SHARP INEQUALITIES FOR THE NORMS OF CONJUGATE FUNCTIONS AND THEIR APPLICATIONS

V. F. Babenko

1. Let C and Lp, $1 \le p \le \infty$, be spaces of 2π -periodic functions $f: \mathbb{R} \to \mathbb{R}$ with the corresponding norms $\|\cdot\|_{L_p} = \|\cdot\|_{p}$. We denote by L'_p , $r = 1, 2, ...; 1 \le p \le \infty$, the space of functions $f \in C$, having a locally absolutely continuous derivative $f^{(r-1)}(f^{(0)} = f)$ and such that $f^{(r)} \in L_p$. As usually, let $W'_p = \{f \in L'_p : \|f^{(r)}\|_p \le 1\}$. Further, if $\omega(f, t)$ is the modulus of continuity of a function $f \in C$, and $\omega(t)$ is a given modulus of continuity, then by $W^{\mathsf{r}} H^{\omega}$, $r = 1, 2, \ldots$, we denote the class of functions $f \in C$ such that $f^{(r)} \in C$ and $\omega(f^{(r)}, t) \le \omega(t)$ for every t > 0.

For a function $f \in L_1$ we denote by \tilde{f} the function that is conjugate to f (see, for example, [1]) and we set $\tilde{W}'_p = \{\tilde{f} : f \in W'_p\}, W'H^{\omega} = \{\tilde{f} : f \in W'H^{\omega}\}.$

Presently, one knows the exact solution of several extremal problems of the theory of approximations on the classes L_p^r , W_p^r , and $W^r H^\omega$ (see, for example, [2-4]). Substantially less sharp results are known for the classes of conjugate functions [5-7]. In this paper, with the aid of some known results for usual classes of functions and with the aid of the theorem of Stein and Weiss ([8], see also [9], Theorem 1.10), we have obtained a series of new results regarding the exact solution of extremal problems on classes of conjugate functions.

We introduce the following notations. If $f \in L_1$ and $f \ge 0$ almost everywhere, then P(f, t) is the decreasing rearrangement (see, for example, [3, pp. 92, 93]) of the restriction of f to the period. For any function $f \in L_1$ we set $\Pi(f, t) = P(f_+, t) - P(f_-, 2\pi - t)$, where $f_{\pm}(t) = \max \{ \pm f(t), 0 \}$. If $f, g \in L_1$, $f, g \ge 0$ almost everywhere and if for every $x \in [0, 2\pi]$ we have

$$\int_{0}^{x} P(g,t) dt \leqslant \int_{0}^{x} P(f,t) dt,$$

then we shall write g < f.

We denote by $\varphi_{n,r}$, n, r = 1, 2,..., the r-th periodic integral with zero mean value on a period of the function $\varphi_{n,0}(t) = \operatorname{sign} \cos nt$. Instead of $\varphi_{1,r}$ we shall write φ_r . More generally, if α , β are positive numbers, then by $\varphi_{n,r;\alpha,\beta}$ we denote the r-th periodic integral with zero mean value on a period of the function $\varphi_{n,0;\alpha,\beta}(t) = \alpha \operatorname{sign}\left(\cos nt - \cos \frac{\pi\beta}{\alpha + \beta}\right)_+ -\beta \operatorname{sign}\left(\cos nt - \cos \frac{\pi\beta}{\alpha + \beta}\right)_+$. Instead of $\varphi_{1,r;\alpha,\beta}$ we shall write $\varphi_{r;\alpha,\beta}$.

Let $\omega(t)$ be an upwardly convex modulus of continuity. We denote by $f_{n,r}(t) = f_{n,r}(\omega; t)$ the r-th period integral with zero mean value on a period of the odd $2\pi/n$ -period function $f_{n,0}(t)$ such that $f_{n,0}(t) = 2^{-1}\omega(2t)$ for $t \in [0, \pi/2n]$ and $f_{n,0}(t) = 2^{-1}\omega(2(\pi/n-t))$ for $t \in [\pi/2n, \pi/n]$.

2. The following statement is fundamental in this paper.

<u>THEOREM 1.</u> Assume that the functions $f, g \in C$ are such that $\tilde{f}, g \in C; f \neq 0$ and $\tilde{f} \neq 0$ almost everywhere, $\int_{0}^{2\pi} \operatorname{sign} \tilde{f}(t) dt = 0$, and

$$\|\tilde{f}\|_{1} = \int_{0}^{2\pi} P(|f|, t) P(|(\operatorname{sign} \tilde{f})^{\sim}|, t) dt.$$
(1)

In this case if |g| < |f|, then $\|\tilde{g}\|_1 \leq \|\tilde{f}\|_1$.

<u>Remark 1.</u> The conditions imposed in Theorem 1 on the function f are satisfied for n, r = 1, 2,... by the above defined functions $q_{n,r}$ and $f_{n,r}(\omega)$. This circumstance and the presence in many cases of inequalities of the type |g| < |f| stipulates a large collection of applications of Theorem 1.

Dnepropetrovsk University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 39, No. 2, pp. 139-144, March-April, 1987. Original article submitted August 20, 1986.

Proof. Assume first that $\tilde{g} \neq 0$ almost everywhere. We have

$$\|\widetilde{g}\|_{1} = \int_{0}^{2\pi} \widetilde{g}(t) \operatorname{sign} \widetilde{g}(t) dt = \left|\int_{0}^{2\pi} g(t) (\operatorname{sign} \widetilde{g}(t))^{\sim} dt\right| \leq \int_{0}^{2\pi} P(|g|, t) P(|(\operatorname{sign} \widetilde{g})^{\sim}|, t) dt$$

Taking into account condition |g| < |f| of the theorem and Proposition 5.4.7 from [3], we obtain

$$\|\widetilde{g}\|_1 \leqslant \int_0^{2\pi} P(|f|, t) P(|(\operatorname{sign} \widetilde{g})^{\sim}|, t) dt.$$

From the theorem of Stein and Weiss ([8]; see also [9], Theorem 1.10), taking into account the conditions $\int_{0}^{2\pi} \operatorname{sign} \tilde{f}(t) dt = 0$ and $\tilde{f} \neq 0$ almost everywhere, there follows easily that P × $(|(\operatorname{sign} \tilde{g})^{\sim}|, t) \leq P(|(\operatorname{sign} \tilde{f})^{\sim}|, t)$ for any $t \in [0, 2\pi]$. Therefore, taking into account also condition (1), we find

$$\|\widetilde{g}\|_{1} \leq \int_{0}^{2\pi} P(|f|, t) P(|(\operatorname{sign} \widetilde{f})^{\sim}|, t) dt = \|\widetilde{f}\|_{1},$$

and, in the given case, the theorem is proved.

Assume now that $\tilde{g} \neq 0$ but $\tilde{g} = 0$ on a set of positive measure. We note that the operator of taking the conjugate function acts continuously from C into L₁ so that there exists K₁ > 0 such that if g, $h \in C$ and $||g - h||_c < \varepsilon$, then $||\tilde{g} - \tilde{h}||_1 \leq K_1 \varepsilon$ for any $\varepsilon > 0$. Further, since $\int_0^x P \times (|f|, t) dt$ is a nondecreasing, upwardly convex, positive function, there exists K₂ > 0 such that $x \leq K_2 \int_0^x P(|f|, t) dt$ for any $x \in [0, 2\pi]$.

We consider an arbitrary $\varepsilon > 0$ and we find a nonconstant trigonometric polynomial T such that $||g - T||_c < \varepsilon$. Then $\tilde{T} \neq 0$ almost everywhere, $||g - T||_1 \leq K_1 \varepsilon$ and for all $x \in [0, 2\pi]$ we have

$$\int_{0}^{x} P(|T|, t) dt \leq \int_{0}^{x} P(|g|, t) dt + \int_{0}^{x} P(|g - T|, t) dt \leq \int_{0}^{x} P(|f|, t) dt + \varepsilon x$$

$$\leq \int_{0}^{x} P(|f|, t) dt + K_{2}\varepsilon \int_{0}^{x} P(|f|, t) dt \leq \int_{0}^{x} P((1 + K_{2}\varepsilon)|f|, t) dt.$$

Consequently, according to what has been proved, $\|\tilde{T}\|_1 \leq (1 + K_2 \varepsilon) \|\tilde{f}\|_1$. But then $\|\tilde{g}\|_1 \leq \|\tilde{T}\|_1 + \|\tilde{g} - \tilde{T}\|_1 \leq K_1 \varepsilon + (1 + K_2 \varepsilon) \|\tilde{f}\|_1$ and, by virtue of the arbitrariness of $\varepsilon > 0$, we have $\|\tilde{g}\|_1 \leq \|\tilde{f}\|_1$. The theorem is proved.

We give an other statement of the type of Theorem 1.

<u>THEOREM 2.</u> Assume that the functions $f, g \in C$ are such that $\tilde{f}, \tilde{g} \in C$; $f \neq 0$ and $\tilde{f} \neq 0$ almost everywhere, $\int_{0}^{2\pi} \operatorname{sign} \tilde{f}(t) dt = 0$, and

$$\|\tilde{f}\|_{1} = \int_{0}^{2\pi} \Pi(f, t) \Pi((\operatorname{sign} \tilde{f})^{\sim}, t) dt.$$
(2)

In this case, if $(g - \lambda)_{\pm} < (f - \lambda)_{\pm}$ for any $\lambda \in \mathbb{R}$, then $\|\tilde{g}\|_1 \le \|\tilde{f}\|_1$.

<u>Remark 2.</u> The conditions imposed in Theorem 2 on the function f are satisfied for all $n = 1, 2, \ldots$ and $r = 2, 4, \ldots$ by the function $\varphi_{n,r;\alpha,\beta}$, $\alpha,\beta > 0$.

<u>Proof.</u> As in the proof of Theorem 1, we can assume that $\tilde{g} \neq 0$ almost everywhere. We have

$$\|\tilde{g}\|_{1} = \int_{0}^{2\pi} \tilde{g}(t) \operatorname{sign} \tilde{g}(t) dt = -\int_{0}^{2\pi} g(t) (\operatorname{sign} \tilde{g}(t))^{2\pi} dt.$$
(3)

With the aid of the known properties of rearrangements, it is easy to prove that for any $F \in L_1$ and any function $f \in L_1$, with zero mean value on the period, we have $\int_{0}^{2\pi} \int f(t) F(t) dt \leq \int_{0}^{2\pi} \prod (f, t) \prod (F, t) dt$ Taking also into account that from the already mentioned theorem of Stein and Weiss there follows the equality Π (- (sign g), t) = Π ((sign g), t), from (3) we obtain

$$\|\tilde{g}\|_{1} \leqslant \int_{0}^{2\pi} \Pi(g,t) \Pi((\operatorname{sign} \tilde{g})^{-},t) dt.$$
⁽⁴⁾

Again from the theorem of Stein and Weiss there follows, taking into account condition $\int_{0}^{\infty} \frac{ign_{x}}{f(t)dt} = 0$, that for any $\lambda \in \mathbb{R}$ we have $((sign \tilde{g})^{\sim} - \lambda)_{\pm} \prec ((sign \tilde{f})^{\sim} - \lambda)_{\pm}$. Taking into condition $(g - \lambda)_{\pm} \prec (f - \lambda)_{\pm}$ of the theorem and also Proposition 5.4.7 from [3], we can prove the inequality

$$\int_{0}^{2\pi} \Pi(g,t) \Pi((\operatorname{sign} \tilde{g})^{\sim},t) dt \leq \int_{0}^{2\pi} \Pi(f,t) \Pi((\operatorname{sign} \tilde{f})^{\sim},t) dt.$$
(5)

Combining (4), (5), and (2), we conclude the proof.

3. We proceed to applications. Inequalities for the norms of the derivatives of the type of the Kolmogorov inequality (see [3, Sec. 6.2]) are well known and play an important role in the theory of approximations. We prove sharp inequalities for the norm of the derivatives of conjugate function.

THEOREM 3. Let r = 2, 3, ... and let $f \in L'_{\infty}$. Then for k = 1, ..., r - 1 we have

$$\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\tilde{\varphi}_{r-k}\|_{1}}{||\varphi_{r}||_{\infty}^{1-k/r}} \|f\|_{\infty}^{1-k/r} \|f^{(r)}\|_{\infty}^{k/r}.$$
(6)

Inequality (6) is sharp on $L_{\infty}^{\mathbf{r}}$. It turns into an equality for the fucntions $f = a\varphi_{n,r}$, $a \in \mathbb{R}$, $n = 1, 2, \ldots$.

<u>Proof.</u> Let $f \in L'_{\infty}$, $f \not\equiv \text{const}$, and let $|| f'' ||_{\infty} \leq 1$. We select b > 0 so that $|| f ||_{\infty} = b' || \varphi_r ||_{\infty}$, i.e., $b = (|| f ||_{\infty}/|| \varphi_r ||_{\infty})^{1/r}$. Then, by virtue of theorem of Korneichuk and Ligun (see [3], Theorem 5.5.1), for any $k = 1, \ldots, r - 1$ we have $|f^{(k)}| < b'^{-k} |\varphi_{r-k}|$. From here, taking into account Remark 1 and Theorem 1, we derive $|| \tilde{f}^{(k)} ||_1 \leq b'^{-k} || \tilde{\varphi_{r-k}} ||_1$, or

$$\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\tilde{\varphi}_{r-k}\|_{1}}{\|\varphi_{r}\|_{\infty}^{1-k/r}} \|f\|_{\infty}^{1-k/r}.$$
(7)

Applying for every $f \in L_{\infty}'$ the inequality (7) to the function $f/||f^{(r)}||_{\infty}$, we obtain (6). The theorem is proved.

COROLLARY 1. If $f \in L_{\infty}^{\prime}$, $r = 2, 3, \ldots$, and $k = 1, \ldots, r - 1$, then

$$\bigvee_{0}^{2\pi} (\tilde{f}^{(k-1)}) \leqslant \frac{\bigvee_{0}^{2\pi} (\tilde{\varphi}_{r-k+1})}{\|\varphi_{r}\|_{\infty}^{1-k/r}} \|f\|_{\infty}^{1-k/r} \|f^{(r)}\|_{\infty}^{k/r}.$$

The inequality is sharp on L_{∞}^{r} .

Now we prove the asymmetric analogue of Theorem 3 (regarding the known "asymmetric" inequalities for the norms of derivatives, see [3, Sec. 6.2], [10, 11]). Let $E(f) = \inf_{\lambda \in \mathbb{R}} ||f - \lambda||_{\infty}$ and $||f||_{\infty;\alpha,\beta} = ||\alpha f_+ + \beta f_-||_{\infty}$, where α , β are positive numbers.

THEOREM 4. Let $f \in L'_{\infty}$, r = 1, 2, ...; k = 1, 2, ..., r - 1; $k \equiv r \pmod{2}$; let α , β be positive numbers. Then

$$\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|\varphi_{r-k;\alpha,\beta}\|_{1}}{E\left(\varphi_{r;\alpha,\beta}\right)^{1-k/r}} E\left(f\right)^{1-k/r} \|f^{(r)}\|_{\infty;\alpha^{-1},\beta^{-1}}^{k/r}.$$
(8)

Inequality (8) is sharp on L_{∞}^{r} .

For $\alpha = \beta = 1$ we obtain inequality (6). Let $B_r(x) = 2 \sum_{k=1}^{\infty} k^{-r} \cos(kx - \pi r/2)$ be the Bernoulli functions. Taking into account that $E(\varphi_{r;1,\beta}) \rightarrow E(B_r)$ and $\|\tilde{\varphi}_{r-k;1,\beta}\|_1 \rightarrow \|\tilde{B}_{r-k}\|_1$ for $\beta \rightarrow \infty$; $E(\varphi_{r;\alpha,1}) \rightarrow E(B_r)$ and $\|\tilde{\varphi}_{r-k;1,\beta}\|_1 \rightarrow \|\tilde{B}_{r-k}\|_1$ for $\alpha \rightarrow \infty$, we obtain the following corollary.

COROLLARY 2. Under the assumptions of Theorem 4 we have the sharp inequality

$$\|\tilde{f}^{(k)}\|_{1} \leq \frac{\|B_{r-k}\|_{1}}{E(B_{r})^{1-k/r}} E(f)^{1-k/r} \|(f^{(r)})_{\pm}\|_{\infty}^{k/r}.$$

<u>Proof of Theorem 4.</u> Let $f \in L_{\infty}^{r}$ and $||f^{(r)}||_{\infty;\alpha^{-1},\beta^{-1}} \leq 1$. We select b > 0 from the condition $E(f) = b^{r}E(\varphi_{r;\alpha,\beta})$. Then, in view of Theorem 1 from [7], for every $\lambda \in \mathbb{R}$ we have $(f^{(k)} - \lambda)_{\pm} < b^{r-k} \times (\varphi_{r-k;\alpha,\beta} - \lambda)_{\pm}$. Taking into account Remark 2 and Theorem 2, we obtain for $k \equiv r \pmod{2}$

$$\|\tilde{f}^{(k)}\|_{1} \leq b^{r-k} \|\tilde{\varphi}_{r-k;\alpha,\beta}\|_{1} = \frac{\|\varphi_{r-k;\alpha,\beta}\|_{1}}{E(\varphi_{r;\alpha,\beta})^{1-k/r}} E(f)^{1-k/r}.$$
(9)

If $f \in L'_{\infty}$ is arbitrary, then applying (9) to the function $f/|| f''||_{\infty;\alpha=1,\beta=1}$, we obtain inequality (8). Equality in (8) is attained for the functions $f = a\varphi_{n,r;\alpha,\beta}$, n = 1, 2, ...; a > 0.

The applications of the inequalities of Kolmogorov type include (see [3], Chap. 6) results regarding the best approximation of one class of functions by another, inequalities for the upper bounds of seminorms, etc. Similar applications have the inequalities from Theorems 3 and 4. We give only an estimate of the approximation in the space L_1 of the class \tilde{W}^k_{∞} by the class NW^r₁, N > 0, whose proof can be carried out similarly to the proof of Theorem 6.1 from [12].

<u>THEOREM 5.</u> Let r = 2, 3, ...; k = 1, ..., r - 1; N > 0. Then

$$\sup_{e \in \widetilde{W}_{\infty}^{k}} \inf_{g \in NW_{1}^{r}} \|f - g\|_{1} \leq \frac{r-k}{r} \|\widetilde{\varphi}_{k}\|_{1}^{r/(r-k)} \left(\frac{k}{rN \|\varphi_{r}\|_{\infty}}\right)^{k/(r-k)}.$$

4. We denote by $H_{2n,r}^{s}$, $n = 1, 2, ...; r = 0, 1, ..., the set of <math>2\pi$ -periodic polynomial splines of order r and defect 1 with nodes at the points $k = 0, \pm 1, \pm 2, ...$

It is known ([4], Theorem 2.6.7) that for the splines $s \in H_{2n,r}^S$ we have the inequality

$$|s^{(k)}| < \frac{||s||_{\infty}}{||\varphi_{n,r}||_{\infty}} |\varphi_{n,r}^{(k)}|, \quad k = 1, ..., r.$$

Taking into account Remark 1, we can see that Theorem 1 can be applied to the functions $s^{(k)} \times (x)$ and $\frac{\|s\|_{\infty}}{\|\varphi\|_{\infty}} |\varphi_{n,r}^{(k)}(x)|$. Therefore, the following theorem holds.

THEOREM 6. Let $s \in H_{2n,r}^S$, $r = 1, 2, \ldots$. Then

$$\|\tilde{s}^{(k)}\|_{1} \leq \frac{\|\varphi_{n,r}^{(k)}\|_{1}}{\|\varphi_{n,r}\|_{\infty}} \|s\|_{\infty}, \quad k = 1, \dots, r-1.$$

The inequality is sharp.

Theorem 1 has other applications of a similar type. Regarding the known inequalities for the derivatives of conjugate trigonometric polynomials, see [13, 14].

5. Let $\sigma_{2n,r}(f,t)$ be a spline from $H_{2n,r}^S$, interpolating $f \in C$ at the zeros of the function $\varphi_{n,r+1}(t + \pi/2n)$. It is well known (see, for example, [4], Theorem 5.1.2) that if $f \in W_{\infty}^{r+1}$, then $|f(t) - \sigma_{2n,r}(f,t)| \leq |\varphi_{n,r+1}(t + \pi/2n)|$ at each point t. From here there follows

$$|f - \sigma_{2n,r}(f)| \prec |\varphi_{n,r+1}|, r = 1, 2,$$
 (10)

Further, from Lemma 5.1.18 [4] there follows easily that

$$|f' - \sigma'_{2n,r}(f)| < |\varphi_{n,r}|, \quad r = 1, 2, \dots.$$
(11)

Taking into account the relations (10), (11) and Remark 1, we can see that to the pairs of functions $f - \sigma_{2n,r}(f)$, $\varphi_{n,r+1}$ and $f' - \sigma'_{2n,r}(f)$, $\varphi_{n,r}$ we can apply Theorem 1. Thus, the following theorem holds, similar to Theorem 5.1.7 from [4].

THEOREM 7. We have the equalities

$$\sup_{f \in w_{\infty}^{r+1}} \|\tilde{f} - \tilde{\sigma}_{2n,r}(f)\|_{1} = \|\tilde{\varphi}_{n,r+1}\|_{1}, \quad r = 1, 2, \dots;$$

118

$$\sup_{f \in W_{\infty}^{r+1}} \| \tilde{f}' - \tilde{\sigma}_{2n,r}(f) \|_{1} = \| \tilde{\varphi}_{n,r} \|_{1}, \quad r = 2, 3, \dots.$$

The comparison of Theorem 7 and Theorem 5 from [7] shows that the set $\widetilde{H}_{2n,r}^S = \{\widetilde{s}: s \in H_{2n,r}^S\}$ has for the class $\widetilde{W}_{\infty}^{r+1}$ the same approximation properties as the set of trigonometric polynomials of order $\leq n-1$ and the set $H_{2n,\mu}^S$, $\mu \geq r+1$. Moreover, in Theorem 7 we have a linear approximation method.

Assume now that $\sigma_{2n,1}(f) \in H^S_{2n,1}$ is an interpolational polygonal line for $f \in W^1 H^{\omega}$. <u>THEOREM 8.</u> If $\omega(f)$ is an upwardly convex modulus of continuity, then

$$\sup_{j \in W^{1} H^{\omega}} \| \tilde{f} - \tilde{\sigma}_{2n,1}(j) \|_{1} = \| \tilde{f}_{n,1}(\omega) \|_{1}, \quad n = 1, 2, \dots.$$

Indeed, from Lemma 5.2.8 of [4] there follows that $|f - \sigma_{2n,1}(f)| \leq |f_{n,1}(\omega)|$. Therefore (taking into account Remark 1), Theorem 1 can be applied to the pair of functions $f - \sigma_{2n,1}(f)$ and $f_{n,1}(\omega)$.

In conclusion we give one more inequality of the type of the Jackson inequality, unimprovable on the space C^1 of continuously differentiable 2π -periodic functions. This inequality can be also obtained with the aid of Lemma 5.2.8 from [4] and Theorem 1.

<u>THEOREM 9.</u> Let $f \in C^1$, n = 1, 2,.... Then

$$\|\widetilde{f}-\widetilde{\sigma}_{2n,1}(f)\|_{1} \leq \frac{\|\widetilde{\varphi}_{1}\|_{1}}{2n} \omega(f',\pi/n).$$

The inequality is sharp on C^1 .

LITERATURE CITED

- 1. N. K. Bari (N. K. Bary), A Treatise on Trigonometric Series, I and II, Macmillan, New York (1964).
- N. P. Korneichuk, Extremal Problems of Approximation Theory [in Russian], Nauka, Moscow (1976).
- 3. N. P. Korneichuk, A. A. Ligun, and V. G. Doronin, Approximation with Constraints [in Russian], Naukova Dumka, Kiev (1976).
- 4. N. P. Korneichuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).
- N. I. Akhiezer (N. Achyeser) and M. G. Krein (M. Krein), Sur la meilleure approximation des fonctions périodiques dérivables au moyen de sommes trigonométriques," Dokl. Akad. Nauk SSSR, <u>15</u>, No. 3, 107-111 (1937).
- 6. S. M. Nikol'skii, "Approximation of functions in the mean by trigonometric polynomials," Izv. Akad. Nauk SSSR, Ser. Mat., <u>10</u>, 207-256 (1946).
- V. F. Babenko, "Inequalities for rearrangements of differentiable periodic functions, approximation problems, and approximate integration," Dokl. Akad. Nauk SSSR, <u>272</u>, No. 5, 1038-1041 (1983).
- E. M. Stein and G. Weiss, "An extension of a theorem of Marcinkiewicz and some of its applications," J. Math. Mech., <u>8</u>, No. 2, 263-284 (1959).
- B. V. Khvedelidze, "The method of Cauchy type integrals in discontinuous boundary value problems of the theory of holomorphic functions of a complex variable," Sov. Probl. Mat., 7, 5-162 (1975).
- 7, 5-162 (1975).
 10. L. Hörmander, "A new proof and a generalization of an inequality of Bohr," Math. Scand., 2, 33-45 (1954).
- V. F. Babenko, "Nonsymmetric extremal problems of approximation theory," Dokl. Akad. Nauk SSSR, <u>269</u>, No. 3, 521-524 (1983).
- V. G. Doronin and A. A. Ligun, "Best one-sided approximation of some classes of functions," Mat. Zametki, <u>29</u>, No. 3, 431-454 (1981).
- 13. A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge Univ. Pres (1959).
- L. V. Taikov, "A generalization of an inequality of S. N. Bernshtein," Trudy Mat. Inst. Akad. Nauk SSSR, <u>78</u>, 43-47 (1965).