proved.

We give an other statement of the type of Theorem 1.
THEOREM 2. Assume that the functions f, g€C are such that f, g€C; £ # 0 and f = 0 al-

2n ~
most everywhere, S signf(f)dt =0, and

0 on

17l = S I (f, &) I ((sign /)™, ¢) dt. (2)

\ 9
In this case, if (g—A)s < (f—A)s for any A€[R, then Hé”l < Fllz.

Remark 2. The conditions imposed in Theorem 2 on the function f are satisfied for all
n=1,2,... and r = 2, 4,... by the function ¢,,, s @, B>0.

Proof. As in the proof of Theorem 1, we can assume that § # 0 almost everywhere. Ve
have

. 2n

lglh={ g signg© dt = — { g0 (signg () "dt. (3)

0

With the aid of the known properties of rearrangements, it is easy to prove that for any FE€L,
2 bi

and any function f€ L, , with zero mean value on the period, we have S FOFBHd 3 M, I (F,t)dt
0 0
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Taking also into account that fromthe already mentioned theorem of Stein and Weiss there follows
the equality I(— (signg)™,#) = ((signg)™. ), from (3) we obtain

~ n -
el < Mg Ol (sign )79 dt. (4)

0 2

n

Again from the theorem of Stein and Weiss there follows, taking into account condition 5 Sign x

F(t)dt = 0, that for any AER we have ((sign g)~ — M)+ < ((sign H~—3)s. Taking into conditidn
(g —Msz < (f—Mz: of the theorem and alsoc Proposition 5.4.7 from [3], we can prove the inequal-
ity

2n ~ 2n ~
[ m@om(signg™ndi< [THHT(sign))™, . (5)
0 Y]

Combining (4), (5), and (2), we conclude the proof.

3. We proceed to applications. Inequalities for the norms of the derivatives of the
type of the Kolmogorov inequality (see [3, Sec. 6.2]) are well known and play an important
role in the theory of approximations. We prove sharp inequalities for the norm of the deriva-
tives of conjugate function.

THEOREM 3. Let r = 2, 3,... and let [€Ls,. Then for k = 1,...,r — 1 we have

o, sl

ra e M (6)

7 <

Inequality (6) is sharp on LE. It turns into an equality for the fucntions f=ag,, a€R,
n=1, 2,.

Proof. Let fell, fs=const, and let ||/ [o<< 1. We select b > 0 so that [[flle =56"|[®[lx, i.e.,
b= (| fl=/l o l)”. Then, by virtue of theorem of Korneichuk and Ligun (see [3], Theorem 5.5.1),
for any k = 1,...,vr — 1 we have I}i(k)l\/b”kl(p,__kﬁ. From here, taking into account Remark | and
Theorem 1, we derive || f?(, <6 " jlq,_, I, or

- (o I, )
17 I o ™ )

Applying for every f€L), the inequality (7) to the function f/||/”|«, we obtain (6). The theo-
rem is proved.

COROLLARY 1. If félL,, r=2, 3,..., and k =1,...,r = 1, then

2% v (&r—k-‘,—x)
VG < S I 1
0 “ ®r I}m

The inequality is sharp on LE.

Now we prove the asymmetric analogue of Theorem 3 (regarding the known "asymmetric"
inequalities for the norms of derivatives, see [3, Sec. 6.2], [10, 11]). Let E(fy=inf{f— Al
) , LER
and ||f{jwiap =llaf, T B/_[lx, where a, § are positive numbers.
THEOREM 4. let fell, r=1, 2,...5 k=1, 2,...,r — 1; k = r(mod2); let a, B be posi-
tive numbers. Then

M

E(Q) )l—k/r E(f)l_k/r”f(r) ”i/;&——llg—l- (8)
rio B

17 <

Inequality (8) is sharp on LI.

For o = 8 = 1 we obtain inequality (6). Let B (x)=2 Y k" cos(kx —ar/2) be the Bernoulli
k=i
functions. Taking into account that E({g,,,)— £ (8, and Hc},_k;l'B[h—H{Br—kHl for B—>oo; Efp,, )~
E(B,) and || RN B,_»lly for o + =, we cobtain the fcllowing corollary.



COROLLARY 2. Under the assumptions of Theorem 4 we have the sharp inequality

” Br-k Hx

FHEE DTG

12l <
Proof of Theorem 4. Let fELL and anﬂwm—gw4iél. We select b > 0 from the condition
CE(fy=0E(®,,g . Then, in view of Theorem 1 from [7], for every AE€R we have (fP —n)e <0 x
(%, _pyp— M2+ Taking into account Remark 2 and Theorem 2, we obtain for k = r {mod 2)

0y —k . ”;r— i, I s [—E/r
R <™ 9, ksl = WEW i (9)

If f€L. is arbitrary, then applying (9) to the function ﬁ”ﬂnﬂxm—L&4’ we obtain inequality
(8). Equality in (8) is attained for the functions f==a¢mnmﬁ,n=:1,2,uq a>0.

The applications of the inequalities of Kolmogorov type include (see [3], Chap. 6) re-
sults regarding the best approximation of one class of functions by another, inequalities
for the upper bounds of seminorms, etc. Similar applications have the inequalities from
Theorems 3 and 4. We give only an estimate of the approximation in the space L; of the class
wk by the class NWY, N > 0, whose proof can be carried out similarly to the proof of Theorem
6.1 from [12].

THEOREM 5. let r =2, 3,...; k=1,...,vr —1; N> 0. Then

sup inf [[f—glh < ——

l e k )"’ r~8
w7
fews genw]

NI 9,

4. We denote by Hgn,r, n=1, 2,...; r =0, 1,..., the set of 2n-periodic polynomial
splines of order r and defect 1 with nodes at the points k = 0, *1, *2,....

It is known ([4], Theorem 2.6.7) that for the splines s€ H3,, we have the inequality

sl

(k)
<Te, =

lo® |, k=1,..,r

Taking into account Remark 1, we can see that Theorem 1 can be applied to the functions s(k)x
(x) and '”S“] (@ (x}){. Therefore, the following theorem holds.

THEOREM 6. Let s€Hs,, r =1, 2,.... Then

H ol

Tor Isller B=Lir—L.

5% <
The inequality is sharp.

Theorem 1 has other applications of a similar type. Regarding the known inequalities
for the derivatives of conjugate trigonometric polynomials, see [13, 14].

5. Let om,(f,f) be a spline from Hzn r» interpolating f€C at the zeros of the function
@, &+ /20), It is well known (see, for example, [4)}, Theorem 5.1.2) that if fewt, then
V) — o, (L DI<l9,,, (¢ + 7/27)| at each point t. From here there follows

lf'—02n.r (f)[<l<?,,,,+1|, r=1,2,... (10)
Further, from Lemma 5.1.18 [4] there follows easily that
|f —o,,, D<o, |, r=12... (1)

Taking into account the relations (10), (11) and Remark 1, we can see that to the pairs of
functions f—0uw,(f) @, and [ —0, () ®,, we can apply Theorem 1. Thus, the following theo-
rem holds, similar to Theorem 5.1.7 from {[4].

THEQOREM 7. We have the equalities
sup N F—Oenr Dl =1l Pppyll 7=12 5

r-

fewny
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sup. i';'——‘c;fzn‘r(f)”l:”:pw Il F=2,3 0.

W o
few i

The comparison of Theorem 7 and Theorem 5 from [7] shows that the set fbn,——{s seiﬁn&
has for the class WLt! the same approx1mat10n properties as the set of trigonometric poly-

nomials of order<{n— 1 and the set ﬁbqw u>=r-+ 1. Moreover, in Theorem 7 we have a linear
approximation method

Assume now that omLIU)Efigh; is an interpolational polygonal line for jeW'H"
THEOREM 8. If w(f) is an upwardly convex modulus of continuity, then

sup ” f— 0,1 (f) h= ” lirz,l iy, =12 ...
féW’IH“’

Indeed, from Lemma 5.2.8 of {4] there follows that |f—0wu (/)| <|f,,(®)|. Therefore (taking
into account Remark 1), Theorem 1 can be applied to the pair of functions f — 02n,1(f) and

fn’l(w).

In conclusion we give one more inequality of the type of the Jackson inequality, unim-
provable on the space C' of continuously differentiable 27-periodic functions. This inequal-
ity can be also obtained with the aid of Lemma 5.2.8 from [4] and Theorem 1.

THEOREM 9, Let f€C, n=1, 2,.... Then

o 1y < ‘“ Louls o7, um),

The inequality is sharp on C!.
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