
TURAN-TYPE INEQUALITIES IN CERTAIN INTEGRAL METRICS 

I. Ya. Tyrygin UDC 5 1 7 . 5  

Let Tn(t)(Pn(x)) be a nontrivial trigonometric (algebraic) polynomial of degree n, n E 
N, with all real zeros which, in the case of the algebraic polynomial, lie in the interval 

2 a  H- 1 

[ - - l ,  +l]. In what follows, [ITali,=IS ITn(t)'Pdt} 'm, llPnl'p={~ [Pn(x) lZdx} 'm, I<,<~-oo, [ITnII.--- 
0 --I 

llTnIlc---- max ITn(t)], IIPnIl.=llPnllc= max IPn(x)[. We note that under the assumptions we have 
O<~t~2~ ' 2n - - l ~ x ~ < + l  

m a d e ,  T~ (t) = C [ ' 1  sin t - -  ti 2 , w h e r e  c ,  ti61P, i=l .2n,  C=/=O, t l < . t ~ . . . ~ t e . < t ~ + 2 m  

Turan [l] has proved the inequality HP'.Ilc~ llP=]Ic, where the constant V~ is not 
6 

precise; however, Erod [2] has obtained precise values of the constant in the Turan inequal- 
ity: 

n 
--~-, n =  2, 3, 

llP~llc 1 n = 4  6 . 8  . . . .  

I1 P~ IIc ~> n - -  1 ' ' 

n -  l Vn-='@-~ ) ' 
n = 5 , 7 , 9  . . . . .  

and V. F. Babenko and S. A. Pichugov [3] have established that 

r;, llc / : :  : - n-li~ 
[I ] - -  ( 2n / II T~ Ilc, 

t__V~2~ 
w h e r e  t h e  e q u a l i t y  h o l d s  f o r  t h e  p o l y n o m i a l s  T ~ ( t ) =  C s i n ~ ]  , 

I n  t h e  p r e s e n t  n o t e ,  we show t h a t ,  f o r  1 <_ p < +~ 

u c:/=o 

inf I l r ,  Ilp = s i n ~  = n 2B �9 2 '2 " (1 )  
I~rnlIc=l p 

The inequality (I) is a consequence of the following theorem. 

THEOREM. For any continuous increasing function % (u), u~ 0, % (0)= 0, which is convex 
downwards, we have that 

2~ 2 a  

l~r, llc =I 
0 0 

where Tn(t ) is a trigonometric polynomial of degree n with all real zeros. 

In the first part of the proof of the theorem we will follow the argument in [4], where 
instead of the greatest lower bound in (2), a least upper bound is obtained. Thus we fix n = 
l, 2, ..., and let 0 ~n. Letting O<.~u~n, we construct the function ~ (u) ----- 0, 0~u<~, 
~ (u)=  u, ~u<~n.  
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We split the interval [0, n] into m equal parts by means of the points kn, 

we put Om(u )= E ~_~(u), where ~k is from = , k= l,m--I . 
~-~--I m 

that4)~(~)--~%(~) uniformly on [0, n] as m -~ 4~. Relation i2) will be proved if we prove 

t h a t ,  for  a l l  s u f f i c i e n t l y  l a rge ,  m 

rain [ @.+ ([ T: (t) [) d{ = ~ '-- \="' 
IITnlJc=! .J \~ t ] -J 

0 0 

k = O, m, and 

It is easy to see 

(3) 

Since the coefficients ~k are nonnegative, we have that 

min f @., ([ T'. (t) [) dt = min ~ ~z~! ~;~(IT'.(t)[)dt>~ Z ~z~ min ~ ~ .  ([ T, (t) [) dt, 
IITnlIC '=! ~ llrnllc =I �9 /~=! ~=| I ITnl tr=I 0 m" 

and to prove the theorem it .i s sufficient to prove that this last sum is the same as the 
right-hand side o.f (3). This fact is a consequence of the following result. 

LE~MA. For 0,~<~.n 

min ,Iep~(IT'.(t)[)dt=S~.(l[(sint----2Y---)~"]'Ddt %~EO~. 
[IT n[IC =1 

0 0 

(4) 

Proof. 

is empty, and in this case we put mes (E~(Tn)) = 0. If we put e, (Tn)-----E$(Tn)O[O, 9~]. 
into account the notation introduced above, we get 

~. ~(lT',(t) l )d/= S I T',,(t)[dt= V T n .  

/ . t --  %, V" 
what follows, we 

lent to the inequality 

Let E~(T.)={tlt6R, IT.(t)[~[L where 0 ~llT.[lc. For ~>HTnllc the set E~(Tn) 

and take 

(5) 

~?6N. From (5)it follows that (4) is equiva- 

\? T.~> V ~n, (6) 

where [[Tnl[r 0~<~<n.  

The remainder of  the argument is  e s s e n t i a l l y  d i f f e r e n t  from tha t  in  [4].  Suppose tha t  
[[T.][c~<~-~<n. By v i r t u e  of the i n e q u a l s  [3][[r.[[c~llT"'.J[c ([I Tn [[c ----1) we get  t ha t  rues 
(e~ (rn))~>.0=mes (e~(T~)), i . e . ,  V T ~ > 0 =  W T,,. In t h i s  ease ,  (6) is  t r i v i a l .  Suppose tha t  

2n 
= 0. Then (6) is also satisfied by virtue of the obvious relation (e~ (T=)----- [0, 2~]) VTn~2_-- 

=VT~, IIT~IIc= I. 
0 

Suppose now that 0<~<IIT~Ilo Here we Use an approach which is used in [3] for similar 

problems. We will consider the polynomial Tn(t ) as a function of the variables C, t, and ti, 
i = 1, 2n. In the space 0~ -~ of .the variables C, x, y, z, ti, i = I, 2n, we consider the 
set Q defined by the inequalities t = n - - 2 n < Y < l l ~ t ' , ~ - . . ~ t 2 n < I i " + ' 2 z ~ ,  { 2 n - l - - 2 z t < z < x < g ,  

--~ < C < +oo. We put m, k, 6N, i= l,m, I~/~ i ..... k m, m~2n, ~ki=2n. The sets Qm(kz, ..., 
i = l  

km) ~ Q defined by the equalities tl = t2 = ... = tkl , tk~+1 = ... = tk~+k2,~,:,,_,+1=...=tz~, 
2n 

.... t= n may be regarded as "faces" of the set Q. we note that Q = U U Qm(kl ..... km), 

rn=l ~l~,,...,krn } 
and Qm(k~, ..., km) is a region in ~m-~4 in which the par.ameters C, x, y, z, "{~ = tz = ... = 

tk,, "'', t m = tkz +.-.+km-~ +z = -.. = t=n vary. On the set Q we consider the auxiliary 
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extremal problem: 

T~,(x) = [, T'~(y}= O, T n ( y ) =  1, T ~ ( z ) = 0 ,  T.  (x}-+ inf. (7) 

It can be shown that the greatest lower bound in (7) is achieved. Taking into account the 
smoothness of the constraints and considering the problem (7) on each region Qm(k~, ..., km) 
separately, with the help of Lagrange multipliers ([5], pp. 47-48) we get that all of the 
s~ationary points of (7) lie in Q:(2n). Hence we can conclude immediately that the greatest 

lower bound in (7) is Tn(x), where T~ (x) =.~, x>z, T~ (z) = O. 

The auxiliary extremal problem . . . . . .  

T . ( x ) = ~ ,  T~(y) = 0, T.(y) = I, T~{z) = 0, T.(x) - -~sup (8) 

on t h e  s e t  { & n - - 2 ~ < y < t l < ~ & ~ . . . < - ~ t , . < l ~  + 2 ~ , t ~ _ l - - 2 ~ < x < z < y ,  - - a n < C < +  ~}  can be 
solved in a manner similar to that just applied to problem (7). The solution to problem (8) 

will be Tn(x), where T~(x) = $, x < z, T~(z) = 0, i.e., the polynomial Tn(t) is extremal for 

The case where x lies to the right of y is treated simi- both problem (7) andproblem(8). 
larly. 

In [3], the relation 

m a x  ITS, (t) l ~  II Z~ lie (9) 

is proved, where T�88 (y) ---- T'~ (y,) = O, Tn(y)= I, 6~_,--2a~ya<y<&. Hence it is not difficult to 
obtain the inequality 

max I T~ (t) 1 >7 [[ 7"~, [[c, (l O) 

where T~(y)=T~(y0=0, Tn~)= I. t~n--2~<y<ya~ &. The inequalities (9) and (10) show that, 

for 0<~<I!T~I[c, IITnllc = I, the set e~(T n) consists of not fewer than two intervals which lie 
to the right and left of y, 

Thus if [a, b] is the interval of the set E~(Tn) which lies on the left, say, and clo- 

sest to the point y, Tn(y) = l, which is a local maximum of the polynomial Tn(t) satisfying 
the constraints of (7) and (8), then the solutions of these problems allow us to write 

To (a) ~ T.  (ao), Tn (b) ~ T.  (bo), ao = a (T.), b o = b (Tn). ( 11 ) 

From (9) and (I0) it follows that every polynomial Tn(t), [[Tn[Ic= I, satisfies the constraints 
of the problems (7) and (8) if the zeros are suitably indexed. Taking (ll) into account, we 
get 

Tn(ao)= max T.(a), T~(bo)= rain T~(b). (12) 
IITnltC=I IITnl}c =1 

Here we have used the fact that l/T~llc= I From (12) it follows that, for any Tn(t),llTnllc= I, 
we have 

T,  (b ) - -  T ,  (a) >~ rain T,~ (b ) - -  max T,, (a) = Srn (bo)--  T,~ (ao) > O, 
]ITnlIC=I IITn]IC =1 

where a = a(Tn) and b = b(Tn). The case where the interval [a,b]~E~(T~) lies to the right of 
y is treated similarly. 

As a result, we get that, for any 

V T. > / I T .  (a) - -  T.  (b)l + IT. (c) - -  T.  (d)l ~ 2 IT .  (ao) - -  T .  {bo)l = V T., 

where [a, b]([c, d]) is the closest interval in the set E~(T n) to the left (right) of y, 

IITn!Ic=Tn(y). where 0<~<IIT~llc. The relation (]3) is the same as (6). This proves the 
lemma, and therefore the theorem. 

COROLLARY I. For any trigonometric polynomial Tn(t) with all real zeros, we have the 
precise inequality (I .~< p < +oo) 

(13) 
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The equals sign holds for the polynomials T.(t) C' Isinl t~?)m_\ = - -  V?, CER', C=/=O. 

Corollary l is obtained from the theorem for X (u) =u~', 1 ~p<-+-+oo. 
COROLLARY 2. For, any algebraic polynomial Pn(x) with all real zeros in the interval 

[--I , +I] , we have the inequality (i ~ p < q-co) 

{ ( ( 2 n - - 1 ) p + l  p + l  )}'#' p-1 

B �9 2- ' ~ nllP,~llc ~<[Ip~,(x) (1 --xDe-'Yllp. 

In [6] it is shown that max IITnlIq=llcosn.tlIq, l~.q<q-oo. Hence we get this result from 
llTnl Ic=l 

Corollary !. 

COROLLARY 3. For any trigonometric polynomial Tn(t) with all real zeros we have the 
inequality (! ~,<p, q< q- o~) 

{2B((2n--l).p+l , p4-12 .)}1/, 

(1 q§ l )} ' /+  nllT'~llq<l"T',,l[~'" 
2B 2 ' 2 
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QUASIINPUT PROCESS IN AN M/G/I/~ SYSTEM 

G. I. Falin UDC 519.152 

I. Introduction. We consider a classical M/G/I/~ queue with delays. Let ~i(~i) denote 
the time at which the i-th customer enters into (respectively leaves) service. The series Hi 
of points on the time axis constitutes the so-called departure process" This has been stu- 
died in great detail (see for example []]), whereas investigation of the related series {~i}~ 
of times of entry into service is comparatively recent. The series {~i}~>i is the input process 
for the service mechanism and therefore.it is naturally referred to as the quasiinput process. 
The study of the quasiinput process is all the more important since often we may observe only 
the on/off times of the service mechanism, i.e., the quasiinput and the departure processes. 

This process was first considered in [2], where certain of its properties in the sta- 
tionary case were studied. In this paper we continue the investigation of the quasiinput 
process and we strengthen results derived in [2]. 

Notation: X, the traffic arrival rate; B(s), the Laplace--Stieltjes transform of the ser- 
vice time distribution function B(x); ~h = (--l)k~(k)(0), P = ~I, Si = ~--~ the service time of 

the i-th customer; If=~--~t_i the idle interval before the i-th customer enters service; 
Ni, the length of the queue immediately prior to the instant qi; vi, the number of customers 
entering the System in the time interval ($i, ~i). 

r 
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