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Homoclinic Bifurcation at Resonant Eigenvalues 
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We consider a bifurcation of homoclinic orbits, which is an analogue of period 
doubling in the limit of infinite period. This bifurcation can occur in generic two 
parameter vector fields when a homoclinic orbit is attached to a stationary 
point with resonant eigenvalues. The resonance condition requires the eigen- 
values with positive/negative real part closest to zero to be real, simple, 
and equidistant to zero. Under an additional global twist condition, an 
exponentially flat bifurcation of double homoctinic orbits from the primary 
homoclinie branch is established rigorously. Moreover, associated period 
doublings of periodic orbits with almost infinite period are detected. If the 
global twist condition is violated, a resonant side switching occurs. This 
corresponds to an exponentially flat bifurcation of periodic saddle-node orbits 
from the homoclinic branch. 

KEY WORDS: homoclinic orbit; period doubling; pathfollowing; global 
bifurcation; resonance. 
AMS CLASSIFICATION: 34C15, 34C35, 58F14. 

1. I N T R O D U C T I O N  

By  de f in i t i on ,  a h o m o c l i n i c  o r b i t  z* ( t )  of  a f low 

2 = F ( z ) ,  z e ~  m+n (1.1)  
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tends to the same equilibrium, say z = 0 ,  F ( 0 ) = 0 ,  for both t ~  +_oo. 
Homoclinic orbits are a key phenomenon for understanding more com- 
plicated dynamics, including chaotic motions; see, e.g., Guckenheimer and 
Holmes (1983), Sparrow (1982). For  typical vector fields F, however, 
homoclinic orbits do not exist. The reason is the following. Suppose z = 0 
is a hyperbolic equilibrium, i.e., the eigenvalues of F '(0)  stay away from the 
imaginary axis. Then the m-dimensional stable manifold W s of z = 0  
consists of all those Zo = z(0) for which 

lim z*(t)=O 
t ~  +oO 

see, e.g., Chow and Hale (1982). Likewise, the n-dimensional unstable 
manifold W ~ is associated to 

lim z*(t)=O 

By definition, W u and W ' intersect nontrivially (i.e., at some point 
p = z * ( 0 ) r  if z*(t) is a homoclinic orbit. Note that W u and W ~ then 
intersect all along the orbit z*(t). In particular, the tangent spaces Tp W s 
and Tp W u intersect nontrivially, 

2(t)eTpWSC~TpW ~ at t=O  (1.2) 

In other words, W u and W s intersect nontransversely at p, and 

codim( Tp WS + Tp W ~) = 1 (1.3) 

or, even worse, > 1. Perturbing the vector field F slightly, we can therefore 
push W u slightly in the direction of that remaining codimension, keeping 
W" fixed. Then W u and W s do not intersect anymore, locally, and the 
homoclinic orbit has disappeared. A precise statement of this idea is the 
Kupk~Smale  theorem. This theorem asserts that for generic F s  C ~, stable 
and unstable manifolds intersect transversely, if they intersect at all. By 
(1.3), this excludes the possibility of homoclinie orbits. The word "generic" 
indicates that the theorem may fail (and it does!) only for a subset of 
F e  C ~176 which is of the first Baire category in the weak Whitney topology. 
In particular, the assertion of the Kupka-Smale theorem holds for a dense 
set of F. See, e.g., Abraham and Robbin (1967) for more details. Note that 
this situation contrasts markedly with the case of discrete time flows, viz., 
of iterating diffeomorphisms, where transverse homoclinic points can 
occur--leading to Smale horseshoes and shift dynamics; see, e.g., Moser 
(1973). 

We have seen above, heuristically, how homoclinic orbits are a 
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codimension 1 phenomenon in the space of vector fields. Therefore, we now 
consider C~ parametrized vector fields. 

~ =F(c4 z), z e ~  m+n (1.1~) 

with parameter  ~. Below, we will consider parameters ~ = (cq, ~2) e ~2. But 
for the moment,  let us discuss the case ~ e  R. By the above reasoning, 
homoclinic orbits will typically, i.e., generically, occur for isolated 
parameter  values, say at ~ = 0. What  happens for small c~ Y= 0? One possible 
scenario is the following. For c~ < 0 we see a periodic orbit z~(t) of minimal 
period T~. For  c~ 7 0, some part  of the periodic orbits approaches the 
equilibrium z = 0, e.g., 

lim z~(0) = 0 

while the remaining points approach the closure of the homoclinic orbit of 

= NO,  z) 

Simultaneously, the minimal periods T~ tend to infinity. For  c~ > 0, both 
the periodic orbits and the homoclinic orbit just disappear. This was 
termed a "blue sky catastrophe" by Abraham and Marsden (1978). For  
z ~ R m + n = ~  2, and under certain additional assumptions also for 
m + n > 2, Shilnikov has shown that this description holds true for generic 
one parameter  families F. This work dates back to 1962; see, e.g., the 
survey (Shilnikov, 1968). 

From now on we consider generic two parameter  vector fields, 

F(~, �9 ), e = ("1, ~ 2) e N2 

Since homoclinic orbits are codimension one objects, we expect them to 
occur along one-dimensional curves ~ = e(z) in two parameter  space ~ e N2. 
This point of view makes homoclinic orbits amenable to a pathfollowing 
approach. We may now follow curves of homoclinic orbits rather than 
hitting them "catastrophically," out of the blue. 

The following illustrative example goes back to Arnold (1972) and 
Bogdanov (1976a, b), and to Takens (1974): 

ZI ~ Z2 
(1.4) 

where cr = __1. In Fig. 1 we show the local bifurcation diagram of system 
(1.4). 

To the left of the fold line, two equilibria coexist. Crossing the fold to 
the right, they merge and disappear. Crossing the Hopf  line, one of the two 
equilibria undergoes a Hopf  bifurcation, giving rise to periodic orbits when 
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Fig. 1. A B-point. 

we decrease cq. The periodic orbits terminate by a blue sky catastrophe 
at homoclinic orbits, which occur along a one-dimensional curve 
of parameters e. Following that homoclinic curve toward ~ = 0 ,  the 
homoclinic orbits shrink down to the equilibrium z = 0. More generally, 
Fig. 1 describes the generic local bifurcation diagram associated to an 
equilibrium (c%, z0) of (1.1~) where DzF(~o, Zo) has an algebraically double 
eigenvalue 0. These results are due to Arnold (1972) and Bogdanov 
(1976a). 

The term B-point was used by Fiedler (1986) for equilibria like 
(So, Zo). An index for B-points seemed to indicate a possibility for some 
global pathfollowing results on homoclinic orbits; cf. Fiedler (1986, p. 74). 
Indeed, B-points give rise to branches of homoclinic orbits in generic two 
parameter flows just as Hopf bifurcations give rise to branches of periodic 
orbits in generic one parameter flows. It is then a necessary first step, 
toward global results on homoclinic orbits, to understand local bifurca- 
tions which a branch of homoclinic orbits can undergo on its way. We will 
resume this aspect at the end of the discussion in Section 7. 

We now specify two such bifurcations: the resonant side-switching and 
the resonant homoclinie doubling (see Theorem A and Theorem B below). 
We fix some notations and some assumptions. First, we assume 

F: [~2X ~m+n___). ~m+n 

(~, z) ~ F(cg z) 
(1.5) 

is a generic C M + s vector field with two 

parameters ~ = (:q, c~2)e N2, 2 ~< M~< oe 
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As before, genericity means that our results will hold for a residual 
subset of CM+5(R2xR m+~, R m+~) in the weak Whitney topology of 
Ck-convergence, i.e., uniformly on compact sets and for bounded sets of 
k ~ M + 5 .  

Our second assumption concerns the existence of a homoclinic orbit F 
with real principal eigenvalues. We assume 

the vector field F(0, �9 ) at c~ = 0 admits a homoclinic orbit 

such that 

lira z*(t)=O 

Furthermore, the linearization DxF(O, 0) at the equilibrium (1.6) 
z = 0 has simple real eigenvalues -/~o < 0 < v o such that 
any remaining eigenvalue/~ of DzF(O, 0) satisfies 

either Re/.t < - / i l  < -~to < 0 

or Re/~ > ,71 > Vo > 0 

We call - # o ,  Vo the principal eigenvalues of DzF(O, 0), for the following 
reason. There exist submanifolds W ss ("strong stable") and W "  ("strong 
unstable") of the m-dimensional stable manifold W" and the n-dimensional 
unstable manifold W u of z = 0, respectively, such that 

lim e~'r~lz(t)=O on W u", and 
, ~  _o~  ( 1 . 7 )  

lira e~l'z(t)=O on W '~ 
t ~  + o O  

It turns out that dim WSS-= m -  1, dim WUU= n -  1. The tangent spaces at 
z = 0 are given by the parts of the spectrum of D~F(O, 0) with real part 
< - / i l  and > f l ,  respectively. Moreover, for any z(0)~ W s \ w  s~, the limit 

lira z(t)/lz(t)[ r  (1.8) 
t ~  + o O  

exists and is a unit eigenvector of the principal stable eigenvalue - # o .  An 
analogous statement holds for z(0)~ Wu\W "u and the principle unstable 
eigenvalue Vo. For  a reference see Hirsch et al. (1977), Shub (1987), and 
Brunovskj~ and Fiedler (1986). 

We now assume the resonance condition 

/~o = Vo (1.9) 

865/2/2-5  
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for the principal eigenvalues - # 0 < 0 <  Vo. We remember that we expect 
homoclinic orbits to occur along one-dimensional curves in parameter 
space. Therefore, resonance condition (1.9) will not contradict our 
genericity assumption (1.5). Of course, here we have shifted the associated 
equilibrium (e0, z0) where (1.9) holds to (0, 0). 

As a final prelude to our main results, we distinguish between twisted 
and nontwisted homoclinic orbits (cf. Figs. 2a and b, where m -- 1, n = 2). 

Let F =  {z*(t): t E ~} denote a homoclinic orbit of a vector field with 
simple real principal eigenvalues, as in (1.6). Choose points p, q s F  suf- 
ficiently close to the equilibrium z = 0  associated to F, say p=z*(0) ,  
q = z* (T) .  We assume nondegeneracy of F, 

codim(Tp W" + Tp W s) = 1 (1.10a) 

in accordance with (1.3). Motivated by the convergence result (1.8), we 
further assume the following general position of F: 

PC- W ~s, pC W "u (1.10b) 

Obviously, assumptions (1.10a, b) imply the same statements for q. Define 
the two unit vectors 

e -+ : =  +_ lira ~*(t)/l~*(t)l (1 .11)  

By (1.10b), e + e  To Wu is a unit eigenvector of Vo>0, and e eToW" 
belongs to - # o  < 0. Now define the hyperplanes 

T~.(,) := T~.(,) W" + T~.(,) W ~ (1.12) 

P 

F F 

q ~ ~  ~ q e 

(a~ r 

Fig. 2. Homoclinic orbits: (a) Nontwisted, (b) Twisted. 
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Note that codim Tz.(, ) = 1, by assumption (1.10a). For simple real principal 
eigenvalues, it is now a consequence of the strong 2-1emma, that generically 

lim T~.(~ = To WS" G To W~ 
t ~  - -0(3  

lim Tz.(, ~ = T o W ~ | To W"" 

(1.13) 

See the strong inclination property of Deng (1989a). This is illustrated in 
Fig. 2, where W'S= {0} since r e = d i m  W ' =  1. For a precise statement of 
the strong 2-1emma see lemma 3.3 below. Choosing p, q e F close enough to 
z -- 0, as above, (1.13) implies 

e r Tp, R ''+~ = TpOspan(e- )  
(1.14) 

e + r Tq, ~m+n= Tq G span(e + ) 

Finally, note that T~./, ), 0~< t~< T, defines a homotopy from Tp to Tq, 
justifying the following definition of a twist. 

Def in i t i on .  Let F be a nondegenerate homoclinic orbit in general 
position and with real principal eigenvalues, that is (1.6), (1.10a, b), (1.13) 
hold. 

We call F twisted, if e and e + point to opposite sides of Tp and Tq, 
respectively. See Fig. 2b. 

If e - ,  e + point to the same side of Tp, Tq, respectively, then we call 
F nontwisted. See Fig. 2a. 

Clearly, twisted homoclinic orbits can occur only in space dimensions 
~>3. Homoclinic orbits in planar flows are always nontwisted. Note that 
the twist can also be expressed by watching the winding of the bundle of 
normal vectors to T~.(~) as z*(t)  moves from p to q. 

We need a final piece of terminology. Fix a small tubular neighborhood 
U of our (twisted or nontwisted) homoclinic orbit c l o s F = F w  {0}. An 
N-periodic orbit is a periodic orbit which is contained in U and has winding 
number N in U. Similarly, we define an N-homoclinic orbit. In particular, 
F itself is a 1-homoclinic orbit. As long as U is chosen small enough, the 
above definition is independent of the particular choice of U. The termi- 
nology extends canonically to small perturbations of the original vector 
field F(0,-). We can now state our main results. 

Theorem A: Resonant Side-Switching. Let  F =  F(c~, z) o f  class C ~t + s, 
2 <<.M < oo, be a generic two-parameter vector f ieM with a nontwisted 
resonant homoclinic orbit at ~-= O. Then resonant side-switching occurs at 
c~ = 0 (see Fig. 3a). 
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Iv / , i s y  

O' 

(V) 

I (llI) 
(VI) KhoT/~ Kper SS 

(I) 
(VIII) 

Fig. 3. (a) Resonant side-switching. (b) Resonant homoclinic doubling. 

In more detail, let assumptions (1.5), (1.6), (1.9) be satisfied for a 
nontwisted homoclinic orbit P (cf  definition 1.1). Let U denote a sufficiently 
small tubular neighborhood of F. 

Then there exist a C ~t diffeomorphic local change of parameters 

E = (81~ 82) = 8((X) 

at ~ = 0 and a function 

{ ~  0 e l ~ O  
/]2 = K(el) for (1.15) 

0 ~ 1 > 0  

of class C M for el > O, such that the numbers of 1-periodic (1-per) and of 
1-homoclinic (1-hom) orbits in U for the parameter regions O, I -V I  are given 
by Table I. Moreover, there exists a constant ao = a ( 0 ) >  1 such that the 
following finite limit exists 

1 1 
lira ~ (c~) . - -  %/=1 > 0 (1.16) 

~1 ~. 0 ,S 1 
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T a b l e  I. Resonant Side-Switching; Number of Homoclinic and Periodic Orbits 

Region Definition No. of 1-horn No. of 1-per 

0 e l = 0  , G2=0 I 0 
I 81>0, ~2=0 l l 
II ~ > 0 ,  0 < e 2 <  ~C(el) 0 2 
III e l > O  , 82 = /~(8l) 0 1 
IV e l e ~ ,  e2 > ~:(el) 0 0 
V e l < 0 ,  e 2 = 0  l 0 
VI e 2 e ~  , ~2<0  0 1 

The constant a o is given explicitly by (4.9), (4.14c) evaluated at ~ = ~ = O. 
For the value of  the limit, see (5.10). 

The 1-per and 1-horn orbits, viewed as sets, depend continuously on ~ in 
the obvious sense. Specifically: crossing line III  along a one-dimensional 
curve from H to IV, two 1-per orbits merge and disappear at a saddle-node 
(or saddle-saddle) type bifurcation. Crossing I or V, one encounters a blue 
sky catastrophe. 

Since the 1-per orbits bifurcate to different sides from the 1-horn curve 
e2 = 0 for e1 < O, respectively, el > O, we call this bifurcation a resonant side- 
switching. 

Theorem B: Resonant Homoclinic Doubling. Let F =  F(c~, z) of  class 
C M+5, 2<<.M<<. oo be a generic two parameter vector field with a twisted 
resonant homoclinic orbit at ~ = O. Then resonant homoclinic doubling occurs 
at c~ = 0 (see Fig. 3b). 

In more detail let F be as in theorem A, but twisted, and let U again 
denote a sufficiently small tubular neighborhood of  its closure clos F. Then 
there exists a C M diffeomorphic reparametrization e = e(7) and two functions 

f ~  0 e l~O  
E2 = ~ ( ~ )  for  

0 e l > 0  

(1.17) 

I ~ {hom,per}, of  class C M for ~1 > O, such that the numbers of  N-periodic 
(N-per) and of  N-homoclinic (N-hom) orbits in U with N = 1, 2 for the 
parameter regions O,I-VIII are given in Table II. The curves ~:~ have the 
universal limit property 

lira tCh~ e 
- - -  - 1 . 3 6  . . . .  (1.18) 

~1 ~ o ~Cper(el ) 2 
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Table II. Resonant Homoclinic Doubling; Numbers of 
N-horn and N-per Orbits for N = 1, 2 

No. of No. of No. of No. of 
Region Definition 1-horn 2-horn 1-per 2-per 

0 61=0, g2=0 1 0 0 0 
I 61>0, 62=0 1 0 0 0 
II 6 1 > 0 ,  0 < 62 < Kper(gl) 0 0 1 ~>0 
III 61 ~> 0, 62 = Kper(61) 0 0 1 />0 
IV 61 > 0, Kper(g 1) < 62 < Khom(g 1) 0 0 1 ~> l 
V gl > 0, 62 = Ehom(61) 0 1 1 >~0 
VI e 1 e ~, 62 > Kho,n(81) 0 0 1 />0 
VII 81 <0, 82=0 1 0 0 0 

VIII 8 1 6 ~ ,  8 2 < 0  0 0 0 0 

Moreover, there exists a constant a o = a ( 0 ) < - 1  such that the following 
finite limit exists 

lira ~per(el)[a0[ ~/~ > 0 (1.19) 
61 ~,0 

The constant ao is given explicitly by (4.9), (4.14c) evaluated at :~ = ~ = O. 
For the value of the limit, see (6.8). 

All homoclinic and periodic orbits depend continuously on ~ as sets. 
Specifically, crossing lines I, V, VII yields blue sky catastrophes. Crossing 
line III, one encounters a period doubling bifurcation of the 1-per orbits to a 
sheet of 2-per orbits. 

The set of 2-per orbits contains a two-dimensional continuum cg of orbits 
which extends from the period doubling 1-per orbits at parameter curve III 
to the blue sky catastrophe at the curve of 2-hom orbits along line V. 

By a cont inuum,  we mean  a relat ively compac t  connec ted  set. F o r  our  
no t ion  of d imens ion  of cg, we refer to Alexander  and A n t m a n  (1981) and  
to l emma 6.5 below. 

O u r  s ta tements  concerning 2-per solut ions  are somewha t  weak. 
Actual ly ,  2-per solut ions  can occur  only in a wedge region which is shaped  
like the wedge region IV between ~Cpe r and  ~Cho m bu t  which is somewha t  
wider. F o r  a precise s ta tement  see l emma  6.4 below. Due  to the topo log ica l  
me thods  which we use, we canno t  de te rmine  the exact  number  of 2-per 
solut ions  in these regions. 

Both  theorems,  A and  B, are new results as they stand.  The basic  
under ly ing  idea, however,  tha t  resonan t  pr inc ipa l  eigenvalues #o = Vo can 
lead to bifurcat ion,  is not  new. The  nontwis ted  case was s tudied before by 
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Leontovich (1951 ), Nozdracheva (l 982), Sanders and Cushman (1986), for 
planar vector fields (ze  R2). We refer to Section 7 for a more detailed 
discussion. 

At this stage, it is high time to mention the pioneering results by 
Yanagida (1986) on homoclinic doubling in the case of a single unstable 

�9 dimension (n = 1). In a somewhat less geometric setting Yanagida already 
gave algebraic conditions for existence and inexistence of 2-horn orbits. In 
the resonant case, these conditions amount to our twist condition. The 
proofs, however, are based on local C l-linearization in the spirit of 
the Grobmann-Hartman theorem. But such a linearization may be 
inappropriate at resonant eigenvalues. Still, we devote Section 2 to an 
exposition of the (nonrigorous) approach by complete linearization, for 
illustration purposes. The gap concerning Cl-linearization was pointed out 
and closed in ~3 by Kokubu (1987, 1988). These results, although based on 
"Shilnikov variables," are obtained by a methodology which differs from 
our approach. For  a more detailed discussion we refer to Section 7. 

Replacing complete linearization, we build our approach on a careful 
analysis of Shilnikov's parametrization of the flow near the origin; see 
Shilnikov (1968) and Deng (1989a). This background material is surveyed 
in Section 3. In Section 4, we then derive a Ljapunov Schmidt-type reduc- 
tion of the bifurcation problem down to a.n N-dimensional system of bifur- 
cation equations, for N-per and N-hom solutions. These systems are highly 
transcendental: the bifurcation parameter enters as an exponent in the 
leading term. This fact causes the exponential smallness of the curves tc in 
theorems A and B. Theorem A is proved in Section 5, discussing the case 
N = 1. For  a proof of theorem B, alias N = 2, see Section 6. After a detailed 
discussion in Section 7, we conclude with an Appendix which recalls the 
explicit form of all our genericity assumptions. 

2. A M O D E L  E X A M P L E :  THE PIECEWISE LINEAR CASE 

In this section, we analyze the flow near a resonant homoclinic orbit 
F in N3. Following Yanagida's (1987) idea, we assume that our flows are 
piecewise linear. Due to resonance, this assumption is inadequate to the 
nonlinear problem. However, deviating from Yanagida, we will treat the 
piecewise linear case in such a way that it becomes a paradigm to our 
treatment of the general generic case. 

Consider a homoclinic orbit F of a three-dimensional vector field 
F =  F(~, z) at c~ = 0, as in theorems A and B. Assume F(~, 0) = 0, for all ~. 
We introduce coordinates z=(x ,y) ,  X=Xo, Y=(Yo, Yl) associated to 
the eigendirections of the eigenvalues - # o ( a )  < 0 < vo(a) < vl(a) of the 
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linearization DzF(c~, 0). We may rescale time so that #o(e)= 1. Moreover, 
we assume that Vo(~) = 1 + ~l- 

Our first linearity assumption is the following: 

F(c~,z)=Dzf(~,O).z for Izt =max(Ix[, lY[)~<&o (2.1) 

In other words, the flow near z = 0 is given by 

"~0 = --Xo 

370 = (1 + cq)Yo (2.2) 

Pl =vlYl 

Let Sin := {(x, y):xo=6o}, Sou t := {(x, y): yo=6o} denote (local) Poincar6 
sections, transverse to the homoclinic orbit F at q = (6o, 0, 0), p = {0, 6o, 0} 
(cf. Fig. 4). Note that we assume here that p lies in the linear eigenspace of 
v0 for simplicity. The linear flow in the box {Izl ~<~0} defines a Poincar6 
map H 1~ from a suitable subset O~in of Sin to Sour: 

HI~ SPin ---* Sou t 
(2.3) 

(xin, sin) ~ (xOUt, .pout) 

Likewise, there is an outer Poincar6 map H far from Sour to Sin, given by 
the flow along F: 

Hfar: Sou t ~ Sin 
(2.4) (xOUt, j, yOUt, Q ~ (xin, j +  1 yin, j+  1) 

e + 

Yo 

P 

Fig. 4. Sections and return maps. 
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The superscripts j, j + 1 are introduced here because we will be interested 
in iterates of H fa~ o H 1~176 later on. 

We also assume that H far is (affine) linear, 

Qyion'j+l~ ( ; 2 ) (  8 1 1  Ul2X~(x~ut'j~ 
yi]~,j+~] = + \ H 2 ~  H = J \ y ~ t , j ] ,  with H 22 4:0 (2.5) 

where, again for simplicity, the H ~k are considered now as being inde- 
pendent of cc The generic assumption H 22 r 0 guarantees that W ~ hits W s 
in q in general position so that (1.13) holds. Indeed, T o W"" is the y~-axis. 
Note the meaning of c~ = (~!, ~2). For a a = 0, the points 

p = (xOUt, ao ' y ~ t )  : =  (0, ao,  0)  e W ~ 

and 
q = (~5o ' y~n, yiln ) := (c~0 ' 0, O) E W s 

lie on a 1-homoclinic branch, all along the line {0{ 1 @ ~:~, 0~2~---0}. Roughly 
speaking, ~2 describes the distance between W" and W'. The other 
parameter, cq, expresses transverse crossing of the eigenvalue Vo = 1 + ~1 
through Po = 1 along the 1-homoclinic branch ~2 = 0. 

At this stage, we could proceed by piecing H ~~ and H far together, 
iterating the return map H r"r//loc of Sin. Unfortunately, this simple 
approach does not seem to work equally well in the fully nonlinear case, 
because, in iterating H far H l~ it is difficult to keep control of the shrinking 
cusp-shaped domain of definition in gin. In Shilnikov's variables, we obtain 
nicer domains of definition which are more suitable for applications of the 
implicit function theorem. Therefore, we now describe the same iterations 
in Shilnikov's (1968) coordinates 

rather than using 

S, in X , yOUr)= (S, (~0, (~0, yl~ 

(X in, .F in) = (150, y ~ ,  Jiln ) ~ S in 

The two coordinate systems are related via the linear flow (2.2) as follows: 

y~a vos out -- vos 
= e Yo = e ,5 o 

yin -vls out 
1 = e  Yl  ( 2 . 6 )  

out --s in X 0 = e X 0 = e-S~50 

The parameter  s, for Shi ln ikov  time, is the Poincar6 time associated to H l~176 
For a more detailed exposition of this concept see Section 3. 
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Note that the domain of definition of H f~r H l~ takes the form of a 
rectangle in the Shilnikov coordinates (s, y~Ut), namely, s ~> s* large enough 
and l y~Ut[ ~ G.  

Reintroducing indices j, j + 1 to keep track of the iterations in the 
Shilnikov coordinates (sj, y~Ut, j), we obtain from (2.5), (2.6): 

e-v0~v+ 1~o = 0( 2 ..~ e -  ~ H 11 6o + H12 y~ (2.7a) 

e v,ss+~ y~Ut,j+ 1 = e-~J H 216 o + H22y~ ut'j (2.7b) 

We are interested in N-periodic solutions near F. With rj : - e  ~~ > 0 this 
reads 

fiorj+ ~ = 0(2 + 3ogHr) /~~  + Ha2 y~ (2.8a) 

r~l/VO out, j+ 1 = ~oH21 r)/~o + H22 y~Ut, j (2.8b) j+IYl  

with j (mod  N). Note that rj6o = y~o "'s measures the vertical distances of the 
periodic trajectory from the stable manifold. Recall that we are interested 
in solutions with small rj, y~Ut, j. In fact a solution with 

ro = 0 and rl ,..., ru--  1 > 0 

all distinct, is an N-homoclinic orbit. 
Mimicking Ljapunov-Schmidt reduction, we can solve equations 

(2.8b) for (y~Ut, j), j =  0,..., N -  1, since H 22 is nonzero by assumption (2.5). 
We obtain 

g2t  
y ~ut, j = _ 6  ~ - ~  r)/~o q_ 0 ( 6 0  ir I (vl + 1)/vo) (2.9) 

where r =  (ro,..., rN--1) and ]rL :=max  r s. Plugging this into the remaining 
equations (2.8a) we find the bifurcation equations 

rj+ 1 = e2 + aor) + ~1 + O([r[ (vl + 1)/v0) (2.10) 

Here we use the notation 

1/Vo = 1/(1 + 0(1) =" 1 + el 

ao := (det H i J ) / H  22 

e2 := 0(2/60 

As a variant, we mention the scaling fj := e-SJ. We then obtain analogously 

r s = % + , o , s +  1 +O(Lf] vl (2.10 ̂ ) 

where 1 + ~1 := 1 + 0(1 = Vo, C/o = ao  l, and g2 = -dto0(2/6o. 
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We are simply amazed at the fact that virtually the same form (2.10), 
(2.10 ~) of the iteration emerges from a careful Ljapunov-Schmidt 
reduction analysis of the fully nonlinear system; see (4.13), (4.13 ̂ ) in 
corollary 4.3 and remark 4.4. 

The nonzero coefficient ao in (2.10) has an interesting geometric inter- 
pretation. We claim 

ao > 0 if F is a nontwisted homoclinic orbit 
(2.11) 

a0 < 0 if F is twisted 

This follows directly from our definition 1.1 of a twist. See Figs. 2 and 4. 
Indeed, let el denote the unit vector along the positive y~-axis; e +, [~ point 
along the positive yo-axis and e - ,  -~1 along the positive xo-axis. Note that 
the orientations of the triples (e - ,  el, I i) and of (e +, el,/1) are equal: 

sgn(e- A el A p )=sgn(e  + A ej A ~1)= +1 (2.12) 

where A denotes the exterior product. Consequently d e t H ~ > 0 ,  by 
definition of Hu; cf. (2.5). Now note that the orientation of Tp, given by 
el A p, continues to that of Tq, given by (H12e+ +H22e1) A ~1. Therefore, 
(2.12) implies 

sgn(e + A (H12e+ +H22el) A ~1) = sgn H22.sgn(e+ A e I A /1) 

= sgn//22,  sgn(e- A e l A P) 
(2.13) 

= s g n a  o . sgn(e -  A e l A p )  

since ao = (det HU)/H 22 and det H ~ > 0 

Thus e and e+, respectively, are on the same side of Tp and Tq if ao > 0. 
Likewise, they are on opposite sides if c~ o < 0. This proves our claim (2.11). 

With this observation, let us now return to the bifurcation equations 
(2.10), (2.10^). Let us simple-mindedly neglect higher-order terms O, 
altogether. We are interested only in the bifurcation diagrams in parameter 
space, as given in theorems A, B and Figs. 3a and b. Therefore, we can 
assume laol > 1 in (2.10). Indeed, Jaoj = 1 is nongeneric, and Jao[ < 1 is 
equivalent to laol > 1 when switching to (2.10 ̂ ) and reversing the direction 
of iteration. It is now fairly straightforward to derive all results of theorems 
A, B in this simplified situation. All we have to analyse is an iteration of 
the monotone and convex/linear/concave map 

F ~ 8 2 Jr- a o  r l  +e~ 

In fact, Tables I and II then list all possible N-per and N-hom orbits. We 
leave this simple case to the reader. For a reference see Glendinning (1987). 
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The analysis for O-terms included fills Sections 5 and 6. In particular, we 
lose control over N-per orbits with N~> 2 in the nontwisted and N~> 3 in 
the twisted case, due to these error terms. In the twisted case, the number 
of 2-per orbits can only be estimated. Basically, the reason is that the 
O-term depends not only on rj but also on the rk with k r  Thus (2.10) 
cannot be interpreted as the iteration of a scalar function r j~ r j+ l  
anymore. For  a more detailed discussion and a remedy see Section 7. 

3. SHILNIKOV VARIABLES AND THE STRONG Z-LEMMA 

In this section, we briefly review some fundamental (but nontrivial) 
facts about the Shilnikov variables. These facts are basic to our Ljapunov- 
Schmidt reduction for resonant bifurcation of homoclinic orbits. In 
particular, we need careful estimates on derivatives so that we can keep 
track of higher-order terms during the reduction in Section 4. We also give 
a precise version of the strong A-lemma, which was used in our definition 
of twisted versus nontwisted homoclinic orbits (see Definition 1.1). For  a 
more detailed account, including proofs, we refer to Deng (198%). 

We fix the following normalized setting for the rest of this paper. We 
locally describe the original vector field 

~= F(c~, z) (1.1) 

in suitable coordinates z =  (x, y ) e  ~mx ~n. Specifically (x, y) are chosen 
such that, near z = 0, F takes the form 

2=A(~z)x+ f(c~, x, y) 
(3.1) 

33 = B(cQ y + g(ct, x, y) 

where f,  g, and their first derivatives D ( x , y ) f  , D(x,y  ) g with respect to x, y 
vanish identically at x = 0 ,  y = 0 ,  for any (small) I7l. Moreover, the 
linearizations A(~), B(c 0 are assumed to have block diagonal form 

-1, ) 
AI(~) 

(3.2) 

corresponding to the eigenspace decomposition 

X = (X0, Xl)~:  ~ X []~m-- 1 
(3.3) 

Y= (Yo, Yl)  ~ ~ X ~ n - 1  
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of x and y. We may further assume that the local (un)stable manifolds 
WI~o, Wl~oo are given by 

= (x =0} 
(3.4) 

s {y=O} 

In other words, we have 

f(c~, 0, y) = 0 
(3.4') 

g(~, x, 0) = 0 

independently of ~, x, y near zero. Note that f, g, A, B, vo are of class at 
least C ~+4 and the spectra (spec) of A~, Ba satisfy 

Re specA 1 < -//1 < -1  

Re spec B~ > "91 > Vo > 0 
(3.5) 

uniformly for small f~l according to our spectral assumption (1.6). Also 
note that we have normalized the principal stable eigenvalue -#o(C0 to 
become - 1 ,  by rescaling time. 

With this normalization in mind, we can now reconsider Fig. 4, which, 
in Section 2, served us as an illustration of the flow near the origin and 
near the homoclinic orbit F at ~ = 0. The Xx-components are omitted, for 
the sake of simplicity. Also, y~ now denotes an (n-1)-vector.  We pick 
60>0  small enough and choose the local sections Sin={x0=60},  
Sout = {y0=6o} in the 6o-box {Ix[ ~6o,  [Y[ ~<6o} where f'] denotes the 
max-norm. As before, (xin, yi,) and (x ~ yOUt), respectively, denote 
elements of Sin and So~t. As we have indicated in Section 2, the Shilnikov 
variables describing the trajectories for the ~o-box are x ~n, yout, and s >~ 0; 
see, e.g., Shilnikov (1968). As before, s~>0 denotes the time it takes to 
run inside a 61-box from a point (x i", -)~Sin to a point (., y~ 
whenever this time is defined. With the notation 

Si nx := {xin = (ao, x~n): IX~I ~ ao}, SoYut := (yOUt = (~5o ' y?ut): lyl~ ~ ao } 

we have the following. 

3.1. Proposition [Deng (1989a), Theorems 2.1, 8.1]. Let ~5 l > 0  be 
chosen small enough, in the above setting. Then there exists a 6 o > 0 and a 
unique cg+4-smooth map, 

(x, y): {0<t~<s} x Si~ x SY.t x ~oc ~ {(x,y)~ ~ + " :  !xl ~<~,, ]yl ~<61} 

(t; s, x in, yOUt; ~) ~ (x, y)(t; s, x in, yOUt; ~) (3.6) 
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such that (x, y), as a function of t, solves the differential equation (3.1) with 
the boundary conditions 

X = X in a t  t ~ 0 

y=yOUt at t-- s (3.7) 

Smoothness of (x, y) is unders tood in the sense that (x, y)  can be extended 
smoothly into a ne ighborhood of the specified time domain,  keeping 
the interpretat ion of (x, y) being a solution of (3.1). In Deng (1989a), a 
Ck-version was stated, but  the Ca-vers ion  follows analogously. 

Next, we are interested in the limit s ~ oo. In fact we can also solve the 
boundary  value problem (3.7) for s = 0% at least formally, by letting x, y 
follow the trajectory of x m in the stable manifold WlSc = {y = 0 } ,  respec- 
tively, of yOUt (backwards) in Wl~oc = {x = 0}. Since we are interested in the 
quantities x ~ yin, which complement  the Shilnikov variables s, x i", yOUt in 
our 60-box, we now consider 

xout(r, xin, yOUt; ~) := X(S; S, X in, yOUt; ~) 
(3.8) 

y i n ( r  ' xi~, yOUr; ~) := y(0; s, x in, yOUt; ~) 

where r := e -~~ Note  that  r t> 0 is Shilnikov time, rescaled so that r - - 0  
corresponds to s = oo. Similarly, let 2 ~ y "  denote the same right-hand 
sides, but  as a function of P := e - '  instead of r. Then x ~ y~n, 2out, )~in 
extend differentiably down to r = 0 as follows. 

3.2. Proposition [Deng (1989a), Sections 3,4,8].  Let 6 o > 0  be 
chosen small enough, in the above setting, and choose any constant co such 
that 

0 < co < min{vo(CO, #0(cO, vl - Vo(~), fil - -  ]20(~)  } 

where the principal eigenvalue -#o(CO was normalized to be -1 ,  above, and 
fi~, Vl bound the remaining (nonprincipal)eigenvalues as in (1.6). 

Then for any finite 0 <~ k <. M +  1 there exits a constant C, which is 
X y independent of s, xi. e Si~, yOUt E Sout, and small ~, such that (i)-(i i i)  below 

are  true .  

(i) The following expansion holds for yin as r "~ O: 

yin(r ' xin, yOUt; ~ ) = r(~(xi,~, yOUt; ~) + Ry) (3.9) 

where the remainder term Ry = Ry(r, x in, yOUr; ~z), of class C M+ 1 
for r>O,  is estimated by the Ck-norm H "l[~ in (x in, yOUt; ~z): 

HD~ Ry(r, -, .; ")][k a~< Cr~ (3.10) 
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(ii) 

for f l=0,  1,..., k. The leading term ~ = (~0, ~//1) o f  class C m+l 
has the properties: 

~b(x in, 0; ~) = 0 (3.11a) 

~/1(0, yOUr; 0~) = 0 ( 3 . 1 1 b )  

Dyoo~O(O, O; a) = O. (3.11c) 

O n •  

for x ~ in the same logical The corresponding statements 
context, read 

xO~tr, xi., yout; ~) = r l / V o ( a ) ( ( p ( x i n  ' yOUt; ~) + R x  ) (3.9) 

(iii) 

where R~ also satisfies the estimates (3.10). The leading term 

(]) = (~00, (~1) ~ C M+I 

satisfies 

~0(0, yO,t; ~) = 0 (3.11a) 

~l(X in, 0; ~) = 0 (3.11b) 

(i~ Dxin cp(0, 0; ~ )=  0. 00 (3.11c) 

" " " m •  

Replacing r = e vo(~)~ by f = e -w, that is, replacing x ~ yin by 
~o,lt, fin, all the above statements remain valid for an expansion 

.~.out(p, xin yOUt; ~) = /~((/0 -[- Rx-) 
(3.9) ~i.(e, xin, yout; ~) = p~0(~)(O + k~) 

Occasionally, we refer to (3.9) as Shilnikov's expansion since expansions of 
this type were first introduced by Shilnikov; see, e.g., Shilnikov (1968a, 
2.15). 

To illustrate the geometric significance of proposition 3.2, we mention 
that the local strong stable manifold W~o~c is given by those xine Sin for 
which 

qOo(X in, O; ~) = O (3.12) 
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See Deng (1989a), Corollary4.3. Note that (p=0 on Win'o's, because 
cpl(xi" ,0;c0=0 by property (3.11b). So the rapid decay of solutions in 
W ~, stated in (1.7) above, is reflected in the leading term cp of our 
exponential expansion (3.9) being zero. Actually, Wl'~r is of class C u+  5 and 
can be written as the graph of a C M+5 function over x~; see, e.g., Shub 
(1987), Brunovsk) and Fiedler (1986). Here we refer to the regularity 
CM+ 5 of the vector field, which holds before any normalization of W ~, W ~. 
Similar statements describe W~o~c, given by ~Po(0, yO~t; c~) = 0. 

What are those leading terms cp, ~, in the completely linear case f = 0, 
g = 0? We obviously get 

x( t; s,  x i n ;  0~) = eA(ee)t x in 

Hence 

~,(xi. ,  yOU,; ~) _- ( x L  0)  e R ~ 

projects onto the first (principal) xi"-coordinate. In other words, cp and 
select principal components--also in the nonlinear case. Because cp, 0 are 
the leading terms in the r-expansion (3.9) of x ~ y~", this is one more 
reason for calling the eigenvalues - # o ,  v0 and their eigendirections 
principal. 

We now discuss the strong 2-1emma, which enters into definition 1.1 of 
(non-) twisted homoclinic orbits via the convergence assumption (1.13). 
We can rewrite (1.13) as 

lim Tz.(t~ W s = To W s~ �9 span(e + ) 
t ~  --oo 

lim T~.(t) W" = span(e ) | To W "" 
(3.13) 

in the notation of Section 1. We give a version of the strong 2-1emma which 
shows why the second limit holds, generically. The case of W ~ is analogous, 
reversing time. Consider q = z * ( T ) ~  Sin; see Figs. 2 and 4. The component 
of Wuc~S~n which contains q is a cg+4-manifold  of dimension n - 1 .  
Perturbing W u slightly, if necessary, we may assume this manifold to be 
cg+4-parametr ized over Yl. Here we have further normalized our vector 
field F at c~ = 0 so that locally 

w,% = {yo = 0, x = 0}, 

w, 'L  = {Xo = 0, y = 0} 

and likewise 
(3.14) 
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We denote the local parametrization of W" ~ S~ near q by the map 

(~, r/): y,  ~ (r r/(y~)) ~ Si~ -~ ~ ' x  ~" 

rl(Yl) = Olo(Y~), Y~) 

(r r/(0)) = q = (r 0) 

Let /5~'-~, t~> T denote the image, after time t -  T, of im(~, tl) ~_ S~n under 
the flow of F, ~ = 0. Note that z*( t )~ F) 7 1 Let DT-~ denote the compo- 
nent of/3~'-~ in the box B~0 which contains z*(t). Finally, we recall the 
notation t) = (~Po, tp~) = tp(x i", yOUt) from proposition 3.2. Here, e = 0  is 
suppressed. 

3.3. Proposition [Strong k-Lemma (Deng 1989a, Theorem 5.1)]. In 
the above setting, assume that 

Dyotp(q) (! Tq W ~ (3.15) 

Then, as t--* q-or, D7 -1 converges to Wl~o~ in C k, for any f ixed O<k~< 
M + I .  

More precisely, there exists a g-box B~ around z = 0 such that for any 
3 > 0 there exists a t*>~ T with the following property. For any t >~ t* the set 
B e ~ D  ~ i is given by the image o f  a map yl-- ,(~t,  qt)(yl), defined for 
lYll <~ 6 with t/~1(yl)= Yl, and the Ck-norm II "Ilk satisfies 

From this proposition, the second limit in (3.13) follows whenever the 
nondegeneracy condition (3.15) holds. Indeed, 

Tz.(,) W u = span(~*(t)) @ T~,(,)D7- 

The first space on the right limits onto span(e-)  because z * ( T ) =  q ~ W "~, 
see (1.11). The second component, by (3.15) and the above proposition, 
limits onto 

{x=0, yo=0} = ToW 

Incorporating time reversal, both claims of (3.13) are therefore proven. 
The nondegeneracy condition (3.15) is a generic condition since we 

can always enforce (3.15) by a slight perturbation of the vector field F at 
c~=0. Indeed, assume that rio is chosen small enough and leave F 
unchanged inside the 6o-box; this fixes Dy0O(q ) close to e +. But modifying 
F slightly along the homoclinic orbit F between p e Sou t and q ~ S~, we can 
adjust TqW" so that it does not contain Dy01//(q ). Therefore, (3.15) is 
satisfied generically. 

865/2/2-6 
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4. L J A P U N O V - S C H M I D T  R E D U C T I O N  

In this section, we derive a reduced normal form equation for 
N-periodic and N-homoclinic orbits of the vector field 2 = F(e, z) near the 
homoclinic orbit F at ct = (~1, e2) = 0. We describe the flow near the origin 
z = 0  in Shilnikov's variables x~ 'j, :'l"~ rj =e-~~ using the setting 
and the normalizations of Section 3. As before, j refers to iterations of the 
Poincar6 return map 

where 

HtOt = Hfar o//loc 

HI~ Sin, loc ---+ Sou t 

(xin, j, yin, j)b_ + (xOUt, j, your, j) 

F/far: Sout, lo c ~ Sin 

(xOUt, j yOUt,j)b--')" (X in' j+ 1 yin, j+ 1) 

denote the respective flow-defined maps on suitable domains. For  an 
N-periodic orbit, we have to solve the system 

in out. in,  r Y l 
= y ,  , : =  | y 0  t ' j +  

\ Y l  ~ in'r~ j+ l~  xiln, j+ 1 .rll'~ 1., ~X) 

_ H ( x O U t ( r j ,  xiln, J ' y,OUt, j, . . . .  C~), Yl W-, ~) = 0 e Si~ for all j (mod)N)  (4.1) 

Here r, xl~, out Y l , denote the vectors with j t h  "component" r j > 0 ,  
xi~ "j@~m-1, Yl."~ I. (If rj = 0  for some j, then we have found a 
homoclinic orbit). The map H denotes H fa~ with the trivial xo-component 

in out H ~  ~ = ~0 omitted. Similarly, x l ,  Y~ can be thought of as being augmented 
by their trivial components 

in = 30 , y~Ut bO X 0 

whenever this is appropriate. We further normalize coordinates so that 

xi~ = 0 resp. oot _ Yl - O f o r  
our original homoclinic orbit F 
a t ~ = O  

�9 out In other words, (r, x'7, Yl , c~)=0 is a trivial solution of W = 0 ,  where 
has components g/j, of course. We recall that, due to all the above 
normalizations, both our vector field F and the map ~F are of class C M+4 
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In lemma 4.1 below, we solve the system 

i~ om.c~)=0 ( i d - P  ~ ~g(r, x l ,  Yl , (4.2) 

for x~(r, ~), y?Ut(r, c~), locally near the trivial solution, by the implicit func- 
tion theorem, choosing a suitable projection po of rank N. We carefully 
estimate the dependence on r, since differentiability with respect to r] 
breaks down when rj = 0. We then modify p0 slightly to become P~, a rank 
N projection near po which depends on e. In lemma4.2, we prove a 
transcendental expansion for the reduced bifurcation equation 

O(r, c~) = P"~( r ,  in x t (r, c~), y~Ut(r, ~); c~) = 0 (4.3) 

see (4.8). Transforming parameters ~ to e=e(~)  suitably, this expansion 
takes a normal form (4.13) which is (surprisingly) similar to the expansion 
(2.10) which we have obtained for the linear case. This normal form is the 
main goal of the present section. We finish the section by relating the sign 
of a coefficient in the normal form (4.13) to our geometric definition of 
twisted and non-twisted homoclinic orbits. 

Preparing for proofs, we observe that our normalizations imply 

x~ r, XI~, yl~ ~) = 0 

at r = 0  (4.4) 
/"(r, x~2, o u t .  y~ , c 0 = 0  

for all pertinent in ,out Xl, .}1 , ~" Indeed, this follows directly from the definition 
- { x = 0 } ,  + = { y = 0 } .  Less of the Shilnikov variables since Wlo o - Wto ~ 

directly, we could also invoke proposition 3.2. 
For later use, we repeat that the map �9 is C M+4 with respect 

i n  o u t  to x l , y  I ,~ in its domain of definition. As long as r > 0  holds 
componentwise, �9 is also C g+3 jointly in r. When some r-components 
tend to zero, we remember from proposition 3.2 that the derivatives of 

i n  o u t  with respect to x l ,  y l , c~ behave continuously, up to any finite order 
k < ~ M +  1. The first derivative of �9 with respect to xl~, y~Ut is given by 

Yl ) - - D ~ I I D x l X  ~1 ~ r J j . ( X l  ' ~ O U t  - -  D(x~n,y?.t) ~ i n  o u t  . . ~ i n , j  

_ ( D x H D p  1 xout. r ~_ Dy, H .  r 

2 i l n ,  J + 1  q-(Dxlyin.~i~,j+iq-Oys ut,j+l) 
- -  - -  f )  1 7 1 " ) ~  j -1- X I 1  + 1 
- ~ y l " ' : ~  - (at r = O )  (4.5) 
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Indeed, the derivatives of the functions x ~ and y~n vanish identically at 
r =0,  by (4.4) above. 

We can now define the projection pO for the Ljapunov-Schmidt 
reduction; cf. (4.2) above. To define the j t h  component pO of p0, we first 
claim that 

D (xi~,y~t)~j 

has maximal rank (corank = 1 in Si~) at 

(r, Xll n, yluut, ~) = 0 

that is, at the homoclinic orbit F. Provided this claim holds true, we can 
then define 

pO: the orthogonal projection onto the one-dimensional 
orthogonal complement in Sin of the image 
im D (x,~,y~Ut)~]l j at (r, xl~, Yl~ e) = 0 (4.6) 

Note that po denotes the same projection for all j, by definition and by our 
expression (4.5)for D(xiln, y~Ut)lIJ j. Moreover, rank P j~ 1 and rank P ~  
We now show that our claim actually holds, that is, D(xiLy~O~)~g j does 
possess maximal rank. By (4.5), it is sufficient to show that 

Dy I Hy I is an isomorphism 

when Hy~ denotes the y~-component of /7. To identify DylHy t as an 
isomorphism, we first observe that 

im D y~ H = Tq W ~ ~ Si~ 

This follows because we have normalized WI~o c~ S ~ to be given by x = 0, 
Yo = 30- Second, motivated by the strong 2-1emma, we have assumed in 
(3.13) that 

lim Tz,(, ) W u= span(e- ) �9 To W uu 

Since we have normalized Wl~ ~ in (3.14) to be given by 

ml uu = {x = O, Yo = O} 

and since q = z * ( T )  for some large enough T, this implies that we have an 
isomorphism 

im DylH= TqWU('sgin.--+ ToWUU~___ { x = O ,  y o = O }  

defined by putting x = O, Yo = 0 (that is, orthogonal projection). Therefore, 
im Dy~Hy I is indeed an isomorphism, and our definition of po is justified. 
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4.1. Lemma.  In the above setting, the system 

~. o~,. ~) = o (4.2)  ( i d - P ~  ~ ( r ,  x l ,  y~ , 

in out for  any given r >>-O, ~, near r = O, ~ = O. The has unique solutions x ~ , y ~ , 
functions 

Xil n = in X 1 ( r ,  0~) 

y ~ . t =  y~Ut(r ' ~) 

are C M+4 in (r, ~) f o r  r > 0 .  They are continuous in r and C ~ in ~ for  r~>0 
and any f inite k <<. M + 1. 

Putting r = 0, denote 

Then the components 

and 

xT(~) := x?(0, ~) 
y~Ut(~) := y~"~(0, ~) 

xi;(~) := xr'J(~) 

yTUt(~) := yTUt,j(~) 

are the same for  all j. Moreover, the following estimates hold for  any small 
y > 0 and [rl ~< r~ I~1 ~< ~o(~): 

[xi•(r, ~) - xi?(~)l ~< C [rl I ~ 
(4.7) 

out tYl ( r ,~)-Y~"t(~) t~<CJrl  1 ~ 

Here C = C(y) denotes a large positive constant and Ir[ is the max-norm. I f  
we replace the differences o f  xi~, y~Ut in (4.7) by their derivatives Di D~ r o f  
total order up to k, then the same estimate holds, except that Jr[ 1-r gets 
replaced by ]r[ ~'-~ Ipl where [flJ = flo + "'" + f iN-  1 for  the multi-index ft. 

Proof. Existence, uniqueness, and regularity of 

x~n(r, ~), y~"t(r, 7) 

follow from the implicit function theorem (Berger, 1977, p. 115) with the 
remarks preceding the lemma. Here we think of W as being extended to all 
r in a neighborhood of 0, allowing for components  rj to become negative. 
In fact, we can just extend the maps 

(xO% ym)= (xO% ym)(r, x~n, yO.~; ~) 
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to negative values of r E R by their leading terms: 

(x~ yi~):=(-lrll/~~ y~ y~ for r < 0  

This way, (x~ y i") remain C M+~ in (xi",y~ and all derivatives 
depend continuously on r. Thus Berger (1977, p. 115) applies. For 
v0(c~) < 1, the derivatives up to order M in (x ~n, your; ~) depend C 1 on r. 

For r = 0 we have yi~= 0 and x~ 0. Hence (4.2) reads 

Since (4.2j) defines the same equation, for each j, the components 

xi~,j(o~ ), y~,~t,j(~) 

are indeed independent of j. 
It remains to prove the estimates (4.7). We first estimate, for small 

r > O, the partial derivative 

]Dr ~r'tjl ~< IDrj+~ yi"l + C[D~x~ 

C(1 + Irjl ~) ~< C Irl ' 

according to proposition 3.2. Here and below, C denotes possibly different 
constants. From the implicit function theorem and the above estimate for 
D , ~  we can now conclude 

1 

Ix~(r, ~ ) -  x~n(~)l <~ ~ IDrx~(zr, ~)r[ dz 
Jo 

<~Cfv ~&-Irl~-'~Clrl ~-~ 

The estimate for y~Ut is analogous. The estimates (4.7) for (higher) 
derivatives of xl~, y~Ut follow from the higher derivative estimates (3.10) on 
the functions x ~ and yi,. This completes the proof. II 

We can now define the projection P~ which enters into our reduced 
bifurcation equation 

q)(r, ~) = P~*F(r, x~n(r, ~), y~Ut(r, c~);c~) = 0 (4.3) 

We define the j t h  component P~ analogously to the projection pO which 
was defined in (4.6) above. We let Py denote the orthogonal projection 
onto the one-dimensional orthogonal complement in Six of the image 

im D(xir at r = 0, xil n = Xiln(~), y,~Ut = y~Ut(~) 
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Let p(~)e  S~n be a unit vector which spans this complement. Note that 
p(~) can be chosen to be C M in ~. Like pC, the projection P~ does not 
depend on j. Describing P~ by the unit vector p(~)eS~n, our reduced 
bifurcation equation becomes the N-dimensional system 

qbj(r, ~) = p(~)T ~/Jj(r, xi~(r, ~), y~Ut(r, ~); ~) ---- 0, j (mod  N) (4.3j) 

Note that all xx-components px~(~) of p(7) are zero, by construction and 
by the form (4.5) of D~x],y~%Wj at r = 0. Moreover, 

p(~ )TOy~H(O ' y~Ut(~); ~) _- 0 

by (4.5) and the definition of p(~). Picking 60 small enough, we can there- 
fore assume the components py(~) to be close to e +, that is, the unit vector 
in the yo-direction. Indeed, this is true for ~ = 0  by our discussion of 
im Dy 1H preceding lemma 4.1. Hence, it is true for all small I c~l. 

We can now state the long-desired transcendental expansion for the 
reduced bifurcation function q~j with respect to r. 

4.2 Lemma. The reduced bifurcation function q~j given in (4.3j) above 
has the expansion 

r ~) = --Co(~X ) + cl(o~)rj+ 1 -- c2(~x)r)/Vo(~)+ O(Irl 1 +~ 

with 

j (mod  N) 
(4.8) 

c0(a) := p(~)T/z(0, yU(~); ~) 

CI(~X) := py(O~)T~l(xin(o~), yOUt(~); ~) (4 .9)  

c2(~) := p(~)VDxou~H(O, y~'Ut(~z); ~). ~o(xin(~), y~ ~) 

all of class C g. Here 

xin(~x) = (60, xiln(~x)), yOUt(o~) = (60, y~Ut(~)) 

as usual. The functions (p and O were introduced in proposition 3.2. The 
expansion (4.8) is understood in the following sense. There exists a small 
~o > 0 such that the remainder term 0 is estimated, up to a constant factor, 
by jrl 1 + % This estimate holds uniformly for [~[ < c%(co) including derivatives 
in ~ of order up to any finite k <<, M. 

For r > 0 ,  all terms in the expansion (4.8) are C g. The higher 
derivatives i D~D r q~j, up to total order k, satisfy the analogously differen- 
tiated expansion with the error term replaced by 

O(irl 1 +o~-I~J) 

where I/~1 = t i c+  "'" +fiN-a. 
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Proof. To prove the expansion (4.8), we write (omitting arguments) 

~j=_ pTtt* j T in =Pv Y - P  rFI 

and expand the yr'-term and the F-term, separately, with respect to r. We 
consider yin first, using Shilnikov's expansion (proposition 3.2) and the 
estimate (4.7) from lemma 4.1. 

yin (r j+ 1, xin'j  + I  1( r, 0~), yl~ l(r  ' 0~); 0~) 

= r/+ 1( ~l(xin'j+ 1( r' 0~), yOOt,j+ l(r ' 0~); 0{) 21- Ry) 

= i//(xin(0r yOUt(~); o:)rj+, q- O(Irl  (' +o,)) (4.10) 

This yields the term cl(o:)rj+ , in our expansion. 
Next we expand pTH at r = 0: 

pTIl=p(~z)rH(x~ xi~'J(r, r162 y~Ut'J(r, ~); ~), y~"t'J(r, e); e) 

= p(~)TH(x~ y~Ut(0~); ~r 

+ p(cOrD(xo,,,y~%ii(xOUt(O,...), y~Ut(~); ~) 

out in, j out. j x . ( x  (rj, x 1 ( r ,~ ) ,y  1 (r ,~);~) 

J out,j out \ y~ ( r , ~ ) - y l  (cr 

+ O ( I r l  1+~~ (4.11) 

Indeed, x~ = 0 and the terms following DI1 will now be estimated to 
be small of order O(Irl ' -7),  where ~ > 0  was chosen small in lemma 4.1. 
Then their squared norms contribute less than O(Ir['+~ proving (4.11). 
Concerning y~176 ) we have an O(Irll-7)-estimate from 
lemma 4.1. The term x~176 can be estimated similarly as y~n(rj+,,...) 
has been estimated in (4.10) above, that is, 

x~ xiln'J(r, ~'), y~Ut'J(r, 0~); ~) 

=q~(xin(oc),y~176 1+~~ (4.12) 

since Vo(0)= 1. With (4.12) at hand, we can now resume our estimate 
(4.11), using that p(oOrDylH(O, out . Yl ( ~ ) , ~ ) = 0  by the properties of the 
projection p(or r. We get 

prH = Co(a ) + p(~)rDxoutH(0, y~(c~); ~) 

~/~o(.~ + O(irl, +o,) �9 (p(xin(0~), y~ ~)rj 

= CO(O~) q- r176 q- O(Irl '+~ 

This proves the transcendental expansion (4.8)�9 
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The claims concerning differentiability of the expansion follow from 
the corresponding differentiability statements in lemma4.1  and propo-  
sition 3.2. The proof  is therefore complete. | 

4.3. Corollary. For generic (normalized) vector fields F= F(~, z) of  
class C M+4, there exists a diffeomorphic local change of parameters 
e = e(~)~ R 2 of class C M, such that the bifurcation equation (4.8) takes the 
equivalent normal form 

rj+~=e2+a(e)r)+<+O(lrl~+o), j ( m o d  N)  (4.13) 

with la(0)[-#0, 1. The error term has the same meaning as in lemma 4.2. 
Specifically, the genericity assumptions and the parameter transforma- 

tion are given as follows. We define 

1 
(a) el :=  - 1 

Vo(~) 

Co(S) 
(b) e2 :=  (4.14) 

c,(~) 

e2(~) 
(c) a(e) :=  

Cl(~) 

under the generic assumptions 

(a) D~co(O) and D~vo(O) are linearly independent 

(b) q ( 0 ) > 0  

c~(~) 
(c) c1(~) :~ 0, 1 

(4.15) 

We note explicitly that ~ = 0 at ~ = 0, since %(0) = 1 and Co(0 ) = 0. 

Proof. We first prove that Vo = 1, Co = 0 at e = 0. Then we indicate 
why the nondegeneracy assumptions (4.15a-c) are generic. The proof  of 
our  claims about  the coordinate  t ransformat ion e = e(~) is then an obvious 
consequence of the s tandard  inverse function theorem, applied to equations 
(4.14a, b) in e and e. 

Actually, Vo = 1 at ~ = 0 since Vo = #o, by our  resonance assumption 
(1.9), and since we have normalized go to be one. Moreover ,  F is a 
1-homoclinic orbit  at e = 0. Therefore, r = 0 is a solution of  the reduced 
bifurcation equat ion (4.8) at ~ = 0 .  (We still remember that infinite 
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Shilnikov time sj corresponds both to a homoclinic orbit and to r j=  0.) 
Hence Co = 0 at ct = 0. 

We now address genericity of our assumptions (4.15a-c): we claim 
that (4.15a-c) hold, possibly after a slight perturbation of the original 
vector field F which does not affect any of the remaining assumptions. Let 
us compute D~co(O) first, for c0(c0 as defined in (4.9). We obtain 

D~co(O) = p(O)TD~H(O, 0; ct)l~ =o (4.16) 

since y~(0) = 0, H(0, 0; 0) = 0 and since, by definition of p(0), also 

p(O)rDy~II=O at (x ~ y~Ut; ~z)= (O, O; O) 

On the other hand, Vo(Ct) is the principal unstable eigenvalue of the 
linearization D~F(z, ct) at the equilibrium z = 0. Adjusting both D~DzF and 
D~H slightly, at these points, linear independence of D~co(O) and D:vo(O) 
can easily be achieved. 

Next we prove Cl = pV~p > 0 Indeed, we have already picked 6 o small y 

enough so that p(~) is close to e +, the unit vector in the positive yo-direc- 
tion. See the properties of p(a) listed just before lemma 4.2. Therefore, c1(0) 
is close to 60(0, (60, 0); 0), which is close to 50>0, by property (3.11c) of 
6. This proves Cl > 0. 

Similarly, we can assume c2=prDxootH.q)#O since q)(xin(~), 
y~ ~) points roughly in the xo-direction and since Dxoo~H(O, y~Ut(g); ~) 
can be adjusted accordingly. Adjusting D~o,, H once more, we can finally 
guarantee 

Ic2(O)/c1(O)/ # 1 

completing the proof. | 

4.4. Remark. We note that we may assume ]a(0)l > 1, without loss of 
generality, for our discussion of the normal form (4.13) in Section 5. 
Indeed, use the alternative scaling Pj := e-SJ instead of rj := e-v0(~)sj. Then 
expansion (4.8) reads 

Oj(i, ct)=-Co(a)+el(a)f):~176 j (mod N) (4.8*) 

where the c,(a) are defined by (4.9), as before. This yields the normal form 

?j=g2+fi(g)r~.[(~+O(If:ll+~), j (mod N) (4.13 ̂  ) 
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where g, ~/now relate to c~, Vo(a) by 

(a) ~1 := Vo(:0 - 1 

Co(a) 
(b)  ~2 .-- 

c d ~ )  

e~(~) 1 
(c) ~(e)  . -  - -  

C2(~ ) a(G) 

(4.14 ~) 

This proves our remark about a(0). 
As a direct consequence of the normal form (4.13) for resonant 

homoclinic bifurcation we obtain corollary 4.5. 

4.5. Corollary. Along the line ~2 = O, there exists a 1-homoclinic orbit 
( N =  1) given by ro = 0 (primary homoclinic branch). As el passes through 
zero along this branch, the principal eigenvalues - # o  = -1  and Vo = 
(1 + ~1 ) ~ cross their resonance transversely. In the transformed parameter ~, 
this reads 

- ~ o ( ~ )  + Vo(~) = o 
(4.17) 

D~(--#o(e) + v0(~)) r 0, at ~ = 0  

4.6. Lemma. The twist o f  the homoclinic orbit F determines the sign of  
a o = a(O), namely, 

ao > 0 i f  F & nontwisted 

a o < 0 i f  F is twisted 

Proof. Since a = c2/cl and since cl > 0  by corollary 4.3 (4.15b), we 
only have to prove that c2 is negative if F is twisted and positive if F is 
nontwisted. 

To relate c2 = prDxoo, H.~o to the twist we observe the following, near 
e = 0 .  First; p(c0 is close to e + and spans the orthogonal complement to 
the space Tq = Tq WS+ Tq W u. This follows from the properties of p(cr 
which are listed just above lemma 4.2, since Tq is spanned by the x-space 
and imDy~H. Second, q0 points in the positive xo-direction, again 
by proposition3.2. In other words, G0,0) is close to 6oe-.  Third, 
e complements the space Tp = Tp WS+ Tp W u, by the strong 2-1emma. 
Consequently, Dxo,tH.~o complements Tq, too. 

The proof can now be completed as follows. The complement e -  
induces an orientation rp on Tp, say, such that ep A e -  is positive. Here ep 
denotes an alternating linear (m + n - 1 ) - f o r m :  the volume form on Tp. 
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Following the linearized flow along F, ep continues to an orientation eq on 
Tq such that eq A D H e -  is also positive. Since (~0, 0) is close to e_,  this 
implies positivity of eq A DxoutH~o. In other words, e and Dxo,tH~o point 
to the same side of Tp and Tq, respectively. Since p(c~) is orthogonal to Tq, 
we know, on the other hand, that 

c2(e) = p(a ) r .  Dxou, H~o 

is positive resp. negative if p(e) and Dxoo, Hq) point to the same resp. to 
opposite sides of Tq. Since p(cr is close to e § we can combine all this as 
follows: 

sign(eq A e + ) =  sign(eq A p(CQ) 

= sign C2(~Z ) "sign(eq A Dxoo, Hq)) 

= sign c2(cQ, sign(ep A e ) 

By definition 1.1, F is nontwisted if sign(eq A e+)=s ign (ep  A e ) and 
twisted otherwise. Since sign c2 = sign a, this completes the proof. 1 

5. THE SIDE-SWITCHING B I F U R C A T I O N  

In this section, we complete the proof of theorem A on resonant side- 
switching. We recall from corollary 4.3 that all 1-homoclinic (1-horn) and 
1-periodic (1-per) solutions correspond, locally near ~ = 0  and near the 
homoclinic orbit F, to solutions r, ~ of the reduced bifurcation equation 

r = ~2 + a(e) rl + ~ + O(rl+~~ (5.1) 

Here e=e(c~)=(e l ,  e2) are the new normalized parameters, and 
r = e v(~)s ~> 0 describes the exponentially rescaled Shilnikov time 
associated to the 1-horn resp. the 1-per orbits. Note that we have written 
r instead of rj, since we are only. interested in 1-per and 1-hom orbits, in 
this section. 

To prove theorem A, we first observe that r, el parametrize the (local) 
solution set of (5.1). Indeed, a straightforward application of the implicit 
function theorem enables us to solve (5.1) for e2 by a C~ 

e2 = ~2( t', ~1), r>~0 (5.2) 

near e = 0, r = 0. For  r > 0, the function e2 is C M. 
We now consider the surface (5.2) in some more detail. We recall from 

lemma 4.6 that a(e) is positive, since F is assumed to be nontwisted. By 
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remark 4.4 above, we can further assume a > 1, by a rescaling argument. 
This implies that 

e2=e2(r  , ~1)~0  for r~>0, gl~<0 

as long as r ~< Po is small enough. Indeed, 

e2 = r(1 - a(e)r ~ + O(r~ ) <<. 0 (5.3) 

for E 1 ~ 0 ~  r ~ p o  and suitably small Po, since a (0 )>  1. This proves our 
claims in the left part (el 4 0 )  of region IV; see Table I and Fig. 3a of a 
resonant side switching for these claims. 

Our strategy for completing the proof of theorem A, now, is the 
following. In lemma 5.2. below we prove that: 

~2 = e2(r, el ) = 0 (5.4) 

has a unique nontrivial small solution r = r ( e l ) > 0  , for small el>O. Of 
course, there is also the trivial solution r = 0 which describes the 1-hom 
branch; cf. corollary4.5. In lemma 5.3 we show that, for fixed el, the 
CM-function 

r~--~e2=e2(r, el), r > 0  (5.5) 

has zero derivative only along a CM-curve 

where the derivative changes sign, We also show that ~c is exponentially fiat 
as required in (1.16). By strict monotonicity of e2(., ~;1) off the curve ~, 
lemma 5.2 and 5.3 then imply all claims concerning multiplicities in the 
various regions of Table I and Fig. 3a. Indeed, Fig. 3a is just the projection 
of the surface ~2 = e2(r, el) into (el, e2)-space with fold line ~. 

We need the following basic lemma about solutions of a transcenden- 
tal equation. 

5.1. Lemma.  Let  b = b ( e )  be a Cl-function such that b ( 0 ) > l .  
Consider the 

1 =b(z)r~l+O(r~~ el>0 (5.6) 

with co>0. As before, the error term O(r ~~ is understood to allow 
differentiation. Then, f o r  el <~ 0, equation (5.6) cannot have solutions with 
small r >~ O. For ~1 > O, equation (5.6) can be solved fo r  p := r ~ as a C1-func - 
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tion o f  e, locally near e = (el, e2)=0, p(0)= l/b(0), by the implicit function 
theorem. I f  moreover e2 = O(el) for  el "~ O, then the following limit exists 

lim r(e)-b(O) ~/~ = e x p ( -  D~,b(O)/b(O)) (5.7) 
elNO 

Proof. Solving (5.6) for p := r ~ is s tandard if we extend (5.6) to e~ ~< 0 
formally by defining 

O(r~176 for el,.<0 

We obtain 

P ( e ) = b ( ~ ( 1  D~b(O)e+~ 

for small ]e I. If we also assume % = o(el), then we have 

D~,b(O) ~ 1/~1 
r ( ~ ) : p ( e ) l / ~ l = b ( O )  -1/~1 1 b(O~ el q- O(el )) 

which proves our  convergence claim. | 

We now return to our  reduced bifurcation equation. 

r = e2 + a(e)r 1 + ~1 + O(r 1 + o~) (5.1) 

5.2. Lemma.  Along the line e2=0 ,  equation (5.1) has the following 
solution set (locally near e = O, r = 0): 

(i) the trivial solution r = O, for  all 81 

(ii) a nontriviaI positive solution r = ro(el), for  el > O, 
with limiting behavior 

lim ro(e~), a(O) 1/~ = exp( - D ~  a(O)/a(O)) (5.8) 
21 "~ 0 

Proof. For  ez =0 ,  we divide (5.1) by r; 

1 = a(e)r ~' + O(r ~ 

Then all claims follow from lemma 5.1 with b := a. | 

It remains to consider fold points of the surface of 1-per solutions 

r ~ e2 = ez(r, el) (5.5) 

projected onto e-space. In other  words, we look for (r, el) such that  

Drez(r, el) = 0 
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5.3. Lemma. Locally near ~ = 0 ,  r - - 0 ,  the fold points (r, gl) of the 
1-per surface are given in the form r = r , ( e l ) ,  ~i > 0 .  The function r ,  is of  
class C M and has the limiting behavior 

lim r , ( e l )  a(O) 1/~ = exp( - 1 - D~la(O)/a(O)) (5.9) 
~1 NO 

At r = r,(el),  the derivative r ~-~ Drg2(r, gl) changes sign. 
The projected fold curve 

~1 ~ ~2 = K(<)  := < ( r , ( < ) ,  ~1) 

is also C M, for el > 0, and has the limiting behavior 

1 
lira tc(e 1)- ~ a(0) 1#~ = exp( - 1 - D~ a(O)/a(O)) (5.10) 

Proof.  Solving (5.1) for ~2, by the implicit function theorem, we have 
obta ined 

r = e2(r , gl) + a(gl,  e2(r, g l ) ) r  I +~t+ O(r 1 +~) (5.11a) 

Recall that  e2=ez( r ,  e~) is C M as long as r > 0 .  Hence the fold condition, 
Dre 2 = 0, holds if and only if, in addition, 

l=(l+ex)a(~l,g2)r~;~+O(rO),  r > 0  (5.11b) 

with e2 = ~2(r ,  e l ) .  Indeed, 

l = D r ~ 2 + ( l + e ~ ) a r ~ + D ~ 2 a . D r e 2 . r l + ~ + O ( r  ~) (5.11b') 

and the term D~2a. Dre2" r ~ +~' can be absorbed  in the error  term O(r~), 
for fixed 0 < c o <  1. No te  that  the r ight-hand side of (5.11b) is strictly 
increasing with r. Hence (5.11b) can have, at most ,  one solution r =  r,(el),  
and r~-+ Dr~z(r , el) changes sign at r = r , (~l) .  

More  specifically, we can apply  l emma 5.1 and solve (5.11b) for p = r% 
e~ > 0, as a function of e~ and 82 near  ~ = 0. Note  that  

r , ( e l )  ~ =  P(~I, e2(r,(el), el)) (5.12) 

and, by s tandard  differentiation of (5.11b) with respect to e at ~ = 0, 

(0, O) = (ap, O) + pD~a + aD~p 
(5.13) 

= (1, 0) + pD~a + aD~p 

since ap = 1 at e = 0 .  In part icular ,  r , ( e l )  depends differentiably on el > 0 ,  
by (5.12), since D~g2(r,(el) ,  e l ) = 0 .  In fact, r , (e~) is still C M for e 1 > 0 .  
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It  remains to prove the exponential  asymptot ics  (5.9), (5.10) for r , ( e l )  
and ~C(el)=e2(r,(el) ,  el). Of  course, we would like to utilize l emma5 .1  
again. As a first step, we claim 

K ( g l ) = - - g Z ( r , ( g l ) , g l ) = O ( / 3 1 )  , for el N 0 (5.14) 

Indeed, ~: extends cont inuously down to ~c(0) :=0 just as r , ( e l ) e  
[0, ro(el)]  does. Moreover ,  ~c is of class C M for el > 0  with derivative 

l + ~I(D~ a + D,2a "D~le2 + a log r , )  + O(r 1+ ~o) K ' t ( ~ l )  ~- D e l , ~  2 = - r ,  

Here  we have used Dre2(r*(el), e l )=0,  and we have differentiated (5.11a) 
to compute  D~le2. Obviously,  

lira ~:'(el) = 0 
g l ' ~ 0  

since r , ( e ! ) ~  0 as e I ~ 0. Therefore,  ~ is differentiable down to el = 0 ,  
~c'(0) = 0. This proves claim (5.14). 

Now,  l emma 5.1 with b := (1 + e ~ ) a  applies to the solution r = r ,  of 
(5.11b). This implies 

lira r , ( e l )  a(O) 1/~1 = e x p ( -  1 - D~la(O)/a(O)) 
~1"~0 

as was claimed in (5.9), since ez=O(e l )  by (5.14). To  prove (5.10) we 
compute  f rom (5.11a) 

1 
lira ~c(el) .--  a(O) 1/~I 

el ~ ,0  e 1 

= lim e z ( r , ( e l )  , 8 1 )  a ( O ) l / e l / e l  
~ 1 ~ o  

= l i m  r,(~l) 
elX, O 

= l i m  r,(~l) 
el %,0 

= l i ra  r,(~l) 
e l ~ O  

e 1 co a(0)1/~1(1 -a (e )  r,(el) + O(r,))/el 

a ( 0 ) 1 / ~ 1 ( 1  - -  a(e) p(e) + O(r , )  )/el 

a(O)I/~l((-p(O) D~a(O) - a(O) D~p(O)). e + o(~))/E 1 

= lira r , ( e l )  a(O)l/~l(el + o(e))/el 
gl N 0 

= lim r , ( e l )  
e l N O  

a(O) 1/~' = exp( - 1 - O~l a(O)/a(O)) 

Here we have used (5.12), (5.13) to introduce p and to compute  D~p(O). 
The second last equality holds because e2=  o(el), by claim (5.14) above.  
Thus ~c(el) is exponential ly flat at el = 0, and the proofs of l emma 5.3 and 
of theorem A are complete.  I 
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6. T H E  H O M O C L I N I C  D O U B L I N G  B I F U R C A T I O N  

In this section, we complete  the p roof  of theorem B on homocl inic  
doubling. We recall f rom corol lary 4.3 that  all N - h o m  (homoclinic)  and 
N-per  (periodic) solutions with N =  1, 2 correspond,  locally near  c~ = 0 and 
near  the 1-horn F, to solutions (r o, r l ,  g) of  the reduced bifurcation 
equat ion 

O= -r l  + g2 +a(e)r~ +~1 +ho(r, ~) 
(6.1) 

0 = --r0 + e2 + a(e)ril +~1 + hi(r,  8) 

Here  r = (ro, r i )  are the exponential ly rescaled Shilnikov times associated 
to the 1-per (r o = r I > 0), the 1-horn (r o = r I = 0), the 2-per (0 < r 0 # r 1 > 0), 
or the 2-horn (ro = 0 < rl or rl = 0 < %) orbits. As usual, e = e(~) = (e~, ~2) 
are the new normal ized parameters .  Since F is assumed to be twisted, we 
can assume a ( 0 ) <  - 1 ;  see r emark  4.4 and l emma 4.6. The error  terms 

hj(r,e)=O([rl ~+~ 

have the following symmet ry  at solutions (r, c) of (6.1): 

ho(r0, r l ,  e) = hi(r1, r o, e) (6.2) 

Indeed, r = (ro, r~) is a solution whenever ~ = ( q ,  ro) is a solution, because 
(6.1) was derived f rom a Poincar&type  section of a flow. 

Our  strategy of p roof  for theorem B is the following. In l emma  6.1 
we show that  the 1-per solutions r o = r l > 0  form a (local) sheet 
e2=e2(r,e~)>O, paramet r ized  over  r~>0 and e~. By monotonic i ty  
arguments ,  this sheet projects one- to-one onto  the (local) half-space 
{(el, e2)fe2 > 0}. The 1-per sheet extends down to the 1-hom branch r = 0, 
82 = 0, which was found in corol lary 4.5. In l emma 6.2, we find a unique 
CM-curve ~2:Kper(~l)>0, ~1>0, where an ordinary  period doubl ing 
bifurcat ion occurs the 1-per sheet. The curve ~:p~r is shown to have the 
correct exponential  asympto t ic  behavior  for e~ "~ 0. L e m m a  6.3, on the 
other  hand, detects a unique C~4-curve e2 = ~Chom(e~) > 0, e~ > 0, where 
2-horn orbits occur. We also show the universal  scaling p roper ty  

/s e 
lira (6.3) 

el ~, 0 /s 2 

In l emma  6.4, we show that  there exist CM-curves 0 <  K(e~)< ~(e~), e~ > 0, 
such that  2-per solutions do not  occur except possibly for pairs (e~, e2) 
with g (e~)<e2<ff (g~) .  Our  est imating curves _K, ff have the same 

1 asymptot ics  as the curves ~Kper ,  2 K h o m ,  but we cannot  force them to 

865/2/2-7 
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coincide with these latter curves. Finally, we show in lemma 6.5 that there 
exists a two-dimensional continuum ~g of 2-per solutions (r, 5) which 
connects the 2-horn solutions on the ~hom-CUrve to the period doubling 
solutions on the toper-curve. This 2-per continuum g is confined to the 
region of e between the two curves _~, ~. To find g, we use topological 
methods which are due to Alexander and Antman (1981). Therefore, we 
cannot estimate the precise number of 2-per solutions, 

The following three lemmas are much in the spirit of Section 5; we 
assume that the reader is now familiar with the arguments given there. Our 
first lemma deals with 1-per/I-horn solutions, that is, solutions of 

r = e2 + a(5)r 1+ ~1 + O(rl+ ~) (6.4) 

Recall that a (0 )<  -1 ,  in this section. 

6.1. Lemma. Locally near e = 0, r = 0 the solutions o f  (6.4) can be 
parametrized over (r, e l ) such  that 

e 2 = ~2(r, 51) (6.5) 

Here e2 is a C~ o f  r >~ 0 and o f  el ; it is C 1 in r >f O, 51 > O, and C M 
for  r > 0 .  

Moreover, r ~ gz(r, el) is strictly increasing for  any f i xed  el. Therefore, 
the set o f  solutions (r, ~) projects one-to-one down to those ~ -- (el, e2) with 
5 2 ~ 0 ,  

Proof. The parametrization (6.5) together with the stated differen- 
tiability properties follows directly from the implicit function theorem, 
applied to equation (6.4). Concerning differentiability, we of course remem- 
ber the extension of our equations to r < 0  which was discussed in the 
proof of lemma 5.1. Strict monotonicity of e2(', el) follows by implicit 
differentiation of (6.4) with respect to r for r > 0. Indeed, 

1 = (1 + D~2a. r 1 +~ + O(r 1 + o~)) Drg 2 _1_ (l -q- el) a(e)r ~1 + O(r ~) 

implies that Dr52 is positive, for all sufficiently small r, el, since a (0 )<  0. 
This completes the proof. | 

Next, we are interested in period doubling bifurcations on the 1-per 
sheet 52=g2(r, 51). These bifurcations can be detected in system (6.1). The 
1-per sheet are those solutions of (6.1) for which ro = rl =r .  For r > 0 ,  let 

a = A(r, 51) (6.6) 

denote the determinant of the 2 x 2-Jacobian of the right-hand side of (6.1) 
with respect to (ro, rl) at r o = rl = r, e 2 = 52(r, el). 
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6.2. Lemma. The determinant A on the 1-per sheet g2 = e2(r, el), r > O, 
vanishes only along a unique C M-curve 

r = ?(el) >0,  e~ > 0  

and A changes sign there. 
Viewed in the projection onto G-space, this curve is given by a cg-curve 

82 = K p e r ( e l ) : =  g2( r (e l ) ,  61) , e 1 > 0  

The asymptotics of  ? and l~per fOr 81 "~ 0 are 

lim ?(el)la(0)l I/~' = e x p (  - 1 - P ~ l a ( O ) / a ( O ) )  
~I NO 

lim Kper(gl)ta(O)l 1/~:1 = 2 e x p (  - 1 - D r ,  a ( O ) / a ( O ) )  
gl N0 

(6.7) 

(6.8) 

Proof. Differentiating (6.1) with respect to (ro, rl) at ro=r~=r>O 
we see that 

A = d e t ( ( l + g l ) a f f l  - 1  ) 
- 1  (1 + e l ) a r  ~ +O(r~) 

Thus d vanishes if and only if 

(a) l = ( l + g l ) a ( e ) K ~ + O ( r  ~) 

o r  

(b) - I  = (1 +e l )  a(6)r~l+ O(K ~ 

(6.9) 

Since a < 0, the first equation (6.9a) cannot have solutions with small r. 
Solving (6.9b) together with the original fixed point equation 

r = 62 + a(6)r 1 + ~ + O(r* + oo) (6.4) 

this time with a(0) < -1 ,  is quite similar to the situation which came up for 
the fold curve x in the proof of lemma 5.3; see (5.11a, b). We indicate only 
the necessary ramifications. 

First, we note that (6.9b) can have a solution for small r and 16al only 
when 61 > 0, since a (0)<  -1.  As usual, we can then solve (6.9b) uniquely 
for r=~(61) at 62=62(r, 6~), by monotonicity. Likewise, we obtain a 
differentiable p =p(61, e2) such that, analogously to (5.12), 

r(/31) el~-- D(61, ~2(r(61), 61) ) (6 .10)  
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The function ?(el) is of class C ,t for el > 0. At e = 0, we have f =  0 and 

(1, 0 ) = p D ~ a + a D ~ p  (6.11) 

since ap = -1 ,  this time, in (5.13). 
As in (5.14), we claim 

Kper (g l )  = g 2 ( r ( g l ) , / ~ 1 )  ~-- o (~1) ,  for gl  ~ 0 (6.12) 

Unfortunately, we cannot use Org2(f , e l ) =  0, this time, since we are not at 
a fold point. However, to show (6.12), we can first differentiate (6.10) with 
respect to el to obtain 

Here we have used 

I p [ < l  (6.13) 

lira D r g 2 ( F ( e l )  , g l )  = 2 (6.14) 
gl N~0 

which follows by differentiating (6.4). Also, we have used that 

l im D e l g 2 ( ~ ( g l )  , g l )  =- 0 
~1 N 0 

holds, by the same reasoning as in the proof of (5.14) above. Now we can 
conclude 

lim K~rper(gl) = lim (Dr~2.D~I?+D~Ie2)=O 
~1 "* 0 el N 0 

since the first term term was estimated in (6.13)-(6.14) above and the 
second term yields zero, as before. This proves (6.12). 

With these preparations, lemma 5.1 applies to (6.9b) with 

b ( ~ )  : :  (1 --1-/~1)" ( - a ( e ) )  

and yields 

lim r(~l)la(0)l 1/~ = exp( - 1 - D~la(O)/a(O)) 
e l N 0  

This proves expansion (6.7) for f(el). 
To prove expansion (6.8) for g p e r ( g l ) ,  w e  compute similarly to the 

proof of lemma 5.3 
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lim K p e r ( / ~ l ) l a ( 0 ) l  1/~ = lira ~2(F(EI ) ,  /31) la(0)l 1/~1 
~1 N 0 ~I N 0 

= lira Y(e~)la(0)[ l /~l ( l  - a ( 8 )  r(81)el + O(ff~ 
8,1N0 

= lim F(e~) la(0)l ~/~' (1 - a(e) p(e) + O(~'~ 
~ I N 0  

= 2 e x p ( -  1 -D~a(O)/a(O)) 

since lim~ , oa ( s )  p ( e ) = - 1  for 8=(81,82(F(S1),Sl)), p=~el by (6.9b). 
Therefore (6.8) holds, and the lernma is proved. II 

Note that lemma 6.2 implies a (local) period doubling bifurcation 
from the 1-per sheet. Indeed, fix e l > 0  and increase the remaining 
parameter 82 through the bifurcation point s2=~Cp~r(el). Then the 
determinant d of the linearization of system (6.1) at the corresponding 
1-per solutions ro = r~ = r changes sign. This change of topological degree 
implies local bifurcation of 2-per solutions: a period doubling bifurcation. 
We will return to these arguments in much more detail in lemma 6.5. 

We can also look at the other limiting case of 2-per solutions, namely, 
at 2-horn orbits. Recall that r o = 0 < rm, for a 2-horn. (Alternatively, we 
could of course consider the equivalent case ro > 0 = rx.) 

6.3. Lemma. 2-horn solutions r o = 0  < rl occur only along a unique 
C M-curve 

~2 = / s163  > 0 

rl =P(el)  >0,  e l > 0  

The asymptotics of f and Kho m for el "~ 0 are 

lira i(e~) la(0)l 1/~ = exp(-D~a(O)/a(O)) (6.15) 
~1 N0  

lim Khom(/~l) [a(0)[ ~/~1 = exp(--D~a(O)/a(O)) (6.16) 
e l N 0  

In particular, we have the universal limit 

lim ~hom(e~) e 
el N 0 K p e r ( g l )  2 

1.36... (6.17) 



218 Chow, Deng, and Fiedler 

Proof. Equations (6.1) with r 0 = 0  yield 

(a) 0 • - - r  I -1- 8 2 -[- O ( r l l  + ~ )  
(6.18) 

(b) O-=82 + a(s)r11+~-i-O(rll +~ 

since Irl = rl. From (6.18a) we find 

s2 = 82(rl, 81) = rl + 0(rll + ~) (6.19) 

where O(rl +~) depends only on rl and 81. Plugging this into (6.18b) and 
using differentiability of a(s), we obtain 

0 = rl + a(sl ,  O)rl~ + ~ +  O(r I + ~o) 

or, equivalently, 

1 -= - a ( s l ,  0)r~ + O(r~;) (6.20) 

Solving (6.20) for rl = Pl(Sl), by lernma 5.1 again, we find the asymptotics 
(6.15) for P(sl). In particular, 

lim ~(sl) = 0 
81 "-~ 0 

Now (6.19) yields the same asymptotics for 

f f h o m ( 8 1 ) = 8 2 ( / ~ ( 8 1 ) ,  81)  

since 

lim %(P(sl), sl) la(O)l 1/~= lira P(Sl) la(O)l 1/~ 
81 N 0 81 N 0 

This proves the ~%om-asymptotics (6.16). Finally, the limit 

lim ~hom(el) lira ~Ch~ e 
s l ' ~ O  Kper(*S1) s l ' ~ O  Kper(81)" la(O)[ 1/81 --2 

is universal, by the asymptotics (6.8) and (6.16) for ~Cper and Xhom' This 
proves the lemma. II 

Locally near r = 0 ,  s = 0 ,  the 2-per solutions are confined to an 
exponentially thin wedge in parameter space. More specifically, we have 
the following. 

6.4. Lemma. Consider system (6.1) !n a suitably small, f i x ed  neigh- 
borhood o f  r = O, s = O. 
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Then there exist two C~-curves 

82 ~--- ~ ( 8 1 )  and 82 = ~(81), 8~ > O, 

with ~ < ~, such that (6.1) does not possess 2-per or 2-horn solutions for  8 
outside o f  the wedge 

{(e~, 8~) 1_~(8,) < 8~ < g(8,)} (6.21) 

The curves ~ and '2, respectively, have the same exponential asymptotics as 
1 the curves 5Kp~ and 2Kho m [see lemmata 6.2, 6.3, (6.8),  and (6.16)].  

Proof. Suppose system (6.1) does possess a 2-per/2-hom solution 
r = (ro, rl), that  is, r o r rl and 

0 = - r l  + 82 + a(8)r~ + ~1 + ho(ro, rl ' e) 

0 = - r  0 + 82 + a{8)r~l +el + ho(rl, ro ' 8) 
{6.1) 

Here we have used that, by the symmetry  r o +--, r l ,  we know 

hl(ro, r 1 , 8 ) =  ho(rl, ro, 8) 

at any solution (r0, r~). We may assume 

O ~ r 0 < r  I 

so that  both error terms ho, h ~ are of  the order O(r~l+~). Taking the 
difference of  the two equations (6.1) and dividing by ( r ~ -  t o ) >  0 we obtain 
an equat ion of the form 

- 1 = a (e )  a~l(ro, r~) + O(r • )  (6.22) 

where a~ denotes the slope 

o-ej(ro~ F 1 ) , - -  

1 +e l  - -  r l  +e l  
/~1 "0 

r 1 - -  r 0 

of the secant to the graph r ~-~ r I +~ at the two points r = r o, r I . Note  that  
this graph is convex or linear or  concave, depending on the sign of el. Thus 
~781 always lies in the interval with end points 

rl ~ and (1 + 81)r] 1 (6.23) 
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for 0 ~< ro < rl. The error term O(r~') is justified, since 

h0(r I , ro, e ) -  ho(r o, r I , e) 

fl = (rl--ro) ( D l h o ( r o + O ( r l - r o ) , q - O ( r l - r o ) , e )  

-- D2ho(ro + O(r l -- ro), rl -- O(r l -- ro), ~ ) ) dO 

where the integral is O(r~ by differentiation of O(]rll+~). 
It remains to construct 8(el), ~(el) such that (6.22) cannot hold out- 

side the specified wedge (6.21). Obviously, (6.22) cannot hold for el ~< 0, by 
estimate (6.23) for a and because a(0) < -1.  For el > 0, we can estimate g2 
from the first equation in (6.1) as 

(1 + O(r~))r  I ~<e2 ~<rl( 1 - a ( e ) r ] l +  O(r~))  

and, since a(e~, g2) is Lipschitz in e2, this implies an estimate 

( l + O ( r ~ ) ) r l ~ g 2 ~ r l ( 1 - a ( g m , O ) r ] ~ + O ( r ~ ) )  (6.24) 

Plugging (6.24) into (6.22) yields similarly 

- 1  = a ( Q ,  O) a<(ro, r l ) +  O(r~ 

Let _C ~< 0 ~< C denote real constant such that 

C__r 7 < O(r~) < Cr 7 

above and in (6.24). Then (6.23) implies 

(1 + ej) a(e, ,  O)r~' + C_r 1 <  - 1  <a(e l ,  O)rl ~ + Cr 7 

where the terms to the right and left of - 1  are strictly decreasing with ri. 
Therefore, we conclude 

rl ~ (-rl, rl) 

where 

and 
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- -  1 ~- (1 -~- ~1) a ( ~ l ,  0)-r112r- ~C_r~ ~ 

This defines r1(~1) , 71(~1). Note that _r(el) has the same exponential 
asymptotics (6.7) as r(el), which is associated to period doubling. Similarly, 
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r1(81)  has the "2-horn" asymptotics (6.15) of f(el). These facts follow from 
lemma 5.1. Now we define 

~(~1) :=El(el)( 1 +-Cr1(el) ~) 

K(el) := f l ( e l ) (1 - - a (e l ,  O)f l (e , )e l+Cf(e , )  ~) 

Then (6.24) implies that e2 lies between K and ~: 

1 Indeed. Moreover, _K has the same exponential asymptotics a s  ~K'pe r. 

lim K(el)la(0)l i /~= lim rl(e~), la(0)l 1/~1 
el N 0 et "-~ 0 

= exp( - 1 - D ~  a(O)/a(O))  

= lim �89 1/e~ 
el NO 

by lemma 6.2. Likewise, 

lira K(el)la(0)l 1/~1 = lim rl(zl)la(0)l 1/~1. (1 - a(e~, 0) yl(~l )el _}_ ~f(~l)CO) 
e I "-~ 0 el N 0 

= 2 exp(--D~a(0)/a(0))  

= lim 2Khom(el) la(O)l  1/el 
el N0  

by lemma 6.3. This proves the lemma. | 

To complete the proof of theorem B, it remains to detect a two-dimen- 
sional continuum cg of 2-per solutions which connects the curve of period 
doubling solutions to the curve of 2-hom orbits. We construct this 
continuum using a topological multiparameter result due to Alexander and 
Antman (1981). 

We briefly describe the basic idea, fixing the setting along our way. Fix 
small enough bounds ~0> 0 and pO. Then choose e ~ > 0  small enough, 
depending on these bounds, as detailed below. We consider the box 

~ =  {(~, r ) ] 0 < ~ : 2  < s O, 0 < ~ :  1 < s  0 < r  <~o  0 } 

where the r-inequality is understood componentwise, for r o and r 1. Fix ~1, 
for a moment. The corresponding section ~e~ of the box ~ is drawn in 
Fig. 5. We see the 1-per branch in the r o = rl diagonal, the period-doubling 
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Fig. 5. Bifurcation within the box N~, for fixed small positive e~. 

point e2= ~cpCr(el), ro = r~ = f(~l) on that 1-per branch, and the two 2-hom 
points given by g2 =/Chore(S1) and % = 0 ,  r I = i(el) or ro=•(el), r I =0.  By 
lemma 6.2, the sign of the determinant A of the r-linearization of(6.1)  
changes at e~=Kper along the 1-per branch. By the classical global 
Rabinowitz (1971) theorem, this implies the existence of a global 
bifurcating continuum cg~ of 2-per solutions ( roCrl )  from the 1-per 
branch. Since e2 =/(per is the only bifurcation point, this continuum cg~L 
extends to the boundary of the open box ~ .  Since (g~ consists of 2-per 
solutions, the values of e2 on cg~ are confined to the wedge region _~(~)< 

o is chosen such that if(el)< e0 e2 < g(e~). Of course, we assume here that ea 
for 0<e~ <e l  ~ Since cs extends to the boundary b d y ~ ,  the closure 
clos ~ ,  intersected with bdy ~ ,  consists precisely of the two 2-horn 
points. The following lemma gives a 2-dimensional account of this 
1-dimensional result, including the parameter e~ which was held fixed 
above. For the notion of topological dimension see, e.g., Hurewicz and 
Wallman (1948). 

6.5. Lemma. Consider system (6.1) in the open box ~ constructed 
above. Let cgper, cgho m denote the period doubling and 2-hom curves, given, 
respectively, by 
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Cgper = {(r, ~)~clos~le2=/s r o = r  I = r ( ~ l ) }  

Cghom-- { ( r , e ) e c l o s ~ l [ %  ~Chom(e,),r0=0, rl =1:(e1), orro=Pl(ej) ,  r l=O} 

 hom= U 

Then there exists a continuum c~ ~_ ~ of  2-per solutions of(6.1) (i.e., r o # rl) 
with the following properties: 

(a) clos   {(r, O clos tro=r }=%o  
~ forO <~ ex o (b) clos cg c~ bdy . ~  = Cghom, ~< al (6.25) 

(C) r has topological dimension at least 2 at every point. 

Let c~ + denote the one point compact~'cation of  r that is, r + is clos r with 
points on bdy ~ u r k3 C~ho m identified to a single point. Then we also have 

(d) there exists a continuous and essential (i.e., non-contractible) map 
from clos ~+ to the standard 2-sphere S 2. (6.25) 

Proofi The proof is basically an application of Alexander and 
Antman (1981, theorem 2.2). The 1-per sheet 

~2 = ~;2(r, ~ l ) ,  r o = r l = r > O ,  e l > 0  

which can also be parametrized over e = (e~, e2), plays the role of the trivial 
solution. Just above lemma 6.3, we have already checked the basic assump- 
tion of Alexander and Antman (1981): a change of (Brouwer) degree, viz., 
of sign A, as we cross the bifurcation c u r v e  6~pe r in the 1-per sheet. As a 
result, we obtain a continuum cg of 2-per solutions such that (6.25c, d) both 
hold. [By Alexander and Antman (1981), cg is called S~.] 

To prove (6.25a), we first claim that clos cg intersects the 1-per sheet 
at most in the bifurcation curve ~p~r' Indeed, the linearization is 
nonsingular outside of c~w~ (A # 0 )  and the implicit function theorem 
applies, isolating the 1-per sheet from 2-per solutions. Also, clos ~ cannot 
contain points in 

{(r, ~) ~ bdy r = rl }\Cgp~ (6.26) 

Indeed, clos cg is confined to the wedge region 

{(r, I (6.27) 

In this wedge, nonzero solutions with ro=,r 1 and with r0e{0 ,6  ~ or 
el e {0, eo} or e2 e {0, e2 ~ do not exist. This proves our claim. 
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Next we claim that clos cg contains Cgp~r. Indeed, as we have shown 
above, the Brouwer degree, via, sign A, changes across e2 = tOper(e l )  for any 
fixed e l > 0 .  Therefore, closCg~cgpe~ by Alexander and Antman (1981, 
theorem 2.2). This proves (6.25a). 

To prove (6.25b), we first claim 

CIos ~ ("1 bdy ~el ~ ~ l m  

Indeed, the left-hand side is contained in the wedge region (6.27). But 
clos cg c~ bdy ~ ,  in that region, can consist only of 2-horn points and, if 

gl e~ = 0, possibly zero. All these points are in Cgho m. 
To complete the proof of (6.25b), we also claim 

clos cg c~ bdy ~1 ~- (~Yhlo~T~ 

Indeed, consider any e~-section ~,~ of cg, el >0.  By Alexander and Antman 
(1981, p. 349), the section cg~ is not contained in any compact subset of the 
box section N~I, because clos cg,~ cannot contain any point on the 1-per 
sheet except for the unique bifurcation point on Cgpe r with e = (el, /s 
Therefore, 

clos ~ ~ bdy ~ r (25 

In other words, clos ~9~1 contains at least one of the two points 

~2=Khom(81), r0=0 ,  Fl=r l (~l )  

or 

ro = Pl(a~), rl = 0  

which constitute ~hom- By the symmetry roe--~r I of (6.1), we may then 
assume that clos ~Tg 1 also contains the other point. This proves our claim. 

A minor point remains to be settled. Augmenting c~,~ by its symmetric 
counterpart, as above, could have destroyed the existence of an essential 
map (6.25d), in principle. We claim this does not happen. Indeed oK+ 
consists of three disjoint sets: 

cgff : the collapsed point, 

cg + : points in c~ with r 0 < rl ,  < 

~g + �9 points in cg with ro > r~. > 

Evidently, we can omit either cg <+ or cg + from cg + and still find an essential 
map into $2; say 

~ -  u ~  + ~ S  2 
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Extending this map to cg+ such that orbits under ro ~ rl get mapped to 
the same point, we find a symmetric continuum cg for which (6.25d) still 
holds. 

This completes the proof of lemma 6.5 and the proof of theorem B. I 

7. DISCUSSION 

We put our main theorems A, B in a variety of perspectives. First we 
compare and contrast our results, as they stand, with earlier work by other 
authors. Then we reemphasize a central weakness of our approach via 
Ljapunov Schmidt reduction: we have lost control over N-horn/N-per 
orbits with N >  2. We indicate how this defect can be remedied by con- 
structing a suitable center manifold. Because our discussion of Poincar6 
return maps has caused us a lot of technical troubles, we also explain why 
another idea, which is based on exponential dichotomies, does not work as 
well for homoclinic bifurcations. Hard-core applications of our results are 
very scarce, so far. We blame this deplorable fact on the lack of numerical 
pathfollowing schemes for homoclinic orbits. After pointing out analytical 
difficulties with our results in infinite-dimensional settings, we return to the 
pathfollowing question from a global, theoretical point of view. We sketch 
an idea for an emerging index theory for paths of homoclinic orbits which 
hopefully should bridge the gap between local "birth" of homoclinic orbits 
at B-points and, on the other side, chaotic dynamics of the Shilnikov type. 
We summarize some known ingredients, but much still remains to be done. 

Postponing further speculation, for a little while, let us return to the 
homoclinic side-switching bifurcation. According to theorem A, this bifur- 
cation is associated to nontwisted homoclinic orbits and can therefore 
occur for vector fields in the plane. Indeed, Sanders and Cushman (1986) 
have found resonant side-switching to occur in the (averaged) equation for 
a Josephson junction 

~ = y  

? = - s i n  ~b + e(a - (1 + ~ cos  ~b) y )  
(7.1) 

with ~be S 1, e small positive, and with real parameters a, 7. They obtain 
resonant side-switching near a =  16/3zc, y = 1. In particular, the correct 
asymptotic expression for the per-fold, given in (1.16), was obtained by 
Sanders and Cushman (1986, 5.11). This includes the computation of ao 
and of the finite limit in (1.16). Their explicit computations are based on 
averaging of a perturbed pendulum equation, Picard-Fuchs equations, and 
associated Riccati equations. On the other hand, our much less explicit 
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approach carries over to vector fields which are far from a Hamiltonian 
structure and to vector fields in higher space dimensions. An earlier 
reference which is closely related to resonant side-switching is Leontovich 
(1951). There, it is stated in theorem 3 (putting n = 0 ,  c0=0, al r  that 
up to two periodic orbits can coexist for perturbations of a resonant 
homoclinic orbit in the plane. Still for planar C 2 vector fields, Nozdracheva 
(1982) essentially obtained theorem A. Tangency of the per-fold at el = 0  
was noticed, but the asymptotic expression (1.16) was not derived. 

The bifurcation of 2-hom orbits is a question which was first addressed 
by Yanagida (1987) in a traveling wave context as follows. Let 

~,=D~xx+G(c~2,~ ), x e ~ ,  c~2eN (7.2) 

be a reaction diffusion system with nonnegative diagonal diffusion matrix 
D and with nonlinearity G. Then special solutions of the form ~ =- ~(x + ct), 
called traveling waves, satisfy the ODE 

o = + ; )  (7.3) 

which is of the form 

2 = F(c~, z) (1.1~) 

with suitably defined z and with 0~=(0~l,~2):=(C,~2). Specifically, 
Yanagida considers 2-hom orbits to an equilibrium with unstable dimen- 
sion 1 (n = 1, in our notation). This assumption enables him to treat the 
Poincar6 map directly, avoiding Shilnikov variables like (s, xin, yOUt). 
Unfortunately, he completely linearizes F near the equilibrium z = 0 and 
then omits terms which are of higher order, formally. Linearizations of 
class C k, (k >~ 1 to preserve tangencies), require certain diophantine non- 
resonance conditions on the eigenvalues. For linearization of flows which 
do not contain parameters, see, e.g., Belitskii (1973), Sternberg (1957, 
1958), Sell (1984, 1985). In particular, our system violates the Sternberg 
condition of order 3 as soon as z~ ~, due to resonance. For smooth 
normal forms in the plane at resonance see Bogdanov (1985). We point out 
that the linearization question is related to the exponential expansion (3.9), 
at least for z e ~2; see Deng (1989a, Section 6). Anyway, Yanagida derives 
the correct (truncated) reduced normal form equation for 2-hom orbits, 
concluding existence in the twisted and nonexistence in the non-twisted 
case. We have now confirmed these results,- extending them to higher 
unstable dimension and deriving exponential asymptotics of the bifurcation 
curve /s As we mentioned in Section 2 above, Glendinning (1987) has 
computed both the asymptotics for ~Cho m and /s for the truncated reduced 
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normal form. He claims that reduction to this truncated form can be 
achieved "via standard techniques." In a way, we have shown that he is 
right: a posteriori, and modulo some subtleties described below. We note 
here already that even the discussion of the full normal form equation 
(4.13) is a nontrivial task, since a systematic theory of equations where 
parameters enter in the exponents, i.e., transcendentally, does not exist. In 
particular, it is not clear how to neglect terms "of higher order." Kokubu 
(1987) also notes the linearization flaw in Yanagida's presentation, 
announcing an alternative proof. Accidentally, the crucial twist condition is 
missing in his statement of Yanagida's result (Kokubu, 1987, theorem 3). 
Writing this Discussion, we obtain the preprint (Kokubu, 1988) which, in 
theorem D, gives a correct version of Yanagida's result in three space 
dimensions (n = 1, m = 2). The proof avoids linearization and relies on the 
Shilnikov expansion given in proposition 3.2 above. The method of proof 
differs from ours. In particular, periodic orbits are not discussed and 
the homoclinic orbits are not obtained through a Ljapunov-Schmidt 
reduction. Instead, a transversality assumption is made. Specifically, the 
existence of an (m + 1)-dimensional invariant manifold W " is used, which 
is assumed to be tangent to ToWSOspan(e  +) at z = 0 .  A manifold W "s, 
tangent to To W" | span(e-  ), can be defined analogously. Transversality is 
assumed for the intersections 

W" c~ W% W" ~ W us 

This assumption enters already into continuation of the primary 1-hom 
branch. Existence of W s", W u" entails a loss of regularity. These manifolds 
can be assumed to exist of class C k, if the spectrum of the linearization at 
z = 0 satisfies the gap condition 

min(fil, 91) > k-max(#0,  Vo) 

in the notation of assumption (1.6); see Hirsch et al. (1977, Section 5), 
Vanderbauwhede (1989). Generically, this forces us down to Cl-regularity 
throughout. In contrast, we obtain a 2-horn curve ~cho m which is smooth 
except at bifurcation. Kokubu (1988) notices tangency of ~Cho m to the 
1-horn curve but does not derive the exponential expansion 

O <  lim Khom(~l)laoll/el< 0(3 
el N O  

However, the main thrust of Kokubu (1988) is on heteroclinic phenomena. 
This explains why periodic orbits are not considered. 

We emphasize that Yanagida has, at least formally, found two 
other generic mechanisms for nonresonant homoclinic doubling besides 
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the resonant case, assuming #o>Vo; see Yanagida (1987, theorem 3.3). 
Geometrically, these other two mechanisms work as follows. Suppose we 
follow a path of homoclinic orbits z*(t), varying the parameter  ct along a 
curve. Then, 

lim ~*(t)/12*(t)l 
l ~  + c o  

might switch from the principal stable eigenvector - e -  to e itself, some- 
where along this curve. In between, there will be a parameter  value, viz., a 
bifurcation point, where the above limit is a nonprincipal eigenvector. This 
is the first mechanism. Alternatively, the unstable manifold W u can 
intersect W~'oc at the point q in an exceptional position, so that the strong 
2-1emma 3.3 does not apply. In other words, the status of the homoclinic 
orbit z*(t) switches from twisted to nontwisted at some (bifurcation) point 
along the parameter  curve. This is the second mechanism which leads to 
homoclinic doubling. Both mechanisms are discussed under the, hopefully 
unnecessary, assumption n = 1 for the unstable dimension. At this stage, it 
seems likely that all generic mechanisms for homoclinic doubling involving 
real principal eigenvalues have been found. Strictly speaking, however, we 
are still lacking rigorous necessary criteria for homoclinic bifurcations. For 
reasons of space, we cannot pursue these questions any further here. 

It is a central weakness of our approach that we lose control over 
N-per/N-horn orbits, N ~> 3, in our analysis of the reduced normal form 

rj+l=e2+a(e)r)+~l+O(lrll+~~ j ( m o d  N)  (4.13) 

for r =  (ro ..... rN_ 1)- As we noticed in Section 2, the O-term is the reason 
why (4.13) does not describe an iteration of a single monotone scalar 
function, for which N-per/N-horn orbits with N >~ 3 could not occur. This 
subtlety seems to have escaped the attention of some authors. We briefly 
describe two different angles of attack to the problem. 

First, we can approach the problem algebraically. For example, 
consider the nontwisted case a > 0, viz., a > 1. For  N =  2, it can be shown 
that no additional solutions occur besides those with r o = r 1 = r, which are 
seen for N =  1 already. Indeed, suppose 0 ~< ro < rl.  Then we can reconsider 
the proof of Lemma 6.4, this time for a > 1 rather than a < -1 .  We obtain 
a contradiction from (6.22), since both a and a,, are positive. For N~> 3, 
however, these essentially scalar convexity arguments fail. In particular, we 
are not able to gain sufficient control over (4.13) to exclude the existence 
of N-per solutions algebraically. 

Second, let us approach the problem more geometrically. Suppose 
there exists a two-dimensional center manifold attached to the homoclinic 
orbit z*(t), which describes bifurcations just as in the case of a periodic 
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orbit. In a Poincar6 section, we then have a one-dimensional invertible 
return map. Thus N-per orbits with N~> 3 cannot occur nearby, since they 
would have to lie on the center manifold. But does there actually exist such 
a center manifold W~? We sketch how W ~ might be constructed, at 
least of class C ~, following an idea which was pointed out to us by 
J. Guckenheimer. Basically, one would like to use the (m + 1)-dimensional 
manifold W *" tangent to To W* |  which we have mentioned 
above in the context of Kokubu (1988). Just assume that W *" and W ~* 
intersect transversely along the orbit F =  {z*(t)} at c~ = 0 and define 

14/C= W~c~ W"* 

obviously dim We= 2. If W ~u and W us are constructed very carefully, then 
W C will contain all orbits which remain in a tubular neighborhood U of the 
homoclinic orbit /7. In particular, all N-horn and N-per orbits will lie in 
W C, as required above. For  a related approach to a simplified model of the 
Lorenz system, based on stable foliations, see Robinson (1988). 

Constructing W% W u" for this purpose involves the following 
subtlety. The vector field F has to be modified such that W% e.g., can be 
constructed globally to consist of all those trajectories which do not escape 
to "infinity" at a rate faster than 

e (v~ t --+ oo 

Usually, F is allowed to be modified everywhere outside a small 
neighborhood of the origin (Hirsch et al., 1977, section 5A; Vander- 
bauwhede 1989). For our purposes, however, F must not be modified in a 
tubular neighborhood U of the entire homoclinic loop F. Therefore, con- 
structing W c will be a not so standard task, involving a global extension 
of the vector field to an appropriately chosen bundle over the homoclinic 
loop F. Once W ( is shown to exist, there remains a question about 
(linearized) stability of the bifurcating 1-per and 2-per solutions. We hope 
that a "principle of reduced stability" in the sense of Kielh6fer and 
Lauterbach (1983) holds: this would allow us to determine stability of the 
periodic solutions directly from the reduced normal form (4.13). 

An alternative approach to pathfollowing of homoclinic orbits, based 
on exponential dichotomies, can be sketched as follows. We rewrite (1.I) as 

~ (~ ,  z(-)) := - e ( t )  + F(< z(0)  = 0 

~ : ~ 2 x Z 1  --+Zo 
(7.4) 

where Z,, l = 0 ,  1, are suitably chosen Banach spaces like BC'(;~, ~m+n) 

865/2/2-8 



230 Chow, Deng, and Fiedler 

with the uniform sup-norm, or like the Sobolev spaces H'(R, Rm+n). It 
follows from Palmer (1984, lemma 4.2) that the linearization 

Dzg(0, z*(.)) 

at the homoclinic orbit z*(-) is a Fredholm operator of Fredholm index 
zero. The results of Palmer are based on exponential dichotomies of certain 
families of projection operators along the orbit z*(t). Note that 2*(-) is 
always in the kernel of Dz~(O, z*(.)). Assuming surjectivity of the total 
derivative D ~  makes pathfollowing of homoclinic orbits amenable to an 
application of the implicit function theorem, and even to global continua- 
tion techniques. The formulation (7.4) has a fundamental drawback, 
however, when it comes to bifurcation problems. For illustration, consider 
resonant homoclinic doubling (theorem B). As el "~ 0, ~2-~-khom(el), the 
Z-horn trajectory {~(t) l t~ N} tends to the 1-horn trajectory {z*(t)L te  N} 
in phase space ze R,~+n. In contrast, ~(-) does not tend to z*(.) in any of 
the function spaces Zo or Z1. In fact, ~(.) does not have a limit for ~ ~ 0. 
A similar obstacle arises, when we try to capture periodic orbits limiting on 
a 1-horn at a blue sky catastrophe in the functional analytic framework of 
(7.4). 

Hard-core applications of our results are scarce. Resonant side- 
switching, as we have mentioned above, was found by Sanders and 
Cushman (1986) to occur in the Josephson junction. Yanagida (1986) 
presents his result in the framework of a "generalized nerve equation intro- 
duced by FitzHugh," without being entirely specify about the underlying 
nonlinearities. Actually, the whole situation is somewhat reminiscent of 
period doubling, which is hardly ever detected analytically for a concrete 
given system. Rather, there are numerical pathfollowing routines for peri- 
odic orbits which find period doublings in a broad variety of applications. 
See, for example, Doedel and Kernevez (1985), Kubi6ek and Marek 
(1983), Seydel (1988). Efficient pathfollowing codes for homoclinic orbits in 
two parameters do not seem to exist. In AUTO (Doedel and Kernevez, 
1985), homoclinic orbits are treated as periodic orbits of "large" period. 
The special structure of homoclinic orbits near stationary solutions is thus 
ignored. Concerning the numerical treatment of one-sided asymptotic 
boundary value problems, we mention de Hoog and Weiss (1979) and 
Lentini and Keller (1980). Note that, in the functional analytic framework 
of (7.4) above, a homoclinic orbit z*(t) solves the boundary value problem 
(7.4) with the two-sided asymptotic boundary condition z*(t)~O for 
t ~  +oe. Of course, this setting suffers from the above mentioned 
difficulties at bifurcations. The exponential asymptotics (1.16), (1.18-1.19), 
(5.9), (6.7), (6.15) pose an even more aggravating obstacle. For example, 
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consider resonant homoclinic doubling (theorem B). Then the 2-hom 
branch is close of order 

lao[-1/,~, ao< -1  (7.5) 

both in parameter and in phase space, as we move away from the bifurca- 
tion point along the 1-horn branch by an arclength of e~ > 0. For moderate 
ao = -2 ,  el = 0.04, the quantity (7.5) is still as small as 3 �9 10-8. Such effects 
are hard to detect in numerical case studies. For completeness, we mention 
that 2-hom orbits were detected analytically in a FitzHugh-Nagumo 
system with a complex pair of principal eigenvalues rather than real eigen- 
values; see Evans et al. (1982) and Hastings (1982). This is related to a 
celebrated result by Shilnikov (1965), predicting shift dynamics near 
certain homoclinic orbits of flows. We return to this phenomenon at the 
end of this section. 

One potential class of applications is concerned with infinite-dimen- 
sional dynamical systems. Specifically, we think of reaction diffusion 
systems, viz., analytic semigroups, and of differential equations involving 
time delays. We caution the reader that it is not clear at present how to 
carry over the fundamental expansion 

y~n = r(g, + R,,) 
(3.9) 

x ~ = rl/~~ + Rx) 

to such infinite-dimensional semiflows. In fact, the proof of (3.9) involves 
flows in both positive and negative time direction; see Deng (1989a). 
Therefore, we do not claim that our results hold, e.g., for reaction-diffusion 
equations. Techniques are being developed, though, to study homoclinic 
and heteroclinic orbits for infinite-dimensional semiflows in a more 
systematic fashion. We mention results on the blue sky catastrophe and an 
infinite-dimensional 2-1emma (Chow and Deng, 1989) and the results by 
Lin (1986) and Hale and Lin (1986) involving an exponential dichot_omy 
setting as in (7.4) for functional differential equations. For inclination 
lemmas and bifurcations of homoclinic/heteroclinic orbits for functional 
differential equations, see also the fundamental papers (Walther, 1981, 
1985-1989). For a detailed and explicit investigation of heteroclinic orbits 
of scalar reaction diffusion equations in one space dimension, see 
Brunovsk) and Fiedler (1988, 1989), Angenent and Fiedler (1988), and the 
references there. A scalar delay equation was treated by Fiedler and Mallet- 
Paret (1989), in a similar spirit. Representing an entirely different line of 
thought, we finally mention Kirchgfissner (1982, 1983, 1988) and Fischer 
(1984), where homoclinic orbits of small amplitude are detected via a 
reduction to a finite-dimensional center manifold. These results essentially 
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deal with PDEs of elliptic type in unbounded domains like strips or cylin- 
ders. The homoclinic structure arises via appropriate boundary conditions 
at infinity in a setting which is an infinite dimensional version of (7.4), even 
though an elliptic system does not define a dynamical system, a priori. 
Time in (7.4) gets replaced by the unbounded space coordinate of the ellip- 
tic system. For the "nonautonomous" case, in this sense, see Kirchg/issner 
(1983, 1988), Mielke (1986a, b) and the references there. Global continua- 
tion of homoclinic orbits is possible in principle; see, e.g., Kirchgfissner 
(1988), Amick and Kirchg~ssner (1988), but suffers from the inherent 
drawbacks of the setting (7.4) which we have described above. 

Returning to finite-dimensional questions, we mention the problem of 
nonautonomous perturbations. For example, consider 

z( t )  = [?(~, Z(t))  "@ ~h(t), o~ = (o~1, o~2) 

for periodic forcing h with small amplitude lel. Fixing e # 0  small, it is a 
difficult question to study the dynamic behavior of the corresponding two- 
parameter family of period map diffeomorphisms, as e varies in a 
neighborhood of a (nontwisted or twisted) homoclinic bifurcation 
associated to e = 0. For an example concerning a homoclinic orbit hitting 
a stationary fold in the Josephson equation as in Fig. 8 below, see Schecter 
(1987b). 

Hamiltonian systems and time-reversible systems are other classes of 
equations which we have excluded here. It is a common feature of these 
systems that any linearization at any (symmetric) equilibrium has symmetric 
spectrum, i.e., 

# E spec r - #  ~ spec 

In particular, any homoclinic orbit with real principal eigenvalues is 
automatically resonant in our sense (1.9). In this context, we remember 
that resonant side-switching was found by Sanders and Cushman (1986), 
perturbing the (Hamiltonian) mathematical pendulum. We are not aware 
of any results on resonant homoclinic doubling for Hamiltonian or 
reversible systems. For a discussion of certain Hamiltonian systems with 
periodic orbits, homoclinic orbits, and heteroclinic loops, see Hofer a n d  
Toland (1984). 

After these excursions, let us now reconsider our original generic two- 
parameter problem 

~--F(c~,z), eEN 2 (l.1~) 

Broadening our view, in the remainder of this section, we address some 
questions about global pathfollowing of homoclinic orbits. As a starting 
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point, we resume our discussion of B-points, alias the Arnold-Bogdanov-  
Takens singularity, from section 1 [see (1.4) and Fig. 1]. At a B-point, as 
we recall, a path of homoclinic orbits starts (or terminates). As a goal, we 
would like to define an orientation of these paths in parameter space, 
globally, such that we can follow oriented paths "as far as possible" 
without ever cycling back onto a previously followed piece of the path. 
Instead of rendering this goal artificially precise, we now define an orienta- 
tion. Then we will see what this does for us. Our attempt is much in the 
spirit of Mallet-Parer and Yorke (1980, 1982), Alligood et  al. (1983), Chow 
et  al. (1983), and Fiedler (1985, 1986). 

As a prerequisite, we define an index q5 e { - 1, 0, + 1 } for a hyperbolic 
periodic orbit ? = {z(t)]0 ~< t ~< p} of minimal period p > 0. Hyperbolic 
means that 7 does not possess Floquet multipliers on the unit circle, except 
the trivial one. Let a+,  or- denote the number of real Floquet multipliers 
in the intervals (1, co), ( - 0 %  - 1 ) ,  respectively, counting algebraic multi- 
plicities. Then the orbit index ~ is defined as 

:= � 8 9  + + ( - 1 y  ++~-) (7.6) 

This orbit index ~b, defined first by Mallet-Paret and Yorke (1980), turns 
out to be a local homotopy invariant for periodic orbits of generic one- 
parameter vector fields. 

Equipped with the orbit index 4,  we can now define an orientation of 
certain homoclinic paths in parameter space. We assume that periodic 
orbits ? near the homoclinic orbits occur only for parameters c~ on one side 
of the local path segment which we consider (see Fig. 6). We then orient 
the homoclinic path segment such that the periodic orbits ? are on the right 
if ~b = +1. If q5 = -1 ,  then we want 7 to be on the left. If ~ = 0, then we 
refuse to define an orientation. 

~2| ~ per, ~=+'1"~ per, ~ : - i ~  
/ 

~ho m \~x~ho m 

Fig. 6. Orienting homoclinic paths. 
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How compatible is this definition with the local bifurcation picture at 
a B-point? Note that a - =  0 and hence ~b # 0, near a B-point. Therefore, 
the homoclinic path can be oriented. Following its orientation, the 
homoclinic path can either emanate from the B-point, or it can terminate 
there. These two cases fit nicely with the index B of B-points, which was 
defined by Fiedler (1986) for the purpose of global Hopf bifurcation. 
Specifically, B =  +1 when a homoclinic path emanates and B = - 1  at 
termination. The index B is defined in local terms and is easily accessible 
numerically. See the code BALCON (Fiedler and Kunkel (1987a, b), which 
is based on ALCON (Deufhard et al., 1987). 

What happens to the orientation, far from B-points? Consider 
resonant side-switching, first. By theorem A, Fig. 3a, there are two 1-per 
solutions at parameters ~ in region II. Their respective orbit indices ~ are 
opposite in sign (or are both zero), by homotopy invariance near the fold 
curve ~2=~c(e~). One of the periodic orbits continues to a blue sky 
catastrophe at the right 1-hom branch el >0,  e2=0. The other orbit 
continues to the left 1-horn branch el < 0, e2 = 0. Since the 1-per orbits have 
opposite index ~ and approach the 1-horn branch from opposite sides, the 
orientation of the 1-horn branch is defined consistently on both sides of the 
bifurcation point e = 0. 

As a second example, consider resonant homoclinic doubling 
(theorem B and Fig. 3b). To determine all orientations, fix s2 small positive 
and vary only Sl. Crossing the ~%~r-region in the 1-per sheet from left to 
right, we see that the number a -  of Floquet-multipliers in ( - o % - 1 )  
changes by one. Thus ~ = 0 on one side, and c/, # 0 on the other side. 
Suppose q~ = +1, for definiteness, as in Fig. 7. For simplicity, also suppose 

T 
~ 2-horn / 

1 -horn 1 -hom 
Fig. 7. Two cases of resonant homoclinic doubling. 
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that the 2-per sheet is confined to the region IV and is parametrized over 
e. Then 45 on the 2-per sheet can be computed, by homotopy invariance of 
45, near the period doubling curve e2 = ~per(el). 

If no further period doublings occur on the 2-per sheet (leading to 
4-per solutions) then 45 extends, constantly, to the 2-hom branch. This 
defines an orientation of the 2-hom branch, as in Fig. 7. We conclude that, 
in each case, precisely two of the three homoclinic half-branches are 
oriented, and this orientation extends consistently through the bifurcation 
point. These arguments can be extended to cover the case when the 2-per 
sheet is neither confined to the region IV nor parametrized over e. 
However, due to the difficulties which we have described above, we cannot 
exclude the possibility of further period doublings from the 2-per sheet 
which would lead to 4-per orbits.' In fact, we are lacking control over N-per 
orbits with N~> 3. This difficulty does not arise for resonant side-switching 
because 2-per orbits do not exist, in that case. 

Of course, the above remarks do not constitute a global bifurcation 
result for paths of homoclinic orbits. Other bifurcations can occur. We 
briefly mention some of the known results. But we do not tie these results 
in with our index theory, this time. 

We have already mentioned above that non-resonant mechanisms for 
homoclinic doubling were found by Yanagida (1987). Now let us consider 
the base point A of a homoclinic orbit z*(t), that is, the stationary point 
to which z*(t) tends for t ~  _+oo. In the previous sections we have 
discussed at length what happens when the principal eigenvalues at A 
become resonant. Now suppose one of the principal eigenvatues becomes 
zero. Generically, this means that the homoclinic path hits a fold line in 
parameter space while the base point A hits the fold. This situation was 
studied by Lukyanov (1982) and Schecter (1987a) for z e  ~2. The bifurca- 
tion diagram is sketched in Fig. 8. It was noted by Schecter that the horn- 
curve hits the fold curve tangentially rather than transversely. Correspond- 
ing results for higher dimension of z are now available; see Chow and Lin 

(z21 stationary 
solutions ~ 

(7.1 -, / ~/ hom' 
hom 

stationary per 
fold 

Fig. 8. A homoclinic path hitting a stationary fold. 
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(1988), Deng (1990b). Also in higher space dimension, but in one-parameter 
systems, the generation of (unique) periodic orbits from homoclinic orbits 
with base point on a fold was studied by Shilnikov (1962, 1966). Shilnikov 
(1969) and Afraimovich and Shilnikov (1974) also have observed that a 
fold point A, with p ~> 2 distinct homoclinic orbits atached to it, generates 
nearby dynamics which is equivalent to shift dynamics on p symbols. 
Evidently, this situation can arise during a pathfollowing process when p 
path segments successively hit a stationary fold, each time as in Fig. 8, and 
then coexist. In other words, the very intriguing results by Shilnikov (1969) 
and Afraimovich and Shilnikov (1974) indicate how pathfollowing of 
homoclinic orbits can lead to regions with chaotic, i.e., shift-type, dynamics 
near a stationary fold. 

At this stage, it seems natural to ask what happens when the base 
point approaches a Hopf bifurcation along the homoclinic path. Long 
before that can happen, however, another celebrated result by Shilnikov 
takes effect. Namely, we may assume that both principal eigenvalues are in 
fact conjugate complex pairs, or that one of them is real, say Vo > 0, while 
the other "one" is a conjugate complex pair, say -#o_+ ico o, such that 

0<#o<Vo (7.7) 

In both cases, nearby shift dynamics on a countable alphabet was 
discovered, generically. See Shilnikov (1965, 1967, 1970). A discussion of 
some of these results is given by Deng (1989b), with an emphasis on 
exponential expansions of the Shilnikov variables like (3.9). For a Cl-ver - 
sion of (7.7) with z e ~3 see also Tresser (1984). For applications of these 
ideas in the FitzHugh-Nagumo equations see Evans et  al. (1982) and 
Hastings (1982), again. Homoclinic tangencies of return maps occur on a 
dense set along homoclinic paths where (7.7) holds; see Ovsyannikov and 
Shilnikov (1987). The transition into a region where (7.7) holds was 
studied for two-parameter vector fields in ~3 by Belyakov (1980, 1984). He 
detects, e.g., countably many paths of 2-horn and, in one of the cases, of 
3-horn orbits accumulating at the transition point. See also Rodriguez 
(1986), for the 1-horn branch. 

When (7.7) is violated, that is, 

0<Vo<Yo 

then a 2-shift still occurs in ~3, provided that two distinct homoclinic 
orbits are limiting onto the same base point A, thus forming a figure "8." 
The two symbols correspond to excursions along the upper/lower loop of 
the figure 8. In particular, such a situation can arise for systems with a 
(reflection) Z2-symmetry; see Holmes (1980), Tresser (1984), Gambaudo 
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et al. (1984). The case v o >/~0 > 0 was also discussed by Tresser (1984) and 
Glendinning (1984). Repeated period doublings near pairs of homoclinic 
orbits with real principal eigenvalues and coinciding principal directions 

lira ~*(t) / l~*(t)[  
t ~  + 0 2  

due to Zz-symmetry, are observed by Arneodo et al. (1981), Kuramoto and 
Koga (1982), Coullet et al. (1984), and Lyubimov and Zaks (1983). For 
the Lorenz system, see in particular Sparrow (1982). Again, complicated 
dynamics abound. 

Toward the end of our long excursion into global pathfollowing, let us 
mention the largely open problem of bifurcation from heteroclinic cycles. 
From a pathfollowing point of view, heteroclinic cycles arise as follows. Let 
A denote the base point of a homoclinic orbit F, as before. Following a 
path in parameter space, some part of F might approach another 
stationary point B. In the limit, we have a heteroclinic cycle: one trajectory 
runs form A to B and another one returns from B to A. As references for 
bifurcations from heteroclinic cycles one may consult Reyn (1980) for 
zE R2, Bykov (1980) and Tresser (1984) for z~ R3, when conjugate com- 
plex eigenvalues occur, and Rinzel and Terman (1982), Chow et al. (1986, 
1990), Deng (1990a), and Kokubu (1987-1988) when the principal eigen- 
values are real. In all these cases, it is assumed that both A and B are 
hyperbolic with unstable dimension given by UA = UB = 1. In some cases, 
Bykov (1980) and Tresser (1984) find shift-dynamics of the Shilnikov type. 
Deng (1990a), on the other hand, detects a phenomenon where, in 
parameter space, paths too, ~cl .... of heteroclinic solutions bifurcate from the 
heteroclinic cycle point such that the following holds. For C ~ N ,  the 
heteroclinic orbit cycles through N complete loops near the heteroclinic 
cycle and only afterwards converges to A, B for t--, _+or without cycling 
further. The basic assumption there is again a certain twist condition. Deng 
(1990a) also sketches how this bifurcation can occur in planar vector fields. 
In general, heteroclinic cycles break apart under perturbations of the vector 
field; generically they occur as a phenomenon of codimension at least two. 
When enough symmetry is present, however, heteroclinic cycles can 
become structurally stable. Essentially, heteroclinic orbits can then come to 
lie in certain linear subspaces which have a symmetry-invariance and are 
therefore flow invariant. Of course, this influences the local bifurcation 
diagrams as well. For interesting examples see Armbruster et aL (1988) and 
Guckenheimer and Holmes (1988). But even when symmetry is not 
present, there remains an enormous number of largely unresolved cases 
of generic two-parameter bifurcations from heteroclinic cycles. These cases 
arise when the unstable dimensions u A or u B exceed one, possibly differing 
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from each other, with real or complex principal stable or unstable eigen- 
values of A and B. For an intricate example of heteroclinic loops in the 
7/2-symmetric Lorenz system, see Glendinning and Sparrow (1986) and 
also Sparrow (1982). 

Each of the above cases, separately, will create a challenge to our 
attempt of sketching an emerging theory for global pathfollowing of 
homoclinic orbits in two-parameter flows. On this long way still ahead, it 
is our firm hope that paths of homoclinic orbits will turn into a systematic 
guiding thread from easily detected B-points up to regions with 
complicated, shift-type dynamics. 

8. APPENDIX: GENERICITY ASSUMPTIONS 

In this Appendix, we summarize the nondegeneracy assumptions 
which enter into our main theorems A and B. 

Our first assumption was 

codim(Tp W" + Tp W ~) = 1 (1.10a) 

so that Tp W ~ r~ Tp W u is given by the span of the tangent ~*(0) of the 
homoclinic orbit at z*(0)= p, ~ = 0. Then we have assumed 

pC W s', pC W ~" (1.10b) 

so that z*(t) approaches z = 0 tangentially to the principal eigendirections 
e -v- as t ~  +oo. With the notation 

Tz.(,) := Tz.(,) W s + T~.~,) W" 

we have then assumed that T~.(m, say, avoids certain exceptional positions. 
In that case, the strong 2-1emma (proposition 3.3) implies 

lira Tz*(t/= To W s" G To W" 
l - - -*  - - o o  (1.13) 

lim T~,(t ) = To W' G To W "~ 
t ~  + c O  

This assumption has enabled us to discern twisted and nontwisted 
homoclinic orbits. Moreover, this assumption made our Ljapunov-Schmidt 
reduction work, via the projection po defined in (4.6). 

So far, our genericity assumptions are concerned only with the vector 
field F =  F(c~, z) for fixed parameter ~ = 0. These assumptions led to the 
reduced bifurcation equation 

- ~-~-1/~~ + O(Ir[ 1 + ~ j (mod N) 0 = ,/ , j(r,  c~) = - c o ( a )  + c ~ ( c ~ ) r j +  ~ - ~ . , . j  

(4.8) 
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with appropriate coefficients Co(C0, cl(c~), c2(~), given explicitly by (4.9). 
The remaining genericity assumptions enable us to rewrite (4.8) as the 
reduced normal form 

r j + l = e 2 + a ( g ) r ) + ~ + O ( ] r l l + ~ ) ,  j (mod N) (4.13) 

with ]a(0)l r 0, 1, by a parameter transformation 

- - ,  ~ = ~(~) 

This diffeomorphism is given explicitly in (4.14a, b). Denoting the 
principal unstable eigenvalue by Vo=Vo(C0, with the principal stable 
eigenvalue normalized to be - / ~ 0 ( c 0 = - 1 ,  the relevant nondegeneracy 
assumptions were 

(a) D~co(O) and D~vo(O) are linearly independent 

(b) c~(0) > 0 (4.15) 

c2(~) r  1 
(c) c~(c~) 

Genericity of these three assumptions was discussed in the proof of 
corollary 4.3. In particular positivity of c~(0) was generic, due to a sign 
convention. 

With (1.10a, b), (1.13), and (4.15a-c), our list of genericity assump- 
tions is complete. 
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